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 2 

Abstract 36 

Depression is a risk factor for Alzheimer's disease (AD), but evidence for their genetic 37 

relationship is mixed. Assessing depression symptom specific genetic associations 38 

may better clarify this relationship. 39 

 40 

Using data from the UK Biobank, the GLAD Study and PROTECT, we performed the 41 

largest genome-wide meta-analyses (GWAS) of the nine depression symptom items, 42 

plus their sum score, on the Patient Health Questionnaire (PHQ-9) (GWAS equivalent 43 

N: 224,535—308,421). We assessed global/local genetic correlations and statistical 44 

colocalisation between depression phenotypes and AD across six AD GWAS with 45 

varying proportions of clinical and proxy (family history) case ascertainment. We 46 

assessed bi-directional causal associations using Mendelian randomisation (MR) and 47 

the predictiveness of depression phenotype polygenic risk scores (PRS) for AD 48 

case/control status in three clinical AD cohorts. 49 

 50 

Our GWAS meta-analyses identified 37 genomic risk loci across the ten depression 51 

symptom phenotypes. Of the 72 global genetic correlation tests conducted between 52 

depression/depression symptoms and AD, 20 were significant at pFDR≤ 0.05. Only one 53 

significant genetic correlation was identified with AD GWAS containing clinical-only 54 

cases. Colocalisation was not identified at loci contains local genetic correlation but 55 

was identified in the region of transmembrane protein 106B (TMEM106B) between 56 

multiple depression phenotypes and both clinical-only and clinical+proxy AD. MR and 57 

PRS analyses did not yield statistically significant results. 58 

 59 

Our findings do not demonstrate a causal role of depression/depression symptoms on 60 

AD and suggest that previous evidence of their genetic overlap may be driven by the 61 

inclusion of proxy cases/controls. However, the identification of colocalisation at 62 

TMEM106B warrants further investigation. 63 

 64 

 65 

 66 

 67 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2023. ; https://doi.org/10.1101/2023.06.05.23290588doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.05.23290588
http://creativecommons.org/licenses/by/4.0/


 3 

1. INTRODUCTION 68 
Epidemiological studies suggest that a diagnosis of depression is a risk factor for the 69 
later development of dementia1–6, of which Alzheimer’s disease (AD) is the most 70 
common form, accounting for approximately 80% of the over 40 million global cases7. 71 
Establishing the underlying mechanisms by which depression confers increased risk 72 
for AD offers a pathway by which new interventions might be implemented and the 73 
global dementia burden reduced8. 74 
 As twin studies have demonstrated, both depression and AD are substantially  75 
heritable – approximately 40% and 80% respectively9,10. Further, large-scale genome-76 
wide association studies (GWAS) have demonstrated high polygenicity, identifying 77 
over 70 genomic risk loci for AD and nearly 200 for depression11–17. It is therefore 78 
possible that their phenotypic association is in part due to shared genetic 79 
architecture. However, results from previous investigations into the genetic overlap 80 
between the two disorders have been mixed. For example, some findings indicate 81 
non-significant genetic overlap18,19, others a significant – if modest – genetic 82 
correlation of ~16-17% and a risk increasing causal effect of depression on AD20–22. 83 
 According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-84 
5), diagnosis of a major depressive episode requires the presence of at least five of 85 
a possible nine symptoms for ≥ 2 weeks, including one of the two cardinal symptoms 86 
– depressed mood or anhedonia23. Potentially hundreds of symptom combinations 87 
are possible to meet this diagnosis criteria24–26. As such, this heterogeneity poses 88 
challenges to researchers seeking to better understand differences in the genetic 89 
contribution to depression and its subtypes27,28. However, the decomposition of 90 
depression into individual symptoms has provided insight into unique patterns of 91 
genome-wide significant loci and cross-trait genetic associations, as demonstrated 92 
in a recent GWAS of depression symptoms on the Patient Health Questionnaire (PHQ-93 
9) by Thorp et al.29.  94 

A number of studies suggest that anhedonia may be a better predictor of 95 
dementia than depressed mood30–32. Further, several depression symptoms, such as 96 
appetite changes, psychomotor dysfunction, and sleep disruption are commonly 97 
observed in non-depressed dementia patients33–35. Taking this into account alongside 98 
the mixed nature of previous findings examining the genetic overlap between 99 
depression and AD, it is possible that leveraging depression symptom level genetic 100 
information may offer greater insight into the disorders shared genetic architecture. 101 

However, any association between depression and AD must also consider the 102 
potential influence of differences in case/control ascertainment in AD GWAS. A review 103 
by Escott-Price et al.36 notes that recent large-scale AD GWAS contain a relatively 104 
small proportion of clinically ascertained cases/controls, with a large percentage of 105 
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cases ascertained by proxy – that is, cases and controls are defined as individuals 106 
with and without a self-reported parental history of AD/dementia, respectively. The 107 
combination of clinical and proxy samples in AD GWAS meta-analyses has proved 108 
an effective way of boosting sample size and variant discovery15–17,37. However, 109 
evidence suggests that this has come at the expense of specificity in regard to 110 
genomic risk loci and an apparent stagnation in the percentage of variance explained 111 
by common variants36. Most importantly for cross-trait analysis, recent studies 112 
indicate that the direction of Mendelian Randomisation (MR) causal estimates for AD 113 
risk factors on AD can be in the opposite direction depending on whether the AD 114 
outcome GWAS contains clinical and proxy cases/controls or is more strictly clinically 115 
ascertained38–40.  116 
  To address these points, we perform the first and largest genome-wide meta-117 
analyses of PHQ-9 depression symptom items using data from the Genetic Links to 118 
Anxiety and Depression (GLAD) Study41, the PROTECT Study42,43 and two 119 
questionnaires from UK Biobank (UKB)44. We obtained summary statistics from 120 
previous large-scale GWAS for clinical11 and broad12 depression, and six AD GWAS. 121 
Specifically, three with clinical+proxy case/control ascertainment15–17, one with proxy-122 
only37, and two with clinical-only14,45.  We used these GWAS to assess the presence, 123 
strength and differences in genetic overlap between depression, depression 124 
symptoms and AD, with the additional aim of better understanding the influence of 125 
different AD case ascertainment strategies on associations.  126 
 127 

 128 

 129 

 130 

 131 

 132 

 133 

 134 

 135 

 136 

 137 

 138 
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 140 
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2. METHODS 142 
For an analysis flowchart, see Figure 1. 143 
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 144 
Figure 1: Analysis flowchart for the present study describing the analyses undertaken following 145 
genetic and phenotypic quality control (see: Methods) for each of the depression symptom items of 146 
the Patient Health Questionnaire (PHQ-9) in each of the four samples – UK Biobank (Mental Health 147 
Questionnaire and Experience of Pain Questionnaire), the Genetic Links in Anxiety and Depression 148 
(GLAD) Study and the PROTECT Study. GWAS = Genome-wide association analysis; AD = 149 
Alzheimer’s Disease; MTAG = Multi-trait Analysis of GWAS; FUMA = Functional Mapping and 150 
Annotation; LAVA = Local Analysis of [co]Variant Association; ADNI = Alzheimer’s Disease 151 
Neuroimaging Initiative; PC = genetic principal components 152 
 153 
 154 

2.1 GWAS in the UK Biobank, GLAD and PROTECT 155 

2.1.1 Patient Health Questionnaire-9 (PHQ-9) phenotypes 156 

The PHQ-9 is a well-validated clinical screening questionnaire used to assess 157 
depression symptom severity on nine individual symptoms in the DSM-IV46,47. The 158 
severity of each symptom is measured by the self-reported persistence of that 159 
symptom over the preceding two weeks on a scale of 0 to 3. Scores of 3 indicate an 160 
individual experienced that symptom nearly every day, 2 indicates an individual 161 
experienced that symptom more than half the days, 1 indicates an individual 162 
experienced that symptom for several days and 0 indicates no experience of that 163 
symptom at all. The sum of an individual’s scores over all nine items (sum-score) 164 
ranges from 0-27. For an overview of the PHQ-9 items and response distribution for 165 
each sample, see Table 1. Sum-score distributions can be seen in Supplementary 166 
Table 1. 167 
 168 
 169 
 170 
 171 
 172 
 173 
 174 
 175 
 176 
 177 
 178 
 179 
 180 
 181 
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 183 
 184 
 185 
 186 

 187 
Table 1: Patient Health Questionnaire (PHQ-9) derived depression symptom phenotypes, their 188 
corresponding question on the PHQ-9, and the distribution and percentage of responses for each of 189 
the four samples on which genome-wide association analysis was performed. 190 
 191 

PHQ-9 Question: 
How often in the last 2 weeks have 

you been bothered by any of the 
following problems?

0 (Not at all) 
1 (Several 

days) 
2 (more than 
half the days) 

3 (Nearly 
every day)

UK Biobank (MHQ) 117045 (81.75%) 21088 (14.73%) 2965 (2.07%) 2073 (1.45%)

UK Biobank (EoP) 116330 (76.07%) 29743 (19.45%) 4115 (2.69%) 2744 (1.79%)
GLAD 4108 (27.08%) 6429 (42.31%) 2502 (16.49%) 2142 (14.12%)
PROTECT 6194 (81.62%) 1130 (14.89%) 127 (1.67%) 138 (1.82%)
Total 243677 (76.42%) 58380 (18.31%) 9709 (3.04%) 7097 (2.23%)
UK Biobank (MHQ) 117505 (82.07%) 18521 (12.94%) 3860 (2.70%) 3285 (2.29%)
UK Biobank (EoP) 121071 (79.17%) 22432 (14.67%) 5404 (3.53%) 4025 (2.63%)
GLAD 4242 (27.96%) 4459 (29.39%) 3057 (20.15%) 3413 (22.50%)
PROTECT 6364 (83.86%) 971 (12.79%) 145 (1.91%) 109 (1.44%)
Total 249182 (78.15%) 46383 (14.55%) 12466 (3.90%) 10832 (3.40%)
UK Biobank (MHQ) 117951 (82.07%) 20386 (14.24%) 2713 (1.89%) 2121 (1.48%)
UK Biobank (EoP) 123920 (81.03%) 23441 (15.33%) 3258 (2.13%) 2313 (1.51%)
GLAD 4665 (30.75%) 5200 (34.28%) 2891 (19.06%) 2415 (15.92%)
PROTECT 6374 (83.99%) 1022 (13.47%) 116 (1.53%) 77 (1.01%)
Total 252910 (79.32%) 50049 (15.70%) 8978 (2.82%) 6926 (2.17%)
UK Biobank (MHQ) 112187 (78.36%) 26516 (18.52%) 2690 (1.88%) 1778 (1.24%)
UK Biobank (EoP) 119004 (77.81%) 28914 (18.91%) 2998 (1.96%) 2016 (1.32%)
GLAD 3595 (23.70%) 6746 (44.47%) 2538 (16.73%) 2292 (15.11%)
PROTECT 6108 (80.48%) 1329 (17.51%) 92 (1.21%) 60 (0.79%)
Total 240894 (75.55%) 63505 (19.92%) 8318 (2.61%) 6146 (1.93%)
UK Biobank (MHQ) 71903 (50.39%) 56170 (39.23%) 7595 (5.30%) 7503 (5.24%)
UK Biobank (EoP) 74733 (48.87%) 61571 (40.26%) 8820 (5.77%) 7808 (5.11%)
GLAD 1335 (8.80%) 4971 (32.77%) 3530 (23.27%) 5335 (35.17%)
PROTECT 3715 (48.95%) 3164 (41.69%) 359 (4.73%) 351 (4.63%)
Total 151686 (47.57%) 125876 (39.48%) 20304 (6.37%) 20997 (6.58%)
UK Biobank (MHQ) 116091 (81.09%) 21503 (15.02%) 2878 (2.01%) 2699 (1.89%)
UK Biobank (EoP) 123702 (80.89%) 22756 (14.88%) 3399 (2.22%) 3075 (2.01%)
GLAD 3986 (26.27%) 5131 (33.82%) 2800 (18.46%) 3254 (21.45%)
PROTECT 6095 (80.31%) 1260 (16.60%) 128 (1.69%) 106 (1.40%)
Total 249874 (78.36%) 50650 (15.88%) 9205 (2.89%) 9134 (2.86%)
UK Biobank (MHQ) 135592 (94.71%) 5805 (4.05%) 1025 (0.72%) 749 (0.52%)
UK Biobank (EoP) 141662 (92.63%) 8285 (5.42%) 1676 (1.10%) 1309 (0.86%)
GLAD 9932 (65.47%) 3254 (21.45%) 1215 (8.01%) 770 (5.08%)
PROTECT 7363 (97.02%) 182 (2.40%) 22 (0.29%) 22 (0.29%)
Total 294549 (92.37%) 17526 (5.5%) 3938 (1.24%) 2850 (0.89%)
UK Biobank (MHQ) 73219 (51.14%) 48936 (34.18%) 10007 (6.99%) 11009 (7.69%)
UK Biobank (EoP) 70799 (46.29%) 56955 (37.24%) 12245 (8.01%) 12933 (8.46%)
GLAD 2577 (16.99%) 5043 (33.24%) 3173 (20.91%) 4378 (28.86%)
PROTECT 3708 (48.86%) 2749 (36.22%) 570 (7.51%) 562 (7.41%)
Total 150303 (47.14%) 113683 (35.65%) 25995 (8.15%) 28882 (9.06%)
UK Biobank (MHQ) 137381 (95.96%) 4801 (3.35%) 566 (0.40%) 423 (0.30%)
UK Biobank (EoP) 146843 (96.02%) 4880 (3.19%) 686 (0.45%) 523 (0.34%)
GLAD 9116 (60.09%) 3713 (24.47%) 1215 (8.01%) 1127 (7.43%)
PROTECT 7392 (97.40%) 172 (2.27%) 13 (0.17%) 12 (0.16%)
Total 300732 (94.31%) 13566 (4.25%) 2480 (0.78%) 2085 (0.65%)

Depression 
Symptom

UK Biobank 
Data Field 

(MHQ/EoP)
Cohort

PHQ-9 Response

Anhedonia Little interest or pleasure in doing things 20514/120104

Appetite Changes Poor appetite or overeating 20511/120108

Concentration Problems Trouble concentrating on things 20508/120110

Depressed Mood Feeling down, depressed, or hopeless 20510/120105

Fatigue Feeling tired or having little energy 20519/120107

Feelings of Inadequacy
Feeling bad about yourself – or that you are 
a failure or have let yourself or your family 

down
20507/120109

Psychomotor Changes

Moving or speaking so slowly that other 
people could have noticed, or the oppisite – 

being so fidity or restless that you have 
been moving around a lot more than usual

20518/120111

Sleep Problems
Trouble falling asleep or staying asleep, or 

sleeping too much
20517/120106

Suicidal Thoughts
Thoughts you would be better off dead or of 

hurting yourself in some way
20513/120112
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 192 

2.1.2 Study population 193 

In each GWAS sample, individuals were only retained if they had reported European 194 
ancestry and had provided a valid response to all PHQ-9 items. Individuals were 195 
excluded if they had reported a previous professional diagnosis of schizophrenia, 196 
psychosis, mania, hypomania, bipolar, or manic depression (UKB Field ID: 20544) or 197 
a previous prescription of medication for a psychotic experience (UKB Field ID: 198 
20466). 199 

2.1.3 GWAS software 200 

All GWAS were conducted using REGENIE v3.1.348. In step one of REGENIE, ridge 201 
regression is applied to a subset of quality controlled (QC’d) variants to fit, combine 202 
and decompose a set of leave-one-chromosome-out (LOCO) predictions. QC for step 203 
one was undertaken using PLINK v1.949. In step two, imputed variants are tested for 204 
association with the phenotype. LOCO predictions from step one are included as 205 
covariates to control for proximal contamination. For all GWAS, genotyping batch, 206 
sex, age, and age-squared were included as covariates, as were the maximum 207 
available genetic principal components (PCs) for GLAD (10 PCs) and PROTECT (20 208 
PCs) to control for population stratification. For the UK Biobank analyses, 16 PCs were 209 
included as recommended by Privé et al.50. Assessment centre was also included as 210 
a covariate for UK Biobank analyses.  211 

A total of 40 GWAS were conducted for the meta-analyses – one for each of 212 
the nine PHQ-9 depression symptom phenotypes as well as the sum-score across all 213 
nine items in each of the four samples. To maximise statistical power, PHQ-9 214 
phenotypes were treated as continuous (ranging 0-3 for individual items and 0-27 for 215 
the sum score) and analysed using linear regression. GWAS were restricted to the 216 
autosomes.  217 

2.1.4 GWAS: UK Biobank (UKB) 218 

UKB is a large-scale biomedical database and research resource consisting of 219 
~500,000 individuals with data across a broad range of phenotypes, including mental 220 
health outcomes44. Individuals in UKB have been genotyped on the custom UK 221 
Biobank Axiom or UKBiLEVE arrays, with imputed data available for ~90 million 222 
variants imputed with IMPUTE2 using the Haplotype Reference Consortium (HRC)51 223 
and combined UK10K + 1000 Genomes Phase 3 reference panels52.  224 

UKB participants have completed the PHQ-9 in two online surveys. In total, 225 
157,345 individuals provided responses as part of the Mental Health Questionnaire 226 
(UKB-MHQ) (Category: 136) between 2016 and 2017, and 167,199 individuals had 227 
provided responses as part of the Experience of Pain Questionnaire (UKB-EoP) 228 
(Category: 154) between 2019 and 2020.  229 
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After filtering for self-reported European ancestry, valid PHQ-9 responses, and 230 
previous diagnosis/prescription exclusions, 144,630 (UKB-MHQ) and 155,027 (UKB-231 
EoP) individuals remained prior to genetic QC for REGENIE. In step one, single-232 
nucleotide polymorphisms (SNPs) with a call rate > 98%, minor allele frequency 233 
(MAF) > 1%, and Hardy-Weinberg equilibrium test p > 1x10-8 were retained, as were 234 
individuals with variant missingness < 2%, no unusual levels of heterozygosity, and 235 
not mismatched on sex. Individuals were retained if they were determined to be of 236 
European ancestry based on 4-means clustering on the first two principal 237 
components. 238 

For the final GWAS analyses, 143,171 (mean age [SD] = 63.70 [7.68]; %female 239 
= 56.38%) and 152,932 (mean age [SD] = 65.95 [7.63]; %female = 56.57%) 240 
individuals proceeded from the MHQ and EoP questionnaires respectively. Of these, 241 
108,601 individuals had provided responses on both questionnaires. In step two, a 242 
total of 9,746,698 imputed variants were retained with MAF ≥ 0.01 and imputation 243 
INFO score ≥ 0.7.  244 

2.1.5 GWAS: Genetic Links to Anxiety and Depression (GLAD) Study 245 

The GLAD study has the specific goal of recruiting a large cohort of re-contactable 246 
individuals with anxiety or depression into the National Institute for Health and Care 247 
Research (NIHR) Mental Health BioResource with genetic, environmental and 248 
phenotypic data collected41. Genotyping for GLAD was conducted using the UK 249 
Biobank v2 Axiom array and imputed using the TopMed imputation pipeline53. 250 

After filtering for self-reported European ancestry, valid PHQ-9 responses, and 251 
previous diagnosis/prescription exclusions, 15,472 individuals remained prior to 252 
genetic QC for REGENIE step one. Genotype data was provided by the study team 253 
and had been filtered to retain SNPs with a genotype call rate > 95%, MAF > 1%, 254 
Hardy-Weinberg equilibrium test p > 1x10-10, and individuals with genotype 255 
missingness < 5%. Individuals were additionally excluded if they had unusual levels 256 
of heterozygosity, mismatched on sex and of non-European ancestry based on 4-257 
means clustering. A total of 15,171 individuals (mean age [SD] = 39.27 [14.61]; 258 
%female = 78.30%) were retained for the final analysis. In step two, a total of 259 
13,979,187 imputed variants with MAF ≥ 0.001 and INFO ≥ 0.7 were analysed.  260 

2.1.6 GWAS: PROTECT Study 261 

PROTECT is an online registry of ~25,000 UK-based individuals that aims to track 262 
cognitive health in older adults. Individuals were only considered eligible for inclusion 263 
in PROTECT if they were older than 50, had no previous dementia diagnosis and had 264 
internet access. Genetic data are available alongside phenotypic data for ~10,000 of 265 
the participants. These individuals were genotyped on the Illumina Infinium Global 266 
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Screening Array and imputed on the 1000 Genomes reference panel54 using the 267 
Michigan imputation server and genotype phasing using Eagle. 268 
 After filtering for self-reported European ancestry, valid PHQ-9 responses, and 269 
previous diagnosis/prescription exclusions, 7,589 individuals remained for genetic 270 
QC for step one of REGENIE. Genetic data in PROTECT had been previously QC’d 271 
prior to imputation to only retain individuals and variants with a call rate > 98%, Hardy-272 
Weinberg equilibrium test p > 0.00001 and excluding unusual heterozygosity42.  273 
Variants used in step one were down-sampled from the imputed data using a snplist 274 
from the Illumina Infinium Global Screening Array provided by the PROTECT 275 
investigators. Variants were retained if they had MAF > 1%. After mismatched sex 276 
and 4-means clustering ancestry exclusions, a total of 7,589 individuals (mean age 277 
[SD] = 61.96 [7.07]; %female = 75.13%) proceeded to step two. In step two, 278 
9,388,534 imputed variants with MAF ≥ 0.001 and imputation INFO score ≥ 0.7 were 279 
analysed.  280 

 281 

 282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

 293 
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 299 
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2.2 GWAS summary statistics 301 
An overview of additional summary statistics obtained for this study can be seen in 302 
Table 2. 303 

 304 
Table 2: An overview of previously conducted genome-wide association studies for depression and 305 
Alzheimer’s disease used in this study. Heritability estimates were calculated naively on the liability 306 
scale from these standardised summary statistics using Linkage Disequilibrium Score Regression 307 
(LDSC), taking a population prevalence of 15% for depression and 5% for Alzheimer’s disease. 308 
 309 

2.2.1 Clinical and broad depression  310 
To examine potential differences in genetic overlap with AD between depression as 311 
a disorder compared to individual depression symptoms, summary statistics for two 312 
previously conducted GWAS of clinical and broad depression were obtained from 313 
the Psychiatric Genomics Consortium (PGC) (https://pgc.unc.edu/for-314 
researchers/download-results/). For clinical depression, we used a subsample of the 315 
Major Depressive Disorder (MDD) GWAS by Wray et al.11 that excluded samples from 316 
the UKB and 23andMe, and contained only individuals for whom case ascertainment 317 
was defined through structured diagnostic interview or electronic health records. For 318 
the broad definition depression GWAS, we used a subsample of the depression 319 
GWAS by Howard et al.12, which also excluded samples from 23andMe. In addition 320 

Phenotype
(Original GWAS)

Excluded 
Samples

Cases
(% Clinical)

Controls
(% Clinical) Total

SNP h2 
(SE)

Broad Depression
(Howard et al. (2019)) 23andMe

170,756
(25.3%)

329,443
(29.0%) 500,199

0.0798 
(0.003)

Clinical Depression 
(Wray et al. (2018))

UK Biobank; 
23andMe

45,591
(100%)

97674
(100%) 143,261

0.1012 
(0.007)

Clinical + Proxy AD 
(Bellenguez et al. (2022) (Stage 1)) N/A

85,934
(45.5%)

401,577
(14.0%) 487,511

 0.0306 
(0.003)

Clinical + Proxy AD 
(Wightman et al. (2021)) 23andMe

86,531
(46.1%)

676,386
(26.1%) 762,917

0.0237 
(0.004)

Clinical + Proxy AD 
(Jansen et al. (2019)) N/A

71,880
(33.5%)

383,378
(14.4%) 455,258

0.0234 
(0.003)

Proxy-only AD
(Marioni et al. (2018)) IGAP

42,035
(0%)

272,243
(0%) 314,278

0.0165 
(0.003)

Clinical-only AD
(Wightman et al. (no UKB) (2021))

UK Biobank; 
23andMe

39,918
(100%)

358,140
(29.1) 398,058

0.0431 
(0.008)

Clinical-only AD
(Kunkle et al. (2019) (Stage 1)) N/A

21,982
(100%)

41,944
(86.2%) 63,926

0.068 
(0.011)

Depression GWAS

Alzheimer's Disease GWAS
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to clinical cases and controls used by Wray et al.11, this broad depression GWAS 321 
included individuals in the UKB for whom case-control ascertainment was based on 322 
self-reported responses to the questions “Have you ever seen a general practitioner 323 
for nerves, anxiety tension or depression?” and “Have you ever seen a psychiatrist 324 
for nerves anxiety, tension or depression?”. 325 

2.2.2 Alzheimer’s disease  326 
Summary statistics were obtained from six previously conducted AD GWAS: three 327 
with proxy+clinical, one with proxy-only and two with clinical-only case 328 
ascertainment. All three of the proxy+clinical AD GWAS – Bellenguez et al.17, 329 
Wightman et al.16 and Jansen et al.15 – and the proxy-only AD GWAS –  Marioni et al.37 330 
– used data from the UKB for proxy AD samples.  331 

There are some key differences in the way these AD GWAS define proxy cases 332 
and controls. Bellenguez et al.17 define proxy cases/controls as a binary phenotype, 333 
whereby individuals  reporting a parent with AD or dementia are considered cases 334 
and those reporting no parental history are considered controls. Wightman et al.16 335 
and Jansen et al.15 instead define proxy cases/control as a continuous phenotype, 336 
summing the number of parents an individual has reported with dementia and down-337 
weighting unaffected parents by their age (or age of death).  338 

For the proxy-only Marioni et al.37 GWAS, summary statistics were obtained 339 
from a meta-analysis of paternal and maternal AD. Here, proxy phenotyping was 340 
based on the self-report of either maternal or paternal AD, including the parent’s age 341 
at time of reporting/age of death as a covariate.  342 

Summary statistics from a clinical-only subsample of the GWAS by Wightman 343 
et al. that excluded proxy cases/controls from the UKB45 were obtained from the 344 
authors. Summary statistics for a final clinical-only AD GWAS were obtained from 345 
Stage 1 of the GWAS by Kunkle et al.14. 346 

2.3 Summary statistic standardisation  347 
Summary statistics from all 40 depression symptom GWAS, the two depression 348 
GWAS and the six AD GWAS, were standardised using the MungeSumstats55 in R 349 
version 4.2.1. Using dbSNP 141 and the BSgenome.Hsapiens.1000genomes.hs37d5 350 
reference genome, missing rsIDs were corrected, duplicates and multi-allelic variants 351 
removed, effect alleles and the direction of their effects aligned to the reference 352 
genome, and variants filtered at INFO score ≥ 0.7 and MAF ≥ 0.01. The GLAD Study 353 
and Bellenguez et al.17 summary statistics were lifted over from GRCh38 to GRCh37.  354 

2.4 SNP heritability 355 

SNP heritability (h2SNP) estimates were calculated for all GWAS used in this 356 
study with Linkage Disequilibrium Score Regression (LDSC)56,57. Briefly, LDSC 357 
calculates h2SNP by regressing the effect sizes from GWAS summary statistics on their 358 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2023. ; https://doi.org/10.1101/2023.06.05.23290588doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.05.23290588
http://creativecommons.org/licenses/by/4.0/


 13 

LD score as computed in a reference panel – in this case HapMap3 variants 359 
contained within the European sample of 1000 Genomes Phase 3. Liability scale h2SNP   360 
was calculated naively from the standardised depression GWAS and AD GWAS using 361 
a 15% and 5% population prevalence respectively11,16. Heritability Z-scores were 362 
calculated for all phenotypes by dividing the h2SNP estimates by their standard error. 363 

2.5 GWAS meta-analysis of depression symptoms 364 
To leverage the maximum genetic information available controlling for the 365 

sample overlap between the UKB-MHQ and UKB-EoP samples, REGENIE output for 366 
each PHQ-9 phenotype from the UKB-EoP, GLAD Study and PROTECT were first 367 
subject to Inverse Variance Weighted (IVW) meta-analysis using METAL58. All 368 
available variants were included, for a total of 8,425,618 (N = 175,692). Multi-trait 369 
Analysis of GWAS (MTAG)59 v1.0.8 was then used to meta-analyse the METAL output 370 
with the UKB-MHQ sample. While MTAG is commonly used for the joint genetic 371 
analysis of multiple traits or multiple measurements of the same trait, by assuming the 372 
heritability of included phenotypes are equal (--equal-h2) and their genetic correlation 373 
is one (--perfect-gencov), MTAG performs an IVW meta-analysis of the same 374 
measures of the same trait, accounting for sample overlap using the cross-trait 375 
intercept from LDSC56,57. Heritability estimates for all samples, plus the METAL meta-376 
analysis, are in Supplementary Table 2. Genetic correlations between the UKB-MHQ 377 
and METAL GWAS are in Supplementary Table 3. For greater detail on the IVW 378 
function of MTAG, see the online methods of the original MTAG paper59. A total of 379 
8,196,874 SNPs with MAF > 0.01 were present for MTAG analysis. 380 

 This MTAG function provides one set of summary statistics and two GWAS-381 
equivalent sample sizes – one for each original sample included. A single, weighted 382 
GWAS-equivalent N was obtained for each PHQ-9-MTAG GWAS, using the following 383 
formula; 384 

 385 

𝑁(𝑓𝑖𝑛𝑎𝑙) = !"!($%&)∗"!($)*+),-!""($%&)∗""($)*+),
"!($%&)-""($%&)

 386 

 387 
where N1 and N2 represents the UKB-MHQ and METAL GWAS respectively, 388 

pre is the mean sample size prior to inclusion in MTAG and post is the GWAS-389 
equivalent sample estimated by MTAG following analysis. 390 

2.6 Genomic risk loci and gene annotation 391 
GWAS meta-analysis results were annotated using FUMA GWAS60 v3.1.6a. Genome-392 
wide significance was set at p ≤ 5e-8. Lead variants at genomic risk loci were defined 393 
by clumping all variants correlated at r2 > 0.1 250kb either side. Clumping was 394 
performed using the European sample of the 1000 Genomes Phase 3 reference 395 
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panel. Lead variants were mapped to genes within 10kb using positional mapping 396 
and eQTLs from four brain (BrainSeq61, PsychENCODE62, CommonMind63, and 397 
BRAINEAC64) and five blood (BloodeQTL65, BIOS66, eQTLGen cis and trans67, Twins 398 
UK68 and xQTLServer69) eQTL datasets, alongside all 54 tissue type eQTLs from GTEx 399 
v8 (https://gtexportal.org/home/tissueSummaryPage).  400 

2.7 Genetic correlations  401 
Genetic correlation can be understood as the genome-wide correlation of genetic 402 
effects between two phenotypes, and as such can be viewed as an estimate of 403 
pleiotropy70.  404 

Genetic correlations were calculated between each depression phenotype 405 
and the six AD GWAS using High Definition Likelihood v1.4.1 (HDL)71. HDL extends 406 
the LDSC framework by leveraging LD information from across the whole LD 407 
reference panel through eigen decomposition, thus shrinking standard errors and 408 
improving precision. A pre-computed eigenvector/value LD reference panel 409 
calculated from 335,265 individuals of European ancestry in the UKB was obtained 410 
via the HDL GitHub (https://github.com/zhenin/HDL/wiki/Reference-panels). This 411 
reference panel was calculated using 1,029,876, imputed, autosomal HapMap3 412 
SNPs, with bi-allelic SNPs outside the MHC region, MAF > 5%, a call rate > 95% and 413 
INFO > 0.9 retained.  414 

2.8 Local genetic correlations 415 
Local genetic correlation assesses the correlation of genetic effects between two 416 
phenotypes in specific region of the genome. It provides a more refined examination 417 
of the genetic overlap between two phenotypes, allowing for the identification of key 418 
regions driving shared genetic architecture. 419 

LAVA72 was used to assess regions of local genetic correlation between each 420 
depression phenotype and the six AD GWAS across 2495 semi-independent, pre-421 
defined LD-blocks of at least 2500 base pairs (https://github.com/josefin-422 
werme/LAVA). Loci-specific heritability estimates were calculated for each 423 
phenotype for each block. If both a depression phenotype and an AD GWAS showed 424 
significant local heritability at a specific locus (Bonferroni corrected p-value ≤ 2e-5 425 
(0.05/2495)), bivariate local genetic correlation was tested. Bivariate results were 426 
considered significant at pFDR ≤ 0.05 correcting for the total number of bivariate tests. 427 
Sample overlap was accounted for using an LDSC intercept matrix. Analysis was 428 
restricted to the 5,531,969 non-strand-ambiguous variants shared across all GWAS 429 
summary statistics and on the European ancestry 1000 Genomes Phase 3 reference 430 
panel. 431 

 432 
 433 
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2.9 Colocalisation 434 
Colocalisation using COLOC is a Bayesian statistical method to assess the 435 

probability of two phenotypes sharing a causal variant in a pre-defined genomic 436 
region.  437 

Within the colocalisation framework, posterior probability is assessed for five 438 
hypotheses: 439 

 440 
H0: There is no causal variant in the region for either phenotype 441 
H1: There is a causal variant in the region for the first phenotype 442 
H2: There is a causal variant in the region for the second phenotype 443 
H3: Distinct causal variants for each trait in the region 444 
H4: Both traits share a causal variant.  445 
 446 
Colocalisation analysis was conducted using the COLOC-reporter pipeline73 447 

(https://github.com/ThomasPSpargo/COLOC-reporter). COLOC-reporter extracts 448 
variants in user-defined genomic regions and calculates the LD matrix for this region 449 
from a user-defined reference panel. It then harmonises the summary statistics to 450 
match the allele order of the reference panel, flipping effect directions accordingly. 451 
Observed versus expected Z-scores are assessed using the diagnostic tools 452 
provided in the susieR R package74. Z-score outliers are omitted. Following this QC, 453 
Sum of Single Effects (SuSiE) fine-mapping74 is conducted to identify 95% credible 454 
sets in these regions for each phenotype. Identification of credible sets in both 455 
phenotype allows for the relaxation of the single causal variant assumption. All 456 
possible credible sets are then assessed pairwise for shared signal between 457 
phenotypes, improving resolution for colocalisation inference in regions containing 458 
multiple signals75. Should no 95% credible set be identified or only identified for one 459 
phenotype, colocalisation under the single causal variant assumption is performed 460 
using the coloc.abf76. A posterior probability ≥ 80% for H4 was considered evidence 461 
of colocalisation between two phenotypes (PP.H4 ≥ 0.8). The SuSiE model assumed 462 
at most 10 causal variants (L = 10) per credible set. We used default priors.  463 

Trait pairs with LAVA correlations significant at pFDR ≤ 0.05 were passed to 464 
COLOC-reporter. Where the same depression phenotype showed nominally 465 
significant local genetic correlation at the same locus but with different AD GWAS, 466 
these phenotype pairs were included as a sensitivity analysis. Regions +/-250kb (r2 467 
≥ 0.1) from lead variants at genome-wide significant loci from the MTAG-PHQ-9, 468 
broad and clinical depression GWAS were also examined for evidence of 469 
colocalisation with the 6 AD GWAS.  470 

 471 
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2.10 Mendelian randomisation (MR) 472 
MR is a statistical method that uses genetic variants associated with an exposure as 473 
instrumental variables to assess the causal effect of that exposure on an outcome of 474 
interest77. Two Sample MR framework estimates the causal relationships between an 475 
exposure and outcome using GWAS summary statistics. Valid MR instruments are 476 
defined by three key assumptions: (1) relevance – IVs are strongly associated with 477 
the exposure of interest; (2) independence – there are no confounders in the 478 
association between IVs and the outcome of interest; and (3) exclusion restriction – 479 
instruments are not associated to the outcome other than via the exposure, for 480 
example through horizontal pleiotropy77. 481 

Sample overlap is a known source of bias in Two Sample MR78. Given the 482 
likelihood of sample overlap between the depression phenotypes and the  AD GWAS 483 
containing proxy cases/controls due to participants from the UKB, MR analysis was 484 
primarily conducted using Causal Analysis Using Summary Effect estimates 485 
(CAUSE)79 v1.2.0. CAUSE is a Bayesian MR method robust to sample overlap, 486 
correlated and uncorrelated pleiotropy, also avoiding exclusion restriction 487 
assumption violations80. 488 

In CAUSE, the presence of a significant causal effect, γ, is derived by 489 
comparing the expected log pointwise posterior density (ELPD) of a sharing model 490 
with γ fixed to zero to a causal model where γ is a free parameter for a one-tailed p-491 
value test. The posterior median of γ describes the causal effect estimate and is 492 
reported alongside its 95% credible intervals. CAUSE uses a larger set of instruments 493 
that traditional MR methods. As such, clumping was performed with the default 494 
setting at r2 ≥ 0.01 and a p-value ≤ 0.001 within a 10,000kb window. 495 

Causal estimates were also calculated using the traditional IVW method. IVW 496 
estimates are biased by the presence of horizontal pleiotropy81. Sensitivity analyses 497 
were therefore conducted using MR-Egger, weighted-median and weighted-mode 498 
MR. These methods allow for varying degrees of pleiotropy while providing unbiased 499 
causal estimates82–84. MR-PRESSO85 was also implemented. MR-PRESSO identifies 500 
and excludes outlying instruments based on their contribution to heterogeneity and 501 
provides a corrected causal estimate. 502 

Pleiotropy was assessed using the MR-Egger intercept test86 (significant 503 
pleiotropy: p ≤ 0.05). Heterogeneity tests were also conducted for IVW and MR-Egger 504 
estimates using their respective Cochran’s Q test87 (significant heterogeneity: p-value 505 
≤ 0.05). Instrument strength was calculated via the minimum and mean F-statistic 506 

(recommended F-statistic ≥ 10)88 (b2/SE2). I2 was calculated to ensure measurement 507 

error was sufficiently low so as to ensure validity of results from MR-Egger 508 
(recommended I2 ≥ 0.90)89. 509 
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For IVW-MR, MR-Egger, weighted-median and weighted-mode MR, 510 
instruments clumped at a r2 ≥ 0.001 and a p-value ≤ 5e-8 within 10,000kb. Where no 511 
instruments were available at p ≤ 5e-8 or where < 5 instruments were available, a p 512 
≤ 5e-6 threshold was used.  513 

For all analyses, instruments were clumped using data from individuals of 514 
European ancestry in 1000 Genomes Phase 3. IVW, MR-Egger, weighted-median and 515 
weighted-mode analyses were conducted using the TwoSampleMR package v0.5.6.  516 

The APOE gene is known to be associated with non-AD phenotypes such as 517 
cardiovascular disease90 and type 2 diabetes (T2D)91. Both have been linked to 518 
depression in previous MR analyses92,93. As such, the inclusion of APOE would violate 519 
MR’s independence assumption. All MR analyses were therefore conducted 520 
excluding variants in the APOE region (chr19:45,020,859–45,844,508 (GRCh37)) as 521 
per Lord et al.94. 522 

2.11 Polygenic risk scores (PRS) 523 
Polygenic risk scores (PRS) describe the sum of an individual’s risk alleles, weighted 524 
by their effect size95. The ten PHQ-9-MTAG, clinical depression and broad definition 525 
depression GWAS were processed for PRS using the BayesR-SS function contained 526 
within MegaPRS and implemented in LDAK v5.2.1.96. BayesR-SS assumes the BLD-527 
LDAK heritability model, which incorporates 65 genome annotations pertaining to 528 
genomic features such as whether the variants are in coding regions or highly 529 
conserved96. Annotation files were obtained from the LDAK website 530 
(http://dougspeed.com/bldldak/). PRS calculation was restricted to the 1,217,311 531 
HapMap3 SNPs, with strand ambiguous SNPs excluded.  532 

PRS predictive utility for AD case/control status was assessed using logistic 533 
regression in three clinically ascertained AD cohorts: AddNeuroMed and Dementia 534 
Case Register Studies (ANM)97 (Ncases = 564; Ncontrols = 345), the Alzheimer’s Disease 535 
Neuroimaging Initiative (ADNI) (https://adni.loni.usc.edu) (Ncases = 356; Ncontrols = 360), 536 
and the Genetic and Environmental Risk in Alzheimer’s Disease (GERAD1) 537 
Consortium 538 
(https://portal.dementiasplatform.uk/CohortDirectory/Item?fingerPrintID=GERAD) 539 
(Ncases = 2,661; Ncontrols = 1,124) (Supplementary Table 4). All analyses controlled for 540 
age, sex, and 10 PCs, and were restricted to individuals aged ≥ 65 to provide clean 541 
controls. As a sensitivity analysis, PRS were also calculated in these cohorts 542 
excluding the APOE region. Genetic QC and imputation steps for these cohorts can 543 
be viewed in detail in the study by Lord et al.98. 544 

 545 
 546 

  547 
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3. RESULTS 548 

 3.1 PHQ-9 genome-wide meta-analyses 549 

The MTAG meta-analyses identified a total of 40 genomic risk loci between the ten 550 
PHQ-9 phenotypes (GWAS equivalent N range: 224,535 – 308,421). Only one 551 
depression symptom – suicidal thoughts – identified no genome-wide significant 552 
variants. Three lead SNPs were shared with more than one PHQ-9 phenotype, leaving 553 
a total of 37 unique genomic risk loci (Table 3). The significance of each of the lead 554 
variants in each of the samples contributing to the meta-analysis can be seen in 555 
Supplementary Table 5. eQTL mapping in FUMA mapped lead variants at genomic 556 
risk loci to 76 genes (Supplementary Table 6). h2SNP for the MTAG-PHQ-9 GWAS 557 
ranged from 1.12% for suicidal thoughts to 6.78% for the PHQ-9 sum-score. h2SNP Z-558 
scores were all > 4 (range: 6.59 – 18.50) (Supplementary Table 7), indicating 559 
sufficient heritability to obtain reliable genetic correlation estimates in downstream 560 
analyses57. Genomic inflation factors (λGC) ranged from 1.0638 to 1.2156, with LDSC 561 
intercepts ranging from 0.9997 to 1.0007, indicating inflation was due to polygenic 562 
signal as opposed to confounding due to population stratification56,99. Manhattan and 563 
QQ plots can be viewed in Figure 2.564 
 565 
 566 
 567 
 568 
 569 
 570 
 571 
 572 
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 573 
 574 
Table 3: Genomic risk loci from the 10 MTAG-PHQ-9 genome-wide association meta-analyses. Nearest gene is 575 
based on positional mapping and ANNOVAR annotation. Expression quantitative trait loci (eQTL) mapping was 576 
limited to pFDR ≤ 0.05 in the selected eQTL datasets (see: Methods). Specific tissues with significant pFDR can be 577 
seen in Supplementary Table 2.578 

Genomic 
Locus CHR Position Lead 

Variant Phenotype p-value BETA SE Effect 
Allele MAF Nearest Gene eQTL Genes

1 1 21059837 rs61778528 Anhedonia 1.27E-08 -0.011 0.002 T 0.384 RP5-930J4.2 KIF17, SH2D5, ECE1, HP1BP3, EIF4G3

2 1 51661974 rs36116328 Concentration Problems 2.94E-08 0.011 0.002 C 0.052 RP11-296A18.3 EPS15, TTC39A,  RNF11, CDKN2C,

3 1 201787833 rs2494112 Sleep Problems 4.46E-08 0.011 0.002 A 0.486 NAV1:IPO9-AS1 NAV1, LMOD1,  SHISA4, RNPEP, 

Fatigue 3.81E-09 -0.012 0.002 G 0.385 SHISA4

PHQ-9 Sum Score 4.48E-11 -0.014 0.002 G 0.385 SHISA4

5 1 201919674 rs2790898 Feelings of Inadequacy 2.54E-08 0.011 0.002 T 0.425 LMOD1 LMOD1 , RNPEP,  IPO9, SHISA4, TIMM17A

6 2 66750564 rs113851554 Sleep Problems 1.42E-14 0.016 0.002 T 0.053 MEIS1 MEIS1

7 3 48812594 rs116113836 Depressed Mood 2.74E-08 0.011 0.002 A 0.033 PRKAR2A

AMT, ZNF589, ATRIP, NME6, WDR6, P4HTM, 

QRICH1, NICN1, RNF123, GMPPB, LAMB2, USP4, 

MST1, TREX1, TMA7, KLHDC8B 

8 3 117535095 rs76917635 Feelings of Inadequacy 1.65E-08 -0.012 0.002 G 0.194 LSAMP:RP11-384F7.2 –

9 3 117822025 rs7619072 Sleep Problems 7.14E-11 0.013 0.002 C 0.229 RP11-384F7.1 LSAMP

10 4 106217349 rs2647239 Sleep Problems 1.17E-08 -0.012 0.002 G 0.420 RN7SL89P PPA2, TET2

11 5 62392481 rs181208594 Psychomotor Changes 2.72E-08 0.011 0.002 G 0.017 RP11-586E1.1 –

12 6 28548674 rs146918648 Appetite Changes 1.49E-08 0.012 0.002 A 0.027 SCAND3
ZSCAN9, PGBD1, ZKSCAN3,  ZNF165, TRIM27, 

ZSCAN23, SCAND3,   ZSCAN12, C6orf100"

13 6 32555944 rs35773267 Fatigue 1.63E-09 0.013 0.002 T 0.372 HLA-DRB1 –

14 7 12250378 rs3807866 Depressed Mood 4.38E-08 0.011 0.002 A 0.398 TMEM106B TMEM106B

15 7 12277442 rs13234970 Appetite Changes 1.56E-08 0.012 0.002 C 0.400 TMEM106B –

16 7 12285140 rs12699338 PHQ-9 Sum Score 8.47E-09 0.012 0.002 T 0.405 TMEM106B TMEM106B

17 7 82394712 rs763296 Fatigue 1.03E-10 0.013 0.002 G 0.495 PCLO –

18 7 121955328 rs3958046 Appetite Changes 3.58E-09 0.012 0.002 T 0.389 CADPS2 –

19 8 19551329 rs13253689 Fatigue 4.55E-08 -0.011 0.002 C 0.243 CSGALNACT1 INTS10, CSGALNACT1, LPL 

20 8 37211598 rs150773120 Appetite Changes 1.19E-08 0.012 0.002 A 0.012 RP11-527N22.1 –

21 8 73452488 rs7824350 Fatigue 8.58E-09 -0.012 0.002 G 0.410 KCNB2 –

22 10 11149133 rs61830447 Inadequacy 3.80E-08 0.011 0.002 A 0.243 CELF2 CELF2

23 12 57323523 rs840161 PHQ-9 Sum Score 3.71E-09 0.012 0.002 G 0.339 SDR9C7
METTL21B, TMEM194A, STAT6, NAB2, RBMS2, 

LRP1

24 12 57331741 rs725957 Fatigue 4.68E-08 0.011 0.002 A 0.394 SDR9C7
METTL21B, TMEM194A, STAT6, NAB2, RBMS2, 

LRP1, RDH16, DTX3, SDR9C7

25 12 109874794 rs10850137 Fatigue 1.11E-09 0.013 0.002 G 0.336 MYO1H
UBE3B, MMAB, ACACB, KCTD10, MVK, MYO1H 

FOXN4, UNG

Depressed Mood 2.81E-08 0.011 0.002 G 0.103 MIR4704

Fatigue 4.11E-09 0.012 0.002 G 0.103 MIR4704

PHQ-9 Sum Score 9.73E-10 0.013 0.002 G 0.103 MIR4704

27 16 53801549 rs9923147 Appetite Changes 1.74E-11 0.014 0.002 T 0.443 FTO FTO

28 17 56044110 rs11654634 PHQ-9 Sum Score 8.48E-10 0.013 0.002 C 0.067 VEZF1 CUEDC1, TEX14

29 17 56124979 rs11657437 Anhedonia 2.62E-08 0.011 0.002 A 0.105 RP11-159D12.10 VEZF1

30 17 65989971 rs113985803 Appetite Changes 4.18E-08 -0.011 0.002 A 0.226 RP11-855A2.5 BPTF, KPNA2, PSMD12

31 17 66045831 rs74354868 Fatigue 2.78E-08 0.011 0.002 A 0.229 KPNA2 BPTF, KPNA2, C17orf58, ARSG, PSMD12 

32 18 35127427 rs1557341 PHQ-9 Sum Score 1.94E-08 -0.012 0.002 C 0.341 CELF4 –

Fatigue 1.92E-08 0.012 0.002 G 0.419 DCC

PHQ-9 Sum Score 1.44E-08 0.012 0.002 G 0.419 DCC

34 18 50829023 rs11877505 Anhedonia 3.40E-09 0.012 0.002 G 0.388 DCC DCC

35 18 53415377 rs4800995 Fatigue 4.60E-10 0.013 0.002 A 0.214 RP11-397A16.1 –

36 18 71620555 rs75020204 Sleep Problems 4.34E-08 -0.011 0.002 C 0.071 RP11-25L3.3 –

37 19 7871720 rs3223231 Anhedonia 4.40E-09 -0.012 0.002 A 0.462 EXOSC3P2 –

33 18 50754093 rs62100775 DCC

4 1 201859213 rs61824384 NAV1, LMOD1,   SHISA4, IPO9, TIMM17A, RNPEP 

26 13 66718798 rs185907577 –
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Figure 2: Manhattan and QQ-plots for each of the 10 MTAG-PHQ-9 GWAS meta-analyses. The red 580 
lines on the Manhattan plots indicate genome-wide significance (p ≤ 5 x 10-8), while the blue lines 581 
indicates suggestive significance (p ≤ 1e-5). Top variants at each genomic risk loci are annotated. 582 

 583 

 584 

3.2 Genetic correlations 585 

Of the 72 bivariate genetic correlations calculated between the 12 depression 586 
phenotypes and the six AD GWAS, 24 were nominally significant and 20 remained 587 
significant at pFDR ≤ 0.05 (rg range: -0.25 – 0.35; p-value range: 1.25 x 10-2 – 4.01 x 10-588 
5; pFDR range: 4.5 x 10-2 – 1.9 x 10-3). Of these, 19 were identified when the AD GWAS 589 
in the pair contained either clinical+proxy cases and controls, or proxy-only cases 590 
and controls (Figure 3; Supplementary Table 8). Only one pFDR significant association 591 
was found when using a clinical AD GWAS – between suicidal thoughts and 592 
Wightman et al. (rg = -0.25, p = 6.78 x 10-3, p-value = 6.78 x 10-3; pFDR = 3.48 x 10-2). 593 
All depression phenotypes were significantly genetically correlated with each other 594 
(rg range: 0.57– 0.98; p-values ≤ 3.71 x 10-23) (Supplementary Table 9, Supplementary 595 
Material 1). Only one PHQ-9 symptom pair – concentration problems and 596 
psychomotor changes – showed a genetic correlation that was not statistically 597 
different from one (95% CI included one), indicating genetic heterogeneity across 598 
depression symptoms. 599 
 600 
 601 
 602 
 603 
 604 
 605 
 606 
 607 
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 608 
Figure 3: Heatmap of High Definition Likelihood (HDL) calculated genetic correlations between 609 
depression items and the six Alzheimer’s disease genome-wide association studies of varying 610 
proxy/clinical case/control ascertainment. The colour of each square indicates the strength of the 611 
correlation on a scale of -1 to 1. Fill size of the square indicates uncorrected p-value significance. 612 
Genetic correlations significant at pFDR ≤ 0.05 are circled. 613 
 614 

 615 

3.3 Local genetic correlations 616 

After univariate testing, a total of 4271 bivariate local genetic correlation tests were 617 
conducted across 324 genomic loci. Of these tests, 716 were nominally significant 618 
and 15 remained significant at pFDR ≤ 0.05 across 14 unique genomic loci (local rg 619 
range: -0.81 – 0.82; p-value range: 1.48 x 10-4 – 4.2 x 10-6; pFDR range = 4.22 x 10-2 – 620 
1.38 x 10-2) (Supplementary Table 10). Of the 15 statistically significant tests, ten were 621 
identified when using clinical+proxy/proxy-only AD GWAS. No depression phenotype 622 
showed a statistically significant association at the same genomic locus with more 623 
than one AD GWAS. However, for ten of the 15 statistically significant tests, nominally 624 
significant local genetic correlation was observed between the depression 625 
phenotype and at least one additional AD GWAS at the same loci (Supplementary 626 
Table 11). Only locus 1790 (chr12:51769420– 53039987) showed pFDR significant 627 
local genetic correlation with more than one depression phenotype – concentration 628 
problems and sleep problems, both with the clinical-only Wightman et al. GWAS. The 629 
number of positively and negatively correlated loci identified between each 630 
phenotype pair can be viewed in Supplementary Table 12.631 
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 632 

3.4 Colocalisation 633 

Following LAVA, 14 pFDR significant regions of local genetic correlation were passed 634 
to the COLOC-reporter pipeline across 15 depression-AD phenotype pairs. A further 635 
14 colocalisation tests were conducted where nominally significant local genetic 636 
correlation was observed at a pFDR significant loci between the same depression 637 
phenotype and a different AD GWAS. As such, a total of 29 statistical colocalisation 638 
tests were conducted to follow up LAVA results. No 95% credible sets were identified 639 
by SuSiE for any phenotype pairs in these regions. As such, all analyses were 640 
conducted under the single causal variant assumption of coloc.abf. There was no 641 
evidence of colocalisation in any of these loci (mean PP.H4 = 0.59%) (Supplementary 642 
Table 11). All but two of these tests indicated no causal variant present in either 643 
phenotype (PP.H0 > 0.8). The two tests in locus 319 (chr2:126754028-127895644), 644 
indicated strong probability of a causal variant for the Kunkle et al.14 and Wightman 645 
et al.45 clinical AD GWAS (PP.H2 > 0.9) .This locus contains BIN1, a known risk gene 646 
for AD involved in tau regulation100,101. 647 

An additional 762 colocalisation tests were conducted with the six AD GWAS 648 
using regions +/-250kb (r2 > 0.1) lead variants from the MTAG-PHQ-9, broad and 649 
clinical depression GWAS. SuSiE identified evidence of colocalisation in regions +/-650 
250kb of lead variants at genomic risk loci 14 (depressed mood), 15 (appetite 651 
change), 16 (PHQ-9 sum score) and for broad depression at chr7:12000402-652 
12500402 (PP.H4 range: 0.79 – 0.85), all with the same three AD GWAS – Bellenguez 653 
et al.17, Wightman et al.16, and Wightman et al. (excluding the UKB)45 (Supplementary 654 
Table 13). These colocalisations were all in the region of the transmembrane protein 655 
106B gene (TMEM106B) – visualised using LocusZoom102 in Figure 4. Colocalisation 656 
was also identified for the same phenotype pairs at the same loci under the single 657 
causal variant assumption of coloc.abf (Supplementary Table 14). The same 658 
depression phenotypes and loci were suggestive of colocalisation with Jansen et al.15 659 
(PP.H4 > 0.6).  In a follow-up analysis, we assessed statistical colocalisation +/-250kb 660 
TMEM106B (chr7:12000920-12532993) between these four AD GWAS and all 661 
remaining depression phenotypes. Additional evidence of colocalisation was 662 
identified at TMEM106B between fatigue and the Bellenguez et al.17, Wightman et 663 
al.16, and Wightman et al. (excluding the UKB)45 AD GWAS (Supplementary Table 15), 664 
and was suggestive for Jansen et al.15 (Supplementary Table 16). Evidence of 665 
colocalisation was also suggestive for psychomotor changes with  Bellenguez et al.17, 666 
Wightman et al.16, and Wightman et al. (excluding the UKB)45 (PP.H4 > 0.6). 667 
 668 
 669 
  670 
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Figure 4: LocusZoom plots of the transmembrane protein 106B (TMEM106B) gene region containing 671 
evidence of colocalisation (PP.H4 ≤ 0.8). for (A.) broad depression, (B.) appetite changes, (C.) 672 
depressed mood, (D.), the PHQ-9 sum score, (E.) Bellenguez et al., (F.) Wightman et al. and (G.) 673 
Wightman et al. excluding the UK Biobank. The most significant variant for each phenotype is labelled 674 
in their respective plot. 675 

 676 
 677 

3.5 Mendelian Randomisation 678 
We conducted 144 MR tests between the depression phenotypes and AD – 72 in 679 
each direction. In CAUSE, no significant causal association was identified between 680 
any of the depression items and AD in either direction even at nominal significance 681 
(Supplementary Table 17).  682 

F-statistics indicated that instrument strength was sufficient (FMean range: 22.43 683 
– 63.36; FMin range: 20.84 – 31.56; FMax range: 26.37 – 402.86), as did I2 for instrument 684 
suitability for MR-Egger (I2 range: 0.91 – 0.98). A pFDR ≤ 0.05 was applied in each of 685 
the other MR methods to correct for the 144 tests conducted, after which no 686 
statistically significant associations were observed in any method. Three nominally 687 

significant causal associations where a depression item was the exposure (b range 688 

= 0.21 – 1.59; p-value range = 0.01 – 2e-3) and two where an AD GWAS was the 689 

exposure (b range = 0.018 – 0.02; p-value range = 0.01 – 0.02) were detected by 690 

A. B. C. D.

E. F. G.
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IVW-MR, of which three we nominally significant in weighted-median MR. No 691 
significant pleiotropy (MR-Egger intercept test p-value ≤ 0.05) or heterogeneity (IVW 692 
Cochran’s Q p-value ≤ 0.05) was detected for these five tests. However, nominally 693 
significant estimates were only observed between exposures and outcomes where 694 
the AD GWAS contained proxy+clinical or proxy-only cases/controls and where the 695 
GWAS used for both exposure and outcome were either majority or entirety derived 696 
from the UK Biobank, suggesting sample overlap as a potential source of bias. MR-697 
PRESSO detected and excluded significant outliers in 42 tests, returning outlier-698 
corrected causal estimates. Results remained non-significant. Full MR results can be 699 
viewed in Supplementary Table 18. 700 

3.6 Polygenic risk scores (PRS) 701 
No statistically significant associations were detected between any of the depression 702 
phenotype PRS and AD case/control status in any of the three AD target samples 703 
(pFDR ≤ 0.05, corrected within each sample), with only the suicidal thoughts PRS 704 
negatively nominally associated with AD case/control in the ADNI cohort 705 

(Nagelkerke’s pseudo-r2 = 0.01, OR [95% CI] = 0.83 [0.72–0.94], b = -0.19, SE = 706 

0.07, p-value = 7.90 x 10-3). Exclusion of the APOE region had no effect on results 707 
(Supplementary Table 19, Supplementary Material 2). 708 
 709 

4. Discussion 710 

In this study, we performed the first and largest genome-wide meta-analysis of PHQ-711 
9 depression symptom items to date (GWAS equivalent N range: 224,535 – 308,421), 712 
identifying 37 genomic risk loci. Follow-up analyses examining the genetic overlap 713 
between depression/depression symptoms and AD identified 20 significant global 714 
correlations and 15 significant local correlations at 14 loci across six AD GWAS with 715 
varying proportion of clinical case/control ascertainment. Significant global genetic 716 
correlation were primarily with AD GWAS containing proxy cases and controls. No 717 
colocalisation was identified at any of the regions of local genetic correlation. 718 
However, there was strong evidence of colocalisation between depression several 719 
phenotypes and AD in the region of TMEM106B. Overall, MR did not suggest that 720 
depression or its symptoms were causal for AD, nor vice versa, while polygenic risk 721 
scores for depression phenotypes were not predictive of AD case/control status in 722 
three clinical AD samples. 723 

The increased power of our PHQ-9 GWAS allowed for the identification of 28 724 
more genomic risk loci than the previous analysis by Thorp et al.29. Several of the loci 725 
identified in this study have shown previous associations with related phenotypes. 726 
For example, SHISA4 – here identified in association with fatigue symptoms – has 727 
been previously implicated as playing a role in disrupted sleep103 and daytime 728 
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napping104. The top variant for sleep problems at genomic risk loci 6 (MEIS1) – 729 
rs113851554 (chr2: 66750564) – was also the top variant in a previous GWAS of 730 
insomnia and restless leg syndrome105. Additionally, the obesity gene FTO106 was 731 
identified as a genomic risk loci for appetite changes. Although the role of FTO in 732 
depression is inconclusive107, it has been recently linked to anxiety and depression 733 
symptoms in individuals with anorexia nervosa (AN)108. Consequently, its 734 
identification in association with appetite change symptoms – a phenotype relevant 735 
to eating behaviours – suggests that symptom-based genetic analysis can help 736 
identify the phenotype-relevant biology of individual depression symptoms. Taken 737 
alongside the fact that only three of the genomic risk loci were shared between more 738 
than one depression symptom phenotype, our GWAS meta-analysis backs findings 739 
by Thorp et al.29 of genetic heterogeneity between depression symptoms.  740 

Our findings also highlight genetic similarities between depression symptoms. 741 
For example, TMEM106B – a gene identified in previous depression GWAS11,12 – was 742 
the nearest gene to lead variants for three PHQ-9 items – appetite changes 743 
(rs13234970), depressed mood (rs3807866) and the PHQ-9 sum score 744 
(rs12699338). TMEM106B was strongly suggested as a causal gene in a recent multi-745 
ancestry depression GWAS109. Further, dysregulation of TMEM106B expression has 746 
been implicated in association with MDD110 and with anxious and weight gain MDD 747 
subtypes – both associated with treatment resistance111. TMEM106B has also been 748 
implicated in self-reported diagnosis of anxiety disorder112, neuroticism113 and in a 749 
latent factor GWAS of depressive, manic and psychotic symptoms/disorders114, 750 
suggesting it is linked to psychiatric risk more generally. 751 

That colocalisation is observed in the TMEM106B region between multiple 752 
depression phenotypes and both proxy+clinical and clinical-only AD is therefore of 753 
particular interest. TMEM106B plays a role in lysosomal function – particularly in 754 
motor neurons115 – and is classically considered a risk gene for frontotemporal 755 
dementia116. It is has also been identified in recent AD GWAS16,17, and is associated 756 
with brain aging, cognitive decline, and neurodegeneration across other brain 757 
disorders including Amyotrophic Lateral Sclerosis, Multiple Sclerosis and Parkinson’s 758 
Disease117–122. Further, TMEM106B has been linked to higher CSF levels of 759 
neurofilament light (NfL)123 – itself predictive of cognitive decline, brain atrophy and 760 
cortical amyloid burden in individuals with AD and Mild Cognitive Impairment 761 
(MCI)124. A recent study also identified higher levels of plasma NfL in individuals with 762 
depression, although the sample size of this study was relatively small125. Thus, 763 
colocalisation between depression phenotypes and AD at TMEM106B indicates that 764 
depression may itself be genetically linked to overall brain health and resulting 765 
general dementia risk. Two previous studies have identified TMEM106B as playing a 766 
role in both depression and AD20,21. However, our study suggests that this overlap 767 
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may be driven by the genetic architecture of specific depression symptoms, 768 
highlighting the benefits of symptom-level genetic analysis.  769 

A mixed picture is painted across our other downstream analyses. 770 
Depression/depression symptom PRS were not predictive of AD case/control status 771 
in three clinical samples. Additionally, we do not find evidence of any causal 772 
associations using MR. These MR findings are in line with a number of previous 773 
studies19,39, but in contradiction to that conducted by Harerimana et al.22. In this study, 774 
we do not recapitulate the causal association identified by Harerimana et al.22 for 775 
broad depression on AD as measured by Jansen et al.15 – even at a nominal level. 776 
This is possibly due to the exclusion of rare variants (MAF < 0.01), and as such future 777 
investigation into the role of rare variants in shared risk for depression and AD is 778 
warranted. However, the lack of evidence in these analyses versus the observed 779 
relationship in epidemiological studies suggests the presence of unidentified 780 
confounding. The investigation of possible confounding is an important step for future 781 
research to help us better understanded the association between depression and 782 
dementia.  783 

 While previous studies have shown that the direction of effect in MR can 784 
change depending on whether the outcome AD GWAS contains proxy or clinical 785 
cases/controls38,39, this study is – to the best of our knowledge – the first to 786 
demonstrate a similar effect with genetic correlations. Of the significant genetic 787 
correlations we identified, 95% were identified in proxy+clinical or proxy-only AD 788 
GWAS. Where two previous studies20,22 identified a genetic correlation between 789 
depression and AD, it is noticeable that they used the Jansen et al. proxy+clinial AD 790 
GWAS as their primary outcome. Further, in the study by Harerimana et al.22  791 
sensitivity analysis did not observe a significant genetic correlation using the clinical-792 
only GWAS by Kunkle et al.14. 793 

Exactly why depression/depression symptoms show differences in genetic 794 
correlation between proxy and clinical AD is a matter of interest. It is noted that most 795 
individuals with dementia are cared for by a family member while they are still living 796 
in the community126. Caregivers incur considerable lifestyle changes, emotional 797 
stress, and social strain127,128 and depression is reported in up to 50% of caregivers 798 
for individuals with dementia129. As such, the genetic correlations between 799 
depression/depression symptoms and proxy-AD may result from increased 800 
depression risk due to caregiver responsibilities, exacerbated by a genetic risk. 801 
However, this would not explain why no genetic correlations were identified with the 802 
Bellenguez et al.17 GWAS despite this study also containing proxy+clinical 803 
phenotyping. As mentioned, Bellenguez et al.17 define proxy cases/controls as a 804 
binary phenotype, whereas Wightman et al.16 and Jansen et al.15 define proxy 805 
cases/controls as a continuous phenotype. These phenotyping differences likely 806 
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partially explain the differences in the genetic correlation results, given that these AD 807 
GWAS all use the same data from the UK Biobank. However, the proxy-only Marioni 808 
et al.37 GWAS – with which genetic correlations were also observed – is a meta-809 
analysis of maternal and paternal AD GWAS where parental age-at-diagnosis/age-810 
of-death is controlled for in the GWAS model, instead of being used for weighting the 811 
proxy phenotype prior analysis. Taking this into account, and considering that 812 
depression is itself associated with all-cause mortality130, it is possible that including 813 
age-at-diagnosis/age-of-death in proxy-AD phenotyping induces a form of bias in 814 
later cross-trait analyses when the other trait is itself associated with longevity. Further 815 
investigation of this issue is required. 816 

Nonetheless, conflicting results such as these pose a problem to researchers 817 
seeking to identify genetic relationships between AD and its risk factors. Large 818 
differences in the presence or direction of effects depending on which AD GWAS is 819 
used to assess associations increases the difficulty in discerning true associations 820 
for the purpose of designing interventions. As such, we suggest that future genetic 821 
studies examining genetic overlap between AD risk factors and AD conduct primary 822 
analyses using a clinically ascertained AD phenotype. A range of AD GWAS with 823 
different proxy/clinical ascertainment could then be used to examine the consistency 824 
of results in relation to clinical AD. While this approach would limit researchers to AD 825 
GWAS with slightly smaller sample sizes for primary analyses, it would also ensure 826 
that results are driven not by AD proxy phenotyping alone.  827 

This study has several limitations. Despite being the largest meta-analysis of 828 
PHQ-9 items to date, the ability to detect genome-wide significant variants was likely 829 
limited by small sample sizes relative to other psychiatric conditions. This includes 830 
depression itself, where sample sizes have exceeded one million13. Larger samples 831 
are required for future studies if we are to truly elucidate the unique genetic 832 
architecture of individual depression symptoms. Additionally, our analyses were 833 
restricted to individuals of European ancestry. GWAS results may therefore have poor 834 
transferability to other ancestry groups. Although efforts are underway to address the 835 
issue of lack of diversity in human genetic studies, urgency is required so that studies 836 
can be conducted across ancestry groups using equivalent sample sizes. Our study 837 
makes also heavy use of data from the UKB. The UKB is known to be affected by 838 
healthy volunteer bias, and as a consequence is not fully representative of the wider 839 
population131.  840 

It is worth noting that this study focused on depression as a risk factor for AD. 841 
However, there is evidence that some forms of later life depression are in fact a 842 
prodromal phase of dementia onset8,132, and may be related to levels of dementia 843 
biomarkers such as plasma Aβ42 and CSF p-tau133. As such, dementia-related 844 
depression may be biologically distinct from depression as a mental health disorder. 845 
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While sufficient sample sizes are likely difficult to obtain, future large scale genomic 846 
studies of dementia-related depression – as has been undertaken with psychosis in 847 
AD134 – would prove illuminating on this matter. 848 

In conclusion, this study describes the largest genome-wide meta-analysis of 849 
PHQ-9 depression symptom items to date (GWAS equivalent N range: 224,535 – 850 
308,421), identifying 37 unique genomic risk loci. Genetic correlations between 851 
depression/depression symptoms and AD were primarily observed when the AD 852 
GWAS contained clinical+proxy or proxy-only AD case/control ascertainment. 853 
Further, this study does not support depression or its symptoms as being causal for 854 
AD. However, colocalisation in the TMEM106B region between four depression 855 
phenotypes and AD across both proxy and clinical AD GWAS suggests future 856 
research into the shared biological mechanisms underlying the role of this locus in 857 
depression and AD are warranted. 858 
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