1	Mitral Annular Disjunction in Out-of-Hospital Cardiac Arrest Patients – a
2	Retrospective Cardiac MRI Study
3	Felix Troger ^a , Gert Klug ^b , Paulina Poskaite ^a , Christina Tiller ^b , Ivan Lechner ^b , Martin
4	Reindl ^b , Magdalena Holzknecht ^b , Priscilla Fink ^b , Eva-Maria Brunnauer ^a ,
5	Elke R. Gizewski ^a , Bernhard Metzler ^b , Sebastian Reinstadler ^b , Agnes Mayr ^{a,*} .
6	
7 8	^a University Clinic of Radiology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck Austria
9	^b University Clinic of Internal Medicine III. Cardiology and Angiology
10	Modical University of Innshruck Anichstrassa 35, 6020 Innshruck Austria
10	Wedear University of Innsoruek, Ameristrasse 55, 6620 Innsoruek, Austra
12	
13	Abstract Word Count: 248 words
14	Word Count (Introduction-Discussion): 3,772 words
15	
16	
17	
18	
19	
20	*Address for Correspondence:
21	Agnes Mayr, MD
22	University Clinic of Radiology
23	Medical University of Innsbruck
24	Anichstrasse 35, A-6020 Innsbruck, Austria
25	Phone: +43 50 504 22761
26	Fax: +43 50 504 22758
27	Email: a.mayr@i-med.ac.at
28	
29	

1 Abstract

2	Background: Mitral annular disjunction (MAD), defined as defective attachment of the
3	mitral annulus to the ventricular myocardium, has recently been linked to malignant
4	arrhythmias. However, its role and prognostic significance in patients requiring cardio-
5	pulmonary resuscitation (CPR) remains unknown. This retrospective analysis aimed to
6	describe prevalence and significance of MAD by cardiac magnetic resonance (CMR)
7	imaging, in out-of-hospital cardiac arrest (OHCA) patients.
8	Methods: Eighty-six patients with OHCA and a CMR scan 5 days after CPR (interquartile
9	range (IQR): 49 days before – 9 days after) were consecutively enrolled. MAD was defined as
10	disjunction-extent ≥1mm in CMR long-axis cine-images. Medical records were screened for
11	laboratory parameters, comorbidities and prior arrhythmias.
12	Results: In 34 patients (40%), no underlying cause for OHCA was found during
13	hospitalization despite profound diagnostics. Unknown-cause OHCA patients showed a
14	higher prevalence of MAD compared to definite-cause patients (56% vs. 10%, p<0.001) and
15	had a MAD-extent of 6.3mm (IQR: 4.4-10.3); moreover, these patients were significantly
16	younger (43 years vs. 61 years, p<0.001), more often female (74% vs. 21%, p<0.001) and had
17	fewer comorbidities (hypertension, hypercholesterolemia, coronary artery disease, all
18	p<0.005). By logistic regression analysis, presence of MAD remained significantly associated
19	with OHCA of unknown cause (odds ratio: 8.49, 95% confidence interval: 2.37-30.41,
20	p=0.001) after adjustment for age, presence of hypertension and hypercholesterolemia.
21	Conclusions: MAD is rather common in OHCA patients without definitive aetiology
22	undergoing CMR. Presence of MAD remains independently associated to OHCA without
23	identifiable trigger. Further research is needed to understand the exact role of MAD in OHCA
24	patients.

1 Clinical Perspectives

age,
strate
can be
ts and

1 List of Abbreviations

- 2 BMI, Body Mass Index
- 3 BSA, Body Surface Area
- 4 CA, Cardiac Arrest
- 5 CAD, Coronary Artery Disease
- 6 CI, Confidence Interval
- 7 CMR, Cardiovascular Magnetic Resonance Imaging
- 8 CPR, Cardio-Pulmonary Resuscitation
- 9 CT, Computed Tomography
- 10 CTA, Computed Tomography Angiography
- 11 CX; Circumflex Artery
- 12 ECG, Electrocardiogram
- 13 EDV, Enddiastolic Volume
- 14 EDVi, Enddiastolic Volume Indexed by Body Surface Area
- 15 ESV, Endsystolic Volume
- 16 ESVi, Endsystolic Volume Indexed by Body Surface Area
- 17 IQR, Interquartile Range
- 18 LAD, Left Anterior Descending Artery
- 19 LGE, Late Gadolinium Enhancement
- 20 LV, Left Ventricle/Ventricular
- 21 MAD, Mitral Annular Disjunction
- 22 MM, Myocardial Mass
- 23 MVP, Mitral Valve Prolapse
- 24 OHCA, Out-of-Hospital Cardiac Arrest
- 25 OR, Odds Ratio
- 26 RCA, Right Coronary Artery
- 27 VF, Ventricular Fibrillation

1 Introduction

2	Mitral annular disjunction (MAD) represents the defective anchoring of the mitral valve
3	annulus into the ventricular myocardium (1). This anatomical variant has long been regarded
4	as rather common, but clinically irrelevant secondary finding to mitral valve prolapse (MVP)
5	(2). However, its status as a distinct disease entity acting as a possible substrate for ventricular
6	arrhythmias has been increasingly substantiated within the past few years (3, 4). Recent
7	studies suggested that its formerly assumed prevalence has been clearly underestimated (5);
8	additionally, the term MAD was uncoupled from its status as a negligible auxiliary finding of
9	MVP, as it was shown that MAD could be detected even without concomitant prolapse (3).
10	To date, the research interest in MAD is continuously growing (2). However, data about its
11	clinical relevance and postulated association to ventricular arrhythmias are scarce (6-8).
12	Furthermore, data about its prevalence and significance in out-of-hospital cardiac arrest
13	(OHCA) patients are completely lacking. Nevertheless, OHCA represents a leading cause of
14	mortality worldwide (9), with an estimated 20% being of unknown or unobtainable cause
15	(10). Although most studies tend to use echocardiography to screen and evaluate MAD,
16	assessment by cardiac magnetic resonance (CMR) imaging seems more appropriate,
17	especially in MAD of minor extent (11).
18	Accordingly, the aims of this retrospective study were as follows: a) to determine the
19	prevalence of MAD in a population of OHCA patients; b) to assess its prevalence in OHCA
20	patients in whom no definite cause of cardiac arrest (CA) was finally definable; and, c) to
21	classify the role of MAD in this latter patient group.
22	

1 Methods

2 Study population

3 The study population included all OHCA patients treated at the local university hospital from 4 June 2007 to April 2021, where an adequate CMR scan was available. Patient records were 5 screened for comorbidities and risk factors, positive family history for coronary artery disease 6 (CAD) or CA and laboratory parameters as well as further diagnostic measures, including 7 electrocardiography (ECG) and cardiac computed tomography (CT). Moreover, these records 8 were checked for additional rhythmological events before, during or after hospital stay. CAD 9 was defined as any coronary atherosclerotic disease detected in the respective modality (i.e. 10 CT or cardiac catheterization). A flowchart of in- and excluded patients is shown in figure 2. 11 This study was approved by the local Ethics Committee and conforms to the Declaration of 12 Helsinki. 13 14 **Cardiovascular Magnetic Resonance Imaging** 15 All CMR scans were performed on a 1.5 Tesla clinical MR scanner (MAGNETOM Avanto or 16 Avantofit; Siemens Healthineers AG, Erlangen, Germany). The standard CMR-protocol 17 included high-resolution cine-images in long- and short axis view covering the left ventricle 18 (LV), using a balanced steady state free precession sequence with retrospective ECG-gating 19 (slice thickness: 8mm, interslice gap: 2mm, echo time: 1.19ms, repetition time: 2.83ms, 22 20 lines per segments, median temporal resolution: 39.9 ms (interquartile range (IQR): 38.4-21 46.1), frame rate: 25 frames per second, flip angle: 70°, field of view: 380x310mm, matrix: 22 320x260, voxel size: 2.6x1.8x8.0mm³, parallel imaging mode: GRAPPA (generalized 23 autocalibrating partial parallel acquisition) with acceleration factor 2). ECG-triggered, phase-24 sensitive inversion recovery sequences were used to obtain late gadolinium enhancement 25 (LGE) images 15-20 minutes after application of a 0.2 mmol/kg body mass gadolinium-

1	contrast bolus. Standard software (Circle Cardiovascular Imaging, Calgary, Canada) was used
2	for post-processing-analyses with semi-automatic detection of LV and right ventricular endo-
3	and epicardial borders. Papillary muscles were excluded from myocardial mass (MM) and
4	included in the LV volume. End-diastolic volume (EDV) and end-systolic volume (ESV)
5	were then divided by the body surface area (BSA) [m ²] to obtain indexed values (EDVi and
6	ESVi). To calculate BSA, the Du Bois-formula was used (12).
7	MAD was defined as the presence of detachment ≥ 1 mm between the mitral annulus and the
8	ventricular myocardium, affecting the area under the posterior valve leaflet (3). Extent of
9	MAD was measured longitudinally as distance from atrial valve leaflet junction to the top of
10	the LV myocardium, at end-systole, in long-axis cine-images (figure 4). Only patients with a
11	CMR of sufficient quality to decide whether MAD is present or not were included in this
12	study, in order to avoid false-positive diagnoses of MAD (so called 'pseudo-MAD' that is
13	feigned by juxtaposition of the posterior leaflet (13)). To determine the particular affected
14	mitral segments, suitable short-axis slices were used.
15	MVP was defined as superior displacement ≥2mm of any part of the mitral leaflet beyond the
16	mitral annulus (3, 14). Systolic curling motion was defined as unusual systolic motion of the
17	posterior mitral ring on the adjacent myocardium (15), as illustrated in figure 3. MAD-
18	presence and -extent as well as presence of MVP were conducted in full by two independent
19	observers blinded to clinical data, each with several years of experience in CMR diagnosis
20	(AM, 13 years, EuroCMR level II certified and FT, 3 years).
21	To quantify LGE, 'hyper-enhancement' was defined as ≥ 5 standard deviations above the
22	signal intensity of remote myocardium in the opposite segment of the left ventricle. LGE was
23	then measured on consecutive short-axis slices, infarct size is presented as a percentage of LV
24	myocardial mass.

25

1 Statistical Analysis

- 2 SPSS Statistics 26.0 (IBM, Armonk, NY, USA) was used for statistical analyses. All results
- 3 for continuous variables are expressed as medians with corresponding IQR, categorical
- 4 variables as absolute numbers and percentages. Differences in continuous and categorical
- 5 variables between two groups were tested by Mann-Whitney U-test and chi-square test,
- 6 respectively. A p-value <0.05 was considered as statistically significant. Logistic regression
- 7 analysis was performed to evaluate independent markers for OHCA of unknown cause as well
- 8 as independent markers for MAD; variables with a p-value <0.10 in univariable analysis and
- 9 within these the variables of clinical relevance were included in our multivariable models.

1 **Results**

2 **Baseline patient characteristics**

- 3 For the current retrospective analysis, 86 OHCA patients were included. All patients
- 4 underwent cardio-pulmonary resuscitation (CPR), with a median age of 56 years (IQR: 41-
- 5 67). CMR was performed 5 days after resuscitation (IQR: 49 days before 9 days after). At
- 6 hospital discharge, no definite reason for CA was found after excluding coronary/cardiac,
- 7 infectious, thromboembolic, genetic/congenital or metabolic conditions as well as
- 8 intoxications, in 34 patients (40%). These patients are referred to as 'unknown-cause OHCA'.
- 9 Patient inclusion criteria as well as the particular causes for CA are listed in figure 2. Baseline
- 10 characteristics are shown in table 1.
- 11

12 Mitral Annular Disjunction

- 13 Overall, MAD was present in 28% of OHCA patients (n=24), with a median MAD-extent of
- 14 5.7mm (IQR: 4.5-10.3), ranging from 2.8 to 14.3mm. Patients with MAD were significantly
- 15 younger (40 years [IQR: 32-52] vs. 61 years [IQR: 50-70], p<0.001) and more often female
- 16 (75% vs. 29%, p<0.001). Moreover, MAD-patients had a lower BMI (23kg/m² [IQR: 20-26]
- 17 vs. 26kg/m² [IQR: 23-29], p=0.006) and a lower prevalence of diabetes, hypertension and
- 18 hypercholesterolemia (all p<0.03). Within MAD-patients, 8 showed systolic curling motion
- 19 (33%). MVP was present in 26 patients (30%; with MAD: n=15 [63%] vs. without MAD:
- 20 n=11 [18%], p<0.001). A detailed comparison of patients with and without MAD is shown in
- 21 table 2.

22

23 Unknown-Cause Out-of-Hospital Cardiac Arrest

- 24 Patients without definite substrate for CA were significantly younger (43 years [IQR: 33-55]
- 25 vs. 61 years [IQR: 54-69], p<0.001) and more often female (n=25 [74%] vs. n=11 [21%],

1	p<0.001). Nineteen OHCA patients without definite cause for CA had MAD (56%) with a
2	median MAD-extent of 6.3mm (IQR: 4.4-10.3); of these, 10 patients (53%) with MAD had
3	two or three mitral valve segments affected. Unknown-cause OHCA patients had a lower
4	body mass index (BMI, 24kg/m ² [IQR: 21-27] vs. 26kg/m ² [IQR: 23-29], p=0.007]) and a
5	lower prevalence of arterial hypertension (26% vs. 62%, p=0.001) and hypercholesterolemia
6	(15% vs. 46%, p=0.003). Before hospitalization, atrial fibrillation occurred only in patients
7	with a definite cause for CA (n=7, 13%).
8	A total of 83 OHCA patients (97%) were evaluated for the presence of any CAD, either by
9	coronary angiography (performed in 63 patients (76%) on the day of CPR [IQR: 0-6 days
10	after]) or by coronary computed tomography angiography (CTA) (in 52 patients (60%)
11	performed on the day of CPR [IQR: 2 days before - 1 day after]). Combined, these two
12	modalities resulted in an overall CAD-prevalence of 53%. CAD was significantly more
13	common in patients with a definable cause for OHCA (73% vs. 24%, p<0.001).
14	MAD was shown to be significantly associated with unknown-cause OHCA univariably (odds
15	ratio (OR): 11.91, 95% confidence interval (CI): 3.79-37.37, p<0.001) and to be an
16	independent marker of unknown-cause OHCA after adjustment for age, hypertension and
17	hypercholesterolemia (OR: 8.49, 95%CI: 2.37-30.41, p=0.001) by logistic regression analysis.
18	Results of uni- and multivariable analysis are listed in table 3.
19	
20	CMR measurements
•	

21 In unknown-cause OHCA patients (n= 34, 40%), CMR was performed 6 days after CPR

22 (IQR: 6-8). In 6 of these, CMR was performed before CPR, with specific indications

23 including evaluation of ventricular extrasystoles (n=2), tachyarrhythmia (n=2) or suspected

24 (but eventually not confirmed) myocarditis (n=2). In the remaining 28 patients, CMR was

25 performed in the course of diagnostic workup of CA.

1	In CMR, LV ejection fraction (EF) differed significantly between unknown-cause OHCA
2	patients and those with a definite cause (49% [IQR: 43-56] vs. 41% [IQR: 33-50], p=0.030),
3	as did EDVi, ESVi and MM (all p<0.03). Dichotomized at a median LV-EF of 49%, patients
4	with a lower LV-EF had their scan 4.8 days after CPR, while the patient group with an LV-EF
5	above the median had their scan 7.4 days after CPR (p=0.013). Furthermore, LV-EF
6	correlated significantly with days between CPR and CMR (spearman's rho: 0.574, p<0.001).
7	Contrast agent was administered in 82 patients (95%). LGE was found in 39 patients (48%,
8	30 ischemic vs. 9 non-ischemic pattern), with unknown-cause OHCA patients presenting
9	significantly less common with LGE (9% vs. 72%, p<0.001). An ischemic LGE pattern was
10	found in 6% of unknown-cause patients ($n=2/32$, in both cases small-focal areas) and in 56%
11	of definite-cause patients (n=28/50). Overall, MAD-patients showed LGE significantly less
12	often (n=5/24, 21% vs. n=34/58, 59%, p=0.002) compared to patients without MAD presence.
13	No MAD-patient showed papillary muscle enhancement. A detailed list of CMR
14	measurements is shown in table 1 and 2, respectively.
15	Within unknown-cause OHCA patients, only 3/32 (9%) patients showed LGE at CMR, with
16	two patients each presenting with a single small-focal ischemic LGE (one in the right
17	coronary artery area (RCA) affecting 0.7% of LV-MM and one in the left anterior descending
18	artery (LAD) affecting 2.1% of LV-MM), both likely due to thromboembolic events and both
19	remained without clinical signs or abnormalities on coronary angiography. The one patient in
20	this group showing a non-ischemic pattern had LGE of the basal posterolateral wall without
21	affecting the papillary muscles (affecting 3.9% of LV-MM).
22	In the definite-cause OHCA group, 28/50 patients (56%) had ischemic LGE (culprit lesions:
23	LAD – n=13 [46%]; RCA – n=8 [29%]; circumflex artery (CX) – n=2 [7%]; multiple – n=5
24	[18%]; median infarct size 11% of LV-MM, IQR: 7-21) and 8/50 patients had non-ischemic
25	LGE (1.7% of LV-MM, IQR: 1.1-1.9) of the posterolateral wall without affecting any
26	papillary muscle. Papillary muscle enhancement was found in 13% of patients (n=11, all of

1	them with ischemic LGE; 1 unknown-cause [3%] vs. 10 definite-cause [20%], p=0.172) and
2	affected the posterolateral papillary muscle in 10 patients (91%, 3 with both papillary muscles
3	affected, 7 with isolated posterolateral papillary muscle enhancement). All patients with
4	papillary enhancement had ischemic LGE, none of the MAD-patients had papillary muscle
5	enhancement.
6	
7	Rhythmological Features
8	A detailed list of rhythmological features is shown in table 4. At the index event, the initial
9	rhythm (recorded in 81 patients, 94%) showed no difference between OHCA patients with
10	unknown cause and with definable cause (p=0.155) or between patients with and without
11	MAD (p=0.051), with MAD-patients presenting exclusively with ventricular fibrillation (VF).
12	Post-CPR-ECG on the day of index CA was available in 79 patients (92%) and differed
13	significantly between unknown-cause OHCA patients and those with a definable cause
14	concerning repolarization disorders (p=0.020), primarily concerning ST-elevation (12/47,
15	26% vs. 1/32, 3%), with the other entities encompassing unspecific repolarization disorders.
16	There was no significant difference regarding rhythm (p=0.568), electrical heart axis
17	(p=0.349), P-wave morphology (0.211), bundle branch blocks (p=0.337), pathological Q-
18	waves (p=0.843), signs of hypertrophy (p=0.387) and specific time intervals (PQ, QRS,
19	QT/QTc, all p>0.2).
20	According to patient files, a total of 7 patients (8%) showed a history of arrhythmological
21	conditions prior to the index event. During hospitalization, arrhythmic episodes were recorded
22	in 14 patients (16%). In the aftermath of index hospitalization, over a median observation
23	period of 3.3 years (IQR: 1.8-6.7), new episodes of arrhythmia were documented in 8 patients
24	(9%). Between unknown-cause and definable-cause OHCA patients, no significant difference
25	concerning peri-CPR rhythmological events was shown (before: p=0.494, during

1	hospitalization:	p=0.646, afte	rwards: p=0.444).	The same accounts	between patients with and
---	------------------	---------------	-------------------	-------------------	---------------------------

- 2 without MAD (before: p=0.733, during hospitalization: p=0.912, afterwards: p=0.304).
- 3

4 Laboratory Analysis

- 5 Within laboratory parameters, unknown-cause OHCA patients showed significantly lower
- 6 values of serum creatinine (difference: 0.25mg/dl, p<0.001), calcium (0.1mmol/l, p=0.009),
- 7 peak troponin T (409ng/ml, p=0.017) and peak N-terminal pro-brain-type natriuretic peptide
- 8 (565ng/l, p=0.048). Results of lab analyses are shown in table 1.

1 **Discussion**

2	This study is the first to investigate the role of MAD particularly in OHCA patients
3	undergoing CMR imaging. Our results can be summarized as follows: a) MAD is a common
4	feature in patients with unknown-cause OHCA, whilst b) it is far less common in patients
5	with a definable cause of OHCA; c) MAD-patients in our study showed generally less
6	comorbidities for cardiovascular events, however d) MAD was revealed to be an independent
7	marker for unknown-cause OHCA after adjustment for age, hypertension and
8	hypercholesterolemia.
9	
10	Prevalence of unknown-cause OHCA
11	In the present analysis, no definite cause for CA could be found in 40% of OHCA patients
12	despite profound diagnostics. This number exceeds the observations of a German register
13	study investigating 33,772 OHCA patients between 2007 and 2017. In that study, the
14	proportion of unknown-cause OHCA was 17% (16). A possible explanation for this
15	discrepancy is the fact that in most cases of definable-cause OHCA (e.g. myocardial
16	infarction), there is no general recommendation for further investigation via CMR (17).
17	Furthermore, due to its limited availability, CMR is usually only performed when the most
18	common reasons for CA can be excluded beforehand. This additionally increases the
19	percentage of unknown-cause OHCA in our study, in which, however, performance of CMR
20	is a central inclusion criterion.
21	
22	MAD in unknown-cause OHCA
23	In this study, MAD was defined as end-systolic disjunction extent of at least 1mm, referring

to an important forerunner-study by Dejgaard et al. (3). This approach can currently be

25 regarded as a quite strict definition of MAD, as many other studies tended to define MAD as

1	disjunction of any extent (6, 11, 18). However, in some rare studies, also larger cut-offs can
2	be found, such as 2mm (19) and 5mm (20). As the minimum MAD in this present study was
3	2.8mm, shifting the threshold to 2mm would have had no effect on the outcome; however, a
4	threshold of 5mm would have decreased the MAD-prevalence to 17% (n=15, 12 with
5	unknown-cause OHCA, 35% vs. 3 with definable-cause OHCA, 6%, p<0.001).
6	One main finding of our study was that MAD was diagnosed significantly more often in
7	unknown-cause OHCA patients, while these patients generally showed distinctly less
8	comorbidities, especially in terms of age, BMI, blood pressure, hypercholesterolemia and
9	CAD-prevalence. According to a cohort study by Essayagh et al. in 595 MVP-patients, the
10	presence of disjunction was an independent risk factor for the occurrence of arrhythmic events
11	in the long term (21). This finding is in line with a study by Dejgaard et al., which found
12	severe arrhythmic events in 12% of MAD-patients and postulated MAD to be an
13	arrhythmogenic risk factor itself, independent of concomitant prolapse (3). Accordingly,
14	multivariate logistic regression analysis in the present study revealed MAD to be an
15	independent marker of OHCA of unknown cause after adjustment for age, hypertension and
16	hypercholesterolemia. There are hardly any other data available about the role of MAD in
17	OHCA. However, a study by Lee et al. investigating the association of MVP and severe
18	arrhythmias indicated that systolic curling motion in MAD was a strong and independent
19	predictor of these events (15). In the present study, systolic curling motion was more common
20	in unknown-cause OHCA patients; however, this difference was not significant, which is
21	probably due to the small number of MAD in definable-cause OHCA patients.
22	
23	Features of unknown-cause OHCA
24	Besides MAD, female sex has proven to be a strong prognostic marker for unknown-cause

25 OHCA, with 74% of these patients being female. Referring to the above-mentioned register

26 study, almost 65% of all OHCA patients were male, which is in line with our study (58%).

1 However, the percentage of women with unknown-cause OHCA in that register study was 2 40%. This is most likely due to the high rate of cardiac events in the definable-cause group 3 (83%), which is accordingly more common in men (16). Then, although patients in the 4 unknown-cause group in general had structurally normal hearts, some of them still showed an 5 EF below 40%. A very sensible explanation for this phenomenon can be found in a study by 6 Gonzalez et al., describing a marked decrease of LV-EF up to 25% due to cardiac arrest, 7 hinting that perhaps these patients with a lower EF at CMR had a normal ventricular function 8 pre-CPR (22). Additionally, it can be assumed that the partly quite short interval between 9 CPR and CMR also plays a non-neglectable role here, as the LV function underlies a high 10 variability during the first few days after cardiac recovery, which was shown by Kalra et al. in 11 OHCA patients via echocardiography (23). Another finding, which is probably a result of the 12 high frequency of cardiac triggers for CA in the present study is that LGE was significantly 13 less common in unknown-cause OHCA and in MAD-patients. LGE was found to be a strong 14 predictor for definable-cause OHCA. The percentage of patients with LGE in the definable-15 cause group (72%) is in line with a study by Neilan et al., detecting LGE in 71% of a patient 16 cohort of 137 CA survivors (24). Contrary, the proportion of patients showing LGE in the 17 unknown-cause group was less than a tenth. This could be due to the young age of patients in 18 this group as well as the low risk profile.

19

20 Epidemiologic features of MAD

21 In the present study, MAD was evident in 28% of patients in at least one segment of the

22 posterior mitral leaflet. This is approximately in line with three studies reporting the

23 prevalence of MAD via transthoracic echocardiography in MVP-patients (MAD in 22%) (25),

via 3D-TEE in a mixed-patients cohort (27%) (15) and via CMR in myxomatous mitral valve

disease (35%) (6). However, according to a recently published study by Toh et al.,

26 investigating the prevalence of MAD in a population of 98 patients without structural heart

1	disease via CT, the true prevalence of MAD could be up to 96% (5). This marked difference
2	to our present study could be at least partly due to the underlying examination method, as CT
3	shows a higher spatial resolution than CMR, which also manifests itself in a larger median
4	MAD-extent in our study (5.7mm vs. 3.0mm in Toh et al.).
5	The ratio of 75% women in MAD-patients is in line with a study by Perazzolo Marra et al.,
6	describing MAD as a constant feature of arrhythmogenic MVP (4). According to a large
7	investigation of MVP prevalence in the course of the Framingham Study, MVP in general
8	was shown to be a feature mainly affecting young women (26). As MAD is very often still
9	accompanied by MVP, this would be in agreement with our data. However, data about sex
10	distribution in MAD are currently rather inconsistent (2) and studies are still lacking.
11	
12	MAD and Arrhythmias
13	Interestingly, the difference in initial ECG findings at CPR between patients with and without
14	MAD was of borderline significance, with all 24 MAD-patients showing VF at first medical
15	contact. Overall, 84% of patients in the present study initially presented with a shockable
16	rhythm, which is in line with a study by Majewski et al. investigating 871 OHCA patients that
17	survived the first 30 days after CPR (27). In the first post-CPR-ECG, the main difference
18	between the definable-cause and the unknown-cause group lies in the presence of
19	repolarization disorders, being primarily due to the high ratio of myocardial infarctions
20	showing ST-elevation in the first group, with the remaining entities being rather unspecific
21	repolarization abnormalities. There are no data available about arrhythmias requiring CPR in
22	MAD: however as this study's MAD-natients were at a distinctly younger age than natients
23	in ib, nowever, as and stady s in ib partents were at a distinctly younger age than partents
23	without MAD and showed significantly less risk factors (i.e. diabetes, hypertension,
24	without MAD and showed significantly less risk factors (i.e. diabetes, hypertension, hypercholesterolemia, CAD), these findings hint that the disjunction itself bears
24 25	without MAD and showed significantly less risk factors (i.e. diabetes, hypertension, hypercholesterolemia, CAD), these findings hint that the disjunction itself bears arrhythmogenic potential, especially in favour of ventricular arrhythmias (3). Further,

1	why the presence of MAD seemingly predisposes for the development of severe arrhythmic
2	events. Some studies postulate fibrosis of the papillary muscles as well as myocardial stretch
3	by a contingently prolapsing leaflet as the primary pathophysiology of the MAD arrhythmic
4	syndrome (28, 29). Another hypothesis involving damage or tissue change of the cardiac
5	conduction system has not yet been sufficiently investigated (3, 30), but would on the other
6	hand explain the increased risk of arrhythmic events in MAD-patients even without presence
7	of MVP (3) or, as shown in our study, LGE. The fact that only 9% of unknown-cause patients
8	in our study showed replacement fibrosis is probably due to a compound of these and maybe
9	still unknown pathophysiological mechanisms that result in arrhythmias even before being
10	measurable.
11	
12	Limitations. We acknowledge that this study bears some limitations, with the most important
13	being its retrospective nature, which results in partly incomplete patient history records and
14	further course after discharge. Furthermore, the selected patient population is subject to a
15	certain selection bias, as the percentage of patients with unknown-cause OHCA was
16	overproportionally high, due to the availability of CMR imaging being a central inclusion
17	criterion and the less common referral to CMR in definite-cause OHCA. Then, a probably
18	very helpful tool and valuable addition to our analysis concerning tissue characterization in
19	MAD could be parametric myocardial mapping. However, these sequences were not obtained
20	in many patients due to these patients having been scanned before mapping sequences were
21	commercially available. Lastly, CMR protocols were not entirely uniform due to the fact that
22	CMR was primarily performed as a part of clinical routine rather than a scientific study;
23	however, all patients were adequately evaluable in terms of MAD and cardiac function.
24	
25	Conclusion. MAD is a common feature in OHCA patients without a definable substrate for
26	CA. MAD-patients were younger, more often female and typically presented with a lower risk

- 1 profile. However, the mere presence of MAD seems to be an independent factor of OHCA
- 2 without clear trigger. Further research to characterize and understand the role of MAD in CA
- 3 is needed.
- 4

1 Acknowledgements, Funding and Data Availability

- 2 This study did not receive any specific grant from funding agencies in the public, commercial,
- 3 or not-for-profit sectors.
- 4 There is no conflict of interest.
- 5 The data underlying this article will be shared on reasonable request to the corresponding
- 6 author.
- 7
- 8

1 **References**

2	1. Hutchins GM,	Moore GW, Skoog DK. The association of floppy mitral valve with
3	disjunction of the mit	ral annulus fibrosus. N Engl J Med. 1986;314(9):535-40.
4	2. Bennett S, Tha	amman R, Griffiths T, et al. Mitral annular disjunction: A systematic
5	review of the literatur	e. Echocardiography. 2019;36(8):1549-58.
6	3. Dejgaard LA,	Skjolsvik ET, Lie OH, et al. The Mitral Annulus Disjunction
7	Arrhythmic Syndrom	e. J Am Coll Cardiol. 2018;72(14):1600-9.
8	4. Perazzolo-Ma	rra M, Basso C, De-Lazzari M, et al. Morphofunctional Abnormalities of
9	Mitral Annulus and A	rrhythmic Mitral Valve Prolapse. Circ Cardiovasc Imaging.
10	2016;9(8):e005030.	
11	5. Toh H, Mori S	, Izawa Y, et al. Prevalence and extent of mitral annular disjunction in
12	structurally normal he	arts: comprehensive 3D analysis using cardiac computed tomography.
13	Eur Heart J Cardiovas	sc Imaging. 2021;22(6):614-22.
14	6. Essayagh B, Ia	acuzio L, Civaia F, et al. Usefulness of 3-Tesla Cardiac Magnetic
15	Resonance to Detect 1	Mitral Annular Disjunction in Patients With Mitral Valve Prolapse. Am
16	J Cardiol. 2019;124(1	1):1725-30.
17	7. Bennett S, Pha	in T, Patwala A, et al. Surviving cardiac arrest from mitral annular
18	disjunction: A case re	port. Echocardiography. 2019;36(7):1405-8.
19	8. Datta I, Dawd	y J, Afonso L. A case of variant parachute mitral valve associated with
20	mitral annular disjunc	tion arrhythmic syndrome. Echocardiography. 2021;38(11):1966-9.
21	9. Sasson C, Rog	gers MA, Dahl J, Kellermann AL. Predictors of survival from out-of-
22	hospital cardiac arrest	: a systematic review and meta-analysis. Circ Cardiovasc Qual
23	Outcomes. 2010;3(1):	63-81.
24	10. Myat A, Song	KJ, Rea T. Out-of-hospital cardiac arrest: current concepts. Lancet.

25 2018;391(10124):970-9.

1	11. Mantegazza V, Volpato V, Gripari P, et al. Multimodality imaging assessment of
2	mitral annular disjunction in mitral valve prolapse. Heart. 2021;107(1):25-32.
3	12. Du-Bois D, Du-Bois EF. A formula to estimate the approximate surface area if height
4	and weight be known. 1916. Nutrition. 1989;5(5):303-11; discussion 12-3.
5	13. Faletra FF, Leo LA, Paiocchi VL, et al. Morphology of Mitral Annular Disjunction in
6	Mitral Valve Prolapse. J Am Soc Echocardiogr. 2022;35(2):176-86.
7	14. Zoghbi WA, Adams D, Bonow RO, et al. Recommendations for Noninvasive
8	Evaluation of Native Valvular Regurgitation: A Report from the American Society of
9	Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic
10	Resonance. J Am Soc Echocardiogr. 2017;30(4):303-71.
11	15. Lee JH, Uhm JS, Suh YJ, et al. Usefulness of cardiac magnetic resonance images for
12	prediction of sudden cardiac arrest in patients with mitral valve prolapse: a multicenter
13	retrospective cohort study. BMC Cardiovasc Disord. 2021;21(1):546.
14	16. Gässler H, Fischer M, Wnent J, Seewald S, Helm M. Outcome after pre-hospital
15	cardiac arrest in accordance with underlying cause. Resuscitation. 2019;138:36-41.
16	17. Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of
17	acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force
18	for the management of acute myocardial infarction in patients presenting with ST-segment
19	elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119-77.
20	18. Gatti M, Palmisano A, Esposito A, et al. Feature tracking myocardial strain analysis in
21	patients with bileaflet mitral valve prolapse: relationship with LGE and arrhythmias. Eur
22	Radiol. 2021;31(10):7273-82.
23	19. Figliozzi S, Georgiopoulos G, Lopes PM, et al. Myocardial Fibrosis at Cardiac MRI
24	Helps Predict Adverse Clinical Outcome in Patients with Mitral Valve Prolapse. Radiology.
25	2022:220454.

1	20.	Kukavica D, Guglielmo M, Baggiano A, et al. Arrhythmic Mitral Valve Prolapse:				
2	Introducing an Era of Multimodality Imaging-Based Diagnosis and Risk Stratification.					
3	Diagn	ostics (Basel). 2021;11(3).				
4	21.	Essayagh B, Sabbag A, Antoine C, et al. The Mitral Annular Disjunction of Mitral				
5	Valve	Prolapse: Presentation and Outcome. JACC Cardiovasc Imaging. 2021;14(11):2073-87.				
6	22.	Gonzalez MM, Berg RA, Nadkarni VM, et al. Left ventricular systolic function and				
7	outco	me after in-hospital cardiac arrest. Circulation. 2008;117(14):1864-72.				
8	23.	Kalra R, Bartos JA, Kosmopoulos M, et al. Echocardiographic evaluation of cardiac				
9	recov	ery after refractory out-of-hospital cardiac arrest. Resuscitation. 2020;154:38-46.				
10	24.	Neilan TG, Farhad H, Mayrhofer T, et al. Late gadolinium enhancement among				
11	surviv	vors of sudden cardiac arrest. JACC Cardiovasc Imaging. 2015;8(4):414-23.				
12	25.	Torras O, Hourdain J, Deharo J, et al. Exhaustive echocardiographic phenotyping of				
13	mitral	valve prolapse in a single center: 'Sever myxomatous mitral valve disease' as a specific				
14	entity	? Arch Cardiovasc Dis Suppl. 2019;11(52).				
15	26.	Savage DD, Garrison RJ, Devereux RB, et al. Mitral valve prolapse in the general				
16	population. 1. Epidemiologic features: the Framingham Study. Am Heart J. 1983;106(3):571-					
17	6.					
18	27.	Majewski D, Ball S, Bailey P, Bray J, Finn J. Long-term survival among OHCA				
19	patien	ts who survive to 30 days: Does initial arrest rhythm remain a prognostic determinant?				
20	Resus	citation. 2021;162:128-34.				
21	28.	Basso C, Perazzolo-Marra M, Rizzo S, A, et al. Arrhythmic Mitral Valve Prolapse and				
22	Sudde	en Cardiac Death. Circulation. 2015;132(7):556-66.				
23	29.	Sriram CS, Syed FF, Ferguson ME, et al. Malignant bileaflet mitral valve prolapse				
24	syndrome in patients with otherwise idiopathic out-of-hospital cardiac arrest. J Am Coll					
25	Cardi	bl. 2013;62(3):222-30.				

- 1 30. Bharati S, Granston AS, Liebson PR, Loeb HS, Rosen KM, Lev M. The conduction
- 2 system in mitral valve prolapse syndrome with sudden death. Am Heart J. 1981;101(5):667-
- 3 70.
- 4
- 5

1 Figure Legends

2	Figure 1. Study synopsis - mitral annular disjunction occurs frequently in unknown-cause
3	out-of-hospital cardiac arrest and represents an independent marker after adjustment for age,
4	hypertension and hypercholesterolemia. (Illustration created with biorender.com). MAD:
5	mitral annular disjunction, OHCA: out-of-hospital cardiac arrest.
6	
7	Figure 2. Flowchart of in- and exclusion, displaying the definable causes of CPR. CA:
8	cardiac arrest, CMR: cardiac magnetic resonance imaging, CPR: cardio-pulmonary
9	resuscitation, MAD: mitral annular disjunction, OHCA: out-of-hospital cardiac arrest.
10	
11	Figure 3. Three- (A) and four-chamber (B) view of a female patient in her 20s with out-of-
12	hospital cardiac arrest of unknown cause, showing a distinct mitral annular disjunction with a
13	systolic curling (arrow) of the P2- and P1-segment of the mitral valve with a maximum extent
14	of 14.2mm.
15	
16	Figure 4. The detection of mitral annular disjunction and the measurement of its extent
17	depends very much on the correct phase: this patient showed a marked disjunction of the P1-
18	segment in end-systole (B), which is not visible at end-diastole (A). Panel (C) shows the
19	positioning of the measuring tool as was used in this current study.
20	

21

1 **Tables**

	All patients	definable-cause	unknown-cause (n-34)	p-value
Age at CPR years	56 (41-67)	61 (54-69)	43 (33-55)	<0.001
Female %	36 (42)	11 (21)	25 (74)	<0.001
BMI kg/m ²	25 (22-28)	26 (23-29)	23 (71)	0.001
$\frac{\text{MAD } n(\%)}{\text{MAD } n(\%)}$	24 (28)	5 (10)	19 (56)	<0.007
MAD - No of affected	21 (20)	5 (10)	1) (50)	NO.001
segments				
- 0	62 (72)	47 (90)	15 (44)	<0.001
- 1	13 (15)	4 (8)	9 (26)	0.098
- >2	11 (13)	1 (2)	10 (29)	0.001
MAD-extent mm	57(45-103)	54(38-90)	63 (4 4-10 3)	0.534
(24/86 patients)				0.001
Systolic Curling, n(%)	8/24 (33)	1/5 (20)	7/19 (37)	0.477
(24/86 patients)	0, _ 1 (00)			
MVP, n(%)	26 (30)	13 (25)	13 (38)	0.191
- anterior	14 (16)	9 (17)	5 (15)	0.993
- posterior	3 (3)	2 (3)	1 (3)	0.998
- bileaflet	9 (10)	2 (3)	7 (21)	0.100
Risk Profile				
Smoker, n(%)	27 (31)	18 (35)	9 (26)	0.442
Diabetes, n(%)	11 (13)	9 (17)	2 (6)	0.090
Hypertension, n(%)	41 (48)	32 (62)	9 (26)	0.001
Hypercholesterolemia, n(%)	29 (34)	24 (46)	5 (15)	0.003
Positive Family History, n(%)	10(12)	6 (12)	4 (12)	0.961
Atrial Fibrillation, n(%)	7 (8)	7 (13)	0 (0)	0.029
CAD (CT or invasively,	44/83 (53)	37/51 (73)	7/32 (24)	<0.001
83/86 patients), n(%)				
Laboratory Parameters				
Admission Glucose, mg/dl	167 (125-235)	162 (125-246)	173 (121-218)	0.848
Creatinine, mg/dl	1.03 (0.85-1.24)	1.15 (0.93-1.43)	0.90 (0.76-1.05)	<0.001
Sodium, mmol/l	139 (138-141)	139 (137-141)	140 (138-142)	0.558
Potassium, mmol/l	3.8 (3.5-4.3)	4.0 (3.5-4.3)	3.7 (3.5-4.2)	0.256
Calcium, mmol/l	2.2 (2.1-2.3)	2.2 (2.1-2.3)	2.1 (2.0-2.2)	0.009
Hemoglobin, g/l	136 (126-149)	139 (128-151)	132 (121-144)	0.315
Leukocytes, G/l	11 (8-14)	11 (8-15)	11 (8-14)	0.931
CRP, mg/dl	0.3 (0.1-1.2)	0.3 (0.1-1.7)	0.2 (0.1-0.7)	0.329
INR	1.1 (1.0-1.2)	1.1 (1.0-1.2)	1.1 (1.1-1.3)	0.363
Admission hs Troponin T,	43 (17-191)	53 (20-306)	41 (15-181)	0.327
ng/ml				
Peak hs-Troponin T, ng/ml	223 (119-1334)	598 (149-3874)	189 (104-441)	0.017
Admission CK, U/l	156 (87-341)	153 (79-343)	156 (96-345)	0.686
Peak CK, U/l	740 (167-2032)	768 (137-2645)	727 (273-1163)	0.927
Peak NT-proBNP, ng/l	710 (311-1805)	1050 (394-3050)	485 (182-1326)	0.048
CMR Parameters				
LV EF, %	47 (38-53)	41 (33-50)	49 (43-56)	0.030
LV EDVi, ml/m ²	100 (80-117)	106 (88-132)	91 (73-110)	0.027
LV ESVi, ml/m ²	52 (41-67)	58 (49-85)	48 (34-59)	0.015
LV Myocardial Mass, g	116 (97-147)	142 (111-168)	110 (85-121)	<0.001
RV EF, %	50 (39-56)	45 (34-54)	52 (46-57)	0.096
RV EDVi, ml/m ²	87 (71-106)	94 (73-109)	81 (68-103)	0.203
RV ESVi, ml/m ²	45 (33-56)	49 (42-58)	43 (31-50)	0.064
LGE (82/86 patients), n(%)	39/82 (48)	36/50 (72)	3/32 (9)	<0.001

1 **Table 1.** Baseline characteristics.

- 2
- 3 BMI: body mass index, CAD: coronary artery disease, CK: creatine kinase, CPR: cardio-
- 4 pulmonary resuscitation, CRP: C-reactive protein, CT: computed tomography, EDVi: indexed
- 5 end-diastolic volume, EF: ejection fraction, ESVi: indexed end-systolic volume, hs: high-
- 6 sensitive, INR: international normalized ratio, LGE: late gadolinium enhancement, LV: left
- 7 ventricular, MAD: mitral annular disjunction, MVP: mitral valve prolapse, NT-proBNP: N-
- 8 *terminal pro-B-type natriuretic peptide, RV: right ventricular.*

	MAD	No MAD	p-value
	(n=24)	(n=62)	
Age at CPR, years	40 (32-52)	61 (50-70)	<0.001
Female, %	18 (75)	18 (29)	<0.001
BMI, kg/m ²	23 (20-26)	26 (23-29)	0.006
MVP, n(%)	15 (63)	11 (18)	<0.001
- anterior	7 (29)	7 (11)	0.261
- posterior	1 (4)	2 (3)	0.998
- bileaflet	7 (29)	2 (3)	0.007
Risk Profile			
Smoker, n(%)	6 (25)	21 (34)	0.375
Diabetes, n(%)	0 (0)	11 (18)	0.024
Hypertension, n(%)	5 (21)	36 (58)	0.001
Hypercholesterolemia	3 (13)	26 (42)	0.007
Positive Family History, n(%)	2 (8)	8 (13)	0.523
Atrial Fibrillation, n(%)	0 (0)	7 (11)	0.078
CAD (CT or invasively,	4/23 (17)	40/60 (67)	<0.001
83/86 patients), n(%)			
Laboratory Parameters			
Admission Glucose, mg/dl	166 (120-202)	167 (125-246)	0.368
Creatinine, mg/dl	0.84 (0.72-1.01)	1.13 (0.92-1.41)	<0.001
Sodium, mmol/l	140 (138-141)	139 (137-142)	0.315
Potassium, mmol/l	3.7 (3.5-4.0)	3.9 (3.5-4.3)	0.240
Calcium, mmol/l	2.1 (2.0-2.2)	2.2 (2.1-2.3)	0.021
Hemoglobin, g/l	131 (117-139)	140 (128-151)	0.032
Leukocytes, G/l	12 (7-15)	11 (8-14)	0836
CRP, mg/dl	0.1 (0.1-1.2)	0.3 (0.1-1.2)	0.238
INR	1.1 (1.0-1.3)	1.1 (1.0-1.2)	0.829
Admission hs Troponin T,	70 (14-187)	37 (19-216)	0.777
ng/ml			
Peak hs-Troponin T, ng/ml	200 (126-681)	267 (104-3175)	0.399
Admission CK, U/l	187 (103-521)	151 (79-333)	0.164
Peak CK, U/l	921 (361-2067)	504 (143-2032)	0.182
Peak NT-proBNP, ng/l	402 (131-907)	1064 (431-3034)	0.003
CMR parameters			
LV EF, %	47 (43-56)	45 (33-52)	0.111
LV EDVi, ml/m ²	94 (80-111)	103 (79-126)	0.376
LV ESVi, ml/m²	49 (40-58)	56 (41-77)	0.158
LV Myocardial Mass, g	102 (85-118)	125 (110-160)	0.006
RV EF, %	54 (46-58)	48 (34-54)	0.043
RV EDVi, ml/m ²	85 (71-104)	89 (71-109)	0.685
RV ESVi, ml/m ²	43 (32-49)	46 (33-58)	0.129
LGE (82/86 patients), n(%)	5/24 (21)	34/58 (59)	0.002

¹ **Table 2.** Comparison of patients with and without MAD.

2

3 BMI: body mass index, CAD: coronary artery disease, CK: creatine kinase, CPR: cardio-

4 pulmonary resuscitation, CRP: C-reactive protein, CT: computed tomography, EDVi: indexed

5 end-diastolic volume, EF: ejection fraction, ESVi: indexed end-systolic volume, hs: high-

6 sensitive, INR: international normalized ratio, LGE: late gadolinium enhancement, LV: left

- 1 ventricular, MAD: mitral annular disjunction, MVP: mitral valve prolapse, NT-proBNP: N-
- 2 *terminal pro-B-type natriuretic peptide, RV: right ventricular.*

	OR (95% CI)	p-value
Univariable Analysis		
MAD presence	11.91 (3.79-37.37)	<0.001
MAD-extent, mm	1.41 (1.17-1.71)	<0.001
MAD - ≥ 2 segments affected	21.25 (2.57-175.64)	0.005
Age at CPR, yrs	0.96 (0.93-0.98)	0.002
Female Sex	10.35 (3.77-28.47)	<0.001
BMI, kg/m ²	0.88 (0.79-0.98)	0.021
Diabetes	0.30 (0.06-1.49)	0.142
Hypertension	0.22 (0.09-0.59)	0.002
Hypercholesterolemia	0.20 (0.07-0.60)	0.004
Atrial Fibrillation	0 (0)	0.999
CAD (CT or invasively)	0.11 (0.04-0.30)	<0.001
Creatinine, mg/dl	0.08 (0.01-0.50)	0.007
Calcium, mmol/l	0.01 (0.00-0.32)	0.009
Peak hs-Troponin T, ng/ml	1.00 (0.99-1.00)	0.051
Peak NT-proBNP, ng/l	1.00 (1.00-1.00)	0.766
EF, %	1.04 (0.99-1.09)	0.091
EDVi, ml	0.98 (0.96-0.99)	0.044
ESVi, ml	0.98 (0.96-0.99)	0.037
Myocardial Mass, g	0.97 (0.95-0.99)	0.001
LGE	0.04 (0.01-0.15)	<0.001
Multivariable Analysis		
Model 1	n = 84	
- MAD presence	8.49 (2.37-30.41)	0.001
- Age at CPR, yrs	1.00 (0.97-1.04)	0.842
- Hypertension	0.42 (0.12-1.43)	0.164
- Hypercholesterolemia	0.36 (0.10-1.27)	0.111
Model 2	n = 84	
- MAD presence	6.26 (1.72-22.76)	0.005
- Female Sex	4.61 (1.41-15.09)	0.011
- Hypertension	0.54 (0.17-1.75)	0.306
- Hypercholesterolemia	0.61 (0.16-2.23)	0.451
Model 3	n = 81	
- MAD presence	5.03 (1.29-19.71)	0.020
- Female Sex	3.68 (1.09-12.39)	0.036
- CAD (CT or invasively)	0.30 (0.09-1.05)	0.059
- Hypertension	0.70 (0.20-2.45)	0.576
Model 4	n = 83	
- MAD presence	5.23 (1.33-20.53)	0.018
- Age at CPR, yrs	1.00 (0.96-1.05)	0.869
- Female Sex	4.42 (1.27-15.37)	0.020
- CAD (CTA or invasively)	0.24 (0.06-0.93)	0.039
Model 5	n = 79	~~~~~
- MAD presence	9.05 (1.57-52.12)	0.014
- Female Sex	2.58 (0.63-10.61)	0.189
- CAD (CT or invasively)	0.53 (0.12-2.34)	0.403
- LGF	0.04 (0.01-0.25)	
	0.01 (0.01 0.20)	N0.001

1 **Table 3.** Uni- and multivariable analyses

2

3 BMI: body mass index, CAD: coronary artery disease, CPR: cardio-pulmonary resuscitation,

4 *CT:* computed tomography, *EDVi:* indexed end-diastolic volume, *EF:* ejection fraction, *ESVi:*

- 1 indexed end-systolic volume, hs: high-sensitive, LGE: late gadolinium enhancement, MAD:
- 2 mitral annular disjunction, NT-proBNP: N-terminal pro-B-type natriuretic peptide.

1 **Table 4.** Rhythmological features.

	All patients (n=86)	definable-cause (n=52)	unknown-cause (n=34)	p-value
Initial Rhythm at CPR				0.155
(81/86 patients), n(%)				
- VF	67 (78)	37 (71)	30 (88)	
- VT	5 (6)	3 (6)	2 (6)	
- Asystole	5 (6)	3 (6)	2 (6)	
- PEA	4 (5)	4 (8)	0 (0)	
Repolarisation at baseline				0.020
ECG (79/86 patients), n(%)				
- ST-elevation	13 (16)	12 (26)	1 (3)	
- ST-depression	4 (5)	1 (2)	3 (9)	
- terminal negative T	11 (14)	4 (9)	7 (22)	
- preterm. negative T	9 (11)	7 (15)	2 (6)	
Events in patient history,				0.507
n(%)				
- VT	2 (2)	2 (4)	0 (0)	
- Frequent ES	3 (3)	1 (2)	2 (6)	
- BBB	2 (2)	1 (2)	1 (3)	

Events during				0.646
hospitalisation, n(%)				
- VF	5 (6)	4 (8)	1 (3)	
- VT	6(7)	3 (6)	3 (9)	
- Asystole	1 (1)	1 (2)	0 (0)	
- PEA	0 (0)	0 (0)	0 (0)	
- AF	2 (2)	1 (2)	1 (3)	
Events after discharge, n(%)				0.444
- VF	5 (6)	2 (4)	3 (9)	
- VT	2 (2)	1 (2)	1 (3)	
- AF	1 (1)	0 (0)	1 (3)	
		1 1 1 1 0 0 0 1		79

1 AF: atrial fibrillation, BBB: bundle branch block, CPR: cardio-pulmonary resuscitation, ES:

2 *extrasystole, PEA: pulseless electrical activity, VF: ventricular fibrillation, VT: ventricular*

3 *tachycardia*.

MAD is an independent marker of unknown-cause OHCA (odds ratio: 8.49)

