Abstract
A coordinated testing policy is an essential tool for responding to emerging epidemics, as was seen with COVID-19. However, it is very difficult to agree on the best policy when there are multiple conflicting objectives. A key objective is minimising cost, which is why pooled testing (a method that involves pooling samples taken from multiple individuals and analysing this with a single diagnostic test) has been suggested. In this paper, we present results from an extensive and realistic simulation study comparing testing policies based on individually testing subjects with symptoms (a policy resembling the UK strategy at the start of the COVID-19 pandemic), individually testing subjects at random or pools of subjects randomly combined and tested. To compare these testing methods, a dynamic model compromised of a relationship network and an extended SEIR model is used. In contrast to most existing literature, testing capacity is considered as fixed and limited rather than unbounded. This paper then explores the impact of the proportion of symptomatic infections on the expected performance of testing policies. Only for less than 50% of infections being symptomatic does pooled testing outperform symptomatic testing in terms of metrics such as total infections and length of epidemic. Additionally, we present the novel feature for testing of non-compliance and perform a sensitivity analysis for different compliance assumptions. Our results suggest for the pooled testing scheme to be superior to testing symptomatic people individually, only a small proportion of the population (> 2%) needs to not comply with the testing procedure.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
BH acknowledges the BSU for PhD funding. SSV acknowledges funding and support from the UK Medical Research Council (MC_UU_00002/15). DSR received funding from the UK Medical Research Council (MC_UU_00002/14). This research was supported by the NIHR Cambridge Biomedical Research Centre (BRC1215-20014).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
The basis of the code came from Johnson's code that is publicly available on his GitHub. Additional code will be made available on publication or beforehand upon request.