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ABSTRACT

Background: HIV estimation using data from the Demographic and Health Surveys (DHS) is limited
by the presence of non-response and test refusals. Conventional adjustments such as imputation
require the data to be missing at random. Methods that use instrumental variables allow the possibility
that prevalence is different between the respondents and non-respondents, but their performance
depends critically on the validity of the instrument. Methods: Using Manski’s partial identification
approach, we form instrumental variable bounds for HIV prevalence from a pool of candidate
instruments. Our method does not require all candidate instruments to be valid. We use a simulation
study to evaluate our method and compare it against its competitors. We illustrate the proposed
method using DHS data from Zambia. Results: Our simulations show that imputation leads to
seriously biased results even under mild violations of non-random missingness. Using worst case
identification bounds that do not make assumptions about the non-response mechanism is robust but
not informative. By taking the union of instrumental variable bounds balances informativeness of
the bounds and robustness to inclusion of some invalid instruments. Conclusions: Non-response
and refusals are ubiquitous in population based HIV data such as those collected under the DHS.
Partial identification bounds provide a robust solution to HIV prevalence estimation without strong
assumptions. Union bounds are significantly more informative than the worst case bounds, without
sacrificing credibility.
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Key messages

• Partial identification bounds are useful for HIV estimation when data are subject to non-response bias

• Instrumental variables can narrow the width of the bounds but validity of an instrument variable is an untestable
hypothesis

• This paper proposes pooling candidate instruments and creating union bounds from the pool

• Our approach significantly reduces the width of the worst case bounds without sacrificing robustness
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HIV estimation using population-based surveys

1 Background

In sub-Saharan Africa, home to around 23 million people living with HIV [1], accurate measurement of the trends
of important diseases such as HIV is essential for governments to design policies and aid programs. In the past two
decades, national population-based surveys from the Demographic and Health Survey (DHS) system have become an
important source for such measurement [2, 3]. A major challenge in using these data is the potential bias from missing
data created by non-response. There is much evidence that the non-respondents may have patterns of outcome and/or
behaviour that are very different from those of the rest of the population [4, 5].

One reason why non-response has garnered significant attention from researchers is the complexity of the problem
[6]. Non-response is not a result of a single source or a well-defined situation, as it is widely recognized. Instead, the
causes and processes that lead to non-response are diverse and often depend on multiple factors, including the surveyed
population, the outcome’s nature, and the survey’s design and implementation. The most challenging aspect of this
problem is that information about non-respondents is typically limited, making it challenging for surveyors to determine
the reason behind a non-response [6] In the context of HIV survey, non-response arises primarily from two sources–
non-contacts and refusals. The processes leading to these two types of non-responses are believed to be distinct. But for
ease of discussion, we use these terms interchangeably. We return to distinguish them in the empirical study.

A primary concern when reporting HIV prevalence estimates using DHS data is potential bias resulting from non-
response. Some relevant earlier works on non-response bias in HIV estimation using data from the DHS system
include [3] and [7], who carried out multi-country surveys of response rates and evaluated non-response bias. [4]
examined non-response bias in a nine-country study. They assumed non-response is non-informative and estimated the
prevalence among the non-respondents by multiple imputation. Similarly, [5] used a logistic regression to predict the
HIV prevalence among the non-respondents under a non-informative non-response assumption in a twelve-country
study. [8] and [9] corrected refusal bias in population surveys by using auxiliary longitudinal data. Their method relies
on the assumption that the refusal behaviour in different populations are comparable. [10, 11, 12] adjusted non-response
bias by a Heckman-type selection model [13], which allows non-response to be informative but requires the existence
of a valid instrumental variable that satisfies the exclusion criteria of explaining non-response but not the outcome. [14]
constructed bounds based on the partial identification approach of [15, 16]. Under this approach, the unknown quantity
of interest can only be identified to within a set of bounds, whose width depends on the knowledge, or lack thereof,
about the missing data. In this sense, the bounds are “worst case" bounds since no assumptions are made regarding the
missingness process. Worst case bounds are often considered overly conservative in practice. [14] used restrictions
implied by the dynamics of HIV (ie., an infected person remains infected over time while an uninfected person cannot
be infected earlier) and instrumental variables to narrow the width of the identification region.

Methods that use instrumental variables allow the possibility that HIV prevalence is different between the respondents
and those who refuse testing. However, valid instruments about the non-response mechanism are notoriously difficult to
find. Furthermore, whether an instrument is valid is not a testable hypothesis. This paper aims to solve this conundrum.
We espouse the view that, due to missing data, a study with missing data can never achieve as much as it would have
had there been no missing data. This view departs from the conventional wisdom that, with sufficient assumptions and
modelling, that a study with missing data can be restored to the state as if there were no missing data, save the fewer
observations. Under the conventional perspective, unknown quantities of interest can be estimated using point estimates,
or “point identified", with an adjustment to the reduced information, and then inferential tools such as confidence
intervals and hypothesis tests can be carried out as usual. In our view the uncertainty created by the missing data and our
inability in pinpointing the exact causes of missingness must be embedded into the formulation of the analysis strategy.

Theoretically, if we do not know whether an instrument is valid, we can take multiple candidate instruments. Indeed,
in observational epidemiological studies that are subject to confounding or reverse causation bias, the use of genetic
variants as proxies for environmentally modifiable exposures may lead to a hundred or more candidate instruments [17].
However, among the instruments under consideration, we do not know which ones are valid. We propose a two-stage
modification of Manski’s partial identification approach to solve this problem. Assume, s > a, where a is the minimum
number of valid instruments out of the L candidate instruments under consideration. For each candidate, we can use
Manski’s approach to form bounds. Then even though we do not know the validity of individual instruments, the union
of bounds using any set of L− a+ 1 individual candidates is guaranteed to correctly identify the quantity of interest.
Following [18, 19, 20] that the intersection of bounds is non-empty for any set of valid instruments to eliminate the
candidates whose bounds fail to overlap with the bounds of the majority of the candidates, we then take the intersection
of the union bounds from all possible sets of L− a+ 1 instruments to form a new set of bounds. This step substantially
narrows the bounds in some cases without sacrificing robustness. We carry out a simulation experiment to evaluate the
proposed method. We then illustrate our method using data from the Zambia Demographic Health Surveys.
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HIV estimation using population-based surveys

2 Method

We assume for each individual in the population of interest, an outcome variable Y is measurable and bounded. Suppose
we are interested in the population mean of Y , E(Y ). In general we may also be interested in E(Y |X) for some
covariates X , but for brevity, we focus our discussion in the next two sections on estimating E(Y ) since the treatment
for the case with covariates is similar. Suppose a random sample of n is drawn from the population and in this sample,
Y is observed only in a subset of the sample. Let D be a binary variable such that D = 1 if Y is observed and 0
otherwise. Using the law of iterated expectations, we can write

E(Y ) = E(Y |D = 1)P(D = 1) + E(Y |D = 0)P(D = 0). (1)

The sampling process identifies E(Y |D = 1), P(D = 1) and P(D = 0) = 1− P(D = 1) but there is no information on
E(Y |D = 0) unless we make strong assumptions about the joint distribution of Y and D. Let K0,K1 be, respectively,
the lower and upper bounds of Y . Furthermore, write µ ≡ E(Y ), µd· ≡ E(Y |D = d). The worst case partial
identification bounds [15] for µ are

(LB,UB) = (µ1·P(D = 1) +K0P(D = 0), µ1·P(D = 1) +K1P(D = 0)). (2)

2.1 Bounds using instruments

The worst case bounds (2) are guaranteed to identify E(Y ) by construction. However, they are often criticised for being
too wide to be informative. The worst case bounds can be improved if additional assumptions are made. Let V be an
instrumental variable with discrete values v ∈ V , such that,

P(D = d|V = v1) ̸= P(D = d|V = v2), (3)

and
P(Y ) = P(Y |V = v1) = P(Y |V = v2), (4)

for d = 0, 1, all values v1, v2 ∈ V and v1 ̸= v2. Write µ·v ≡ E(Y |V = v) and µdv ≡ E(Y |D = d, V = v). Since (4)
implies E(Y |V = v) = E(Y ) = µ, it follows that [18], ∀v ∈ V ,

µ1vP(D = 1|V = v) +K0P(D = 0|V = v) ≤ µ·v ≤ µ1vP(D = 1|V = v) +K1P(D = 0|V = v).

The inequalities imply

µ ∈ ∩
v∈V

[µ1vP(D = 1|V = v) +K0P(D = 0|V = v), µ1vP(D = 1|V = v) +K1P(D = 0|V = v)]

⇒ LBV ≡ sup
v∈V

{µ1vP(D = 1|V = v) +K0P(D = 0|V = v)} ≤ µ

≤ inf
v∈V

{µ1vP(D = 1|V = v) +K1P(D = 0|V = v)} ≡ UBV ,
(5)

where (LBV ,UBV ) gives a set of IV lower and upper bounds for µ.

In practice, more than one instrument is usually used in a particular study [see, e.g., 17, 21]. Suppose there are L
candidate instruments, and all we can assume is at least one of the L candidates is valid. Then, if some turn out to be
invalid, (5) may fail to identify E(Y ) for these instruments. To address this, suppose we create the following “union"
bounds:

(LBUN,UBUN) = ∪
Vl,l=1,··· ,L

(LBVl
,UBVl

) = ( inf
v∈Vl

LBVl
, sup
v∈Vl

UBVl
). (6)

It is trivial to see that (LBUN,UBUN) identifies E(Y ) as long as at least one of the candidate instruments is valid.
However, a simple examination of (LBUN,UBUN) reveals that as L increases, so will the width of (LBUN,UBUN). The
wider a set of bounds, the less informative it is in identifying E(Y ). Hence it would be of interest to eliminate among
the L instruments, those that do not contribute to the identification of E(Y ). To continue, we assume that the true
number of valid instruments, s is known to satisfy s > a ≥ 1 for some known a. Under this assumption, each subset of
(L− a+ 1) instruments must contain at least one valid instrument. Hence, the union bounds formed by each subset is
guaranteed to identify E(Y ). For any two sets of bounds that both include E(Y ), their intersection must be non-empty,
and also correctly identify E(Y ). We therefore propose to find the intersection of all union bounds formed with any
(L− a+ 1) instruments among the L instruments, because it will also identify E(Y ) but be no longer than any of these
union bounds.

Applying the bounds empirically incurs uncertainty and this uncertainty can be incorporated in the form of confidence
intervals. A confidence interval should have a high asymptotic probability of containing both (LB,UB) or µ. Here,
we follow the approach suggested in [22] for forming confidence intervals. Justifications and further details about the
proposed bounds, and confidence intervals are given in the Supplementary materials.
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3 Simulation study

We use a simulation study to evaluate our proposed bounds (6). We assume the response Y is binary. We fix the values
of s and L at 3 and 5, respectively. The instruments are all binary with prevalence of 0.5 and mutually independent of
each other.

We generate Y using a logistic model
logitP(Y = 1) = b0 + b11V1 + · · ·+ b1LVL, (7)

where the coefficients b1 = (b11, · · · , b1L)T give the association between the instruments and Y . A non-zero value
of b1j induces an association and therefore renders the instrument invalid. We use two different combinations for b1:

b1 = (

s︷ ︸︸ ︷
0, · · · , 0,

(L−s)︷ ︸︸ ︷
1, · · · , 1)T ; and b1 = (

s︷ ︸︸ ︷
0, · · · , 0,

(L−s)︷ ︸︸ ︷
4, · · · , 4)T . For both situations, we assume without loss of generality

the first s instruments are valid while the remaining L − s are invalid. In the former, (4) is weakly violated by the
invalid instruments while the violation of (4) is strong for the latter.

The non-response indicator D is generated using another logistic model
logitP(D = 1) = c0 + c11V1 + · · ·+ c1LVL + cY Y. (8)

The coefficients c1 = (c11, · · · , c1L)T give the association between each instrument and D. We consider two situations,
(a) Strong instruments: c1 = (5, · · · , 5) and (b) Strong + weak instruments: s coefficients are randomly given a value
of 5 and the remaining L− s are given a value of 0.5. The coefficient cY is used to model the association of D to the
outcome Y , and hence selection bias. When cY = 0, then there is no selection bias when conditioned on the observed
covariates. We consider two choices of cY = −0.1||c1|| and −0.3||c1||, where the symbol || · || stands for the sum
of the coefficients c11, ..., c1L. We use negative association to reflect that in practice, we expect those who are HIV
positive are less likely to have an HIV test. These two values for cY correspond to mild to moderate selection bias. We
use c0 to calibrate the average non-response rate, 1− E(D = 1), to be 0.1 and 0.3 over the simulations.

Since Y is binary, the bounds for Y are (K0,K1) = (0, 1). Throughout the simulation study, a sample size of n = 1000
observations is used. We use 1000 simulation runs for each combination of parameters. Confidence intervals are
approximated using the method described in the Supplementary materials. These confidence intervals require estimates
of the standard errors of the bounds, which can be carried out using bootstrapping. Throughout, we use 100 bootstrap
for this purpose.

A standard approach to adjust HIV prevalence estimates for survey non-response is by imputation [23]. Using
imputation, the missing outcomes are imputed using predicted prevalence based on observed information such as
demographic, socio-economic and behavioural variables from those who were tested. We compare this method to the
partial identification method. For the imputation method, we use all the observed variables in the simulation study, i.e.,
the instruments. For partial identification, we used the worst case bounds that do not make any assumptions, and also
the method proposed in this article.

Table 1 gives the simulation results. Each combination of parameters corresponds to four rows of results. The first
row shows the proportion of times, out of 1000 simulations, the approximate 95 percent confidence intervals include
E(Y ). The second row gives the lower confidence limits, averaged over 1000 simulations. The third row gives the upper
confidence limits, averaged over 1000 simulations. The fourth row gives the average width of the confidence intervals.

When non-response probability is 0.1 and selection bias is mild, 95% confidence intervals using all three methods have
high probabilities of capturing E(Y ). Using imputation naturally leads to much narrower confidence intervals. Between
the partial identification bounds, the IV bounds proposed in this paper produces much narrower confidence interval but
at the expense of not capturing E(Y ) in finite samples.

In all other situations, using imputation leads to grossly biased confidence intervals that fail to capture E(Y ) in almost
all simulation runs. Recall that E(Y ) is calibrated to be at 0.15 in all simulations so the imputation confidence intervals
under estimate the true prevalence. The advantage of the IV bounds confidence intervals over the worst case confidence
intervals mirror those when non-response probability is 0.1 and selection bias is mild. Additional simulations have been
carried out. The results are given in the Supplementary materials. The conclusion from the additional simulations is
similar to those presented here.

4 HIV prevalence in Zambia

The primary data source for this study is the 2007 Zambia DHS. The 2007 Zambia DHS is the fourth survey in the
Zambia DHS series and provides population-level health estimates, including data useful in monitoring and evaluating
population, health, and nutrition programs.
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A total of 7969 households were selected for the 2007 Zambia DHS, of which 7326 were occupied. The shortfall was
largely due to households that were away for an extended period of time and structures that were found to be vacant at
the time of the interview. Of the occupied households a total of 7146 were successfully interviewed. The interviews
collected basic demographic information (e.g., age, sex), socio-economic status (e.g., educational attainment) as well as
basic household characteristics (e.g., household possessions and dwelling characteristics).

In the interviewed households, 7406 females were eligible for interview and HIV testing, while the number of males
was 7146. The individual interviews collected information such as work and background characteristic, marriage and
sexual activities, and awareness and attitudes towards HIV. In the women’s interviews, additional questions about
reproductive history and child heath and nutrition were asked.

Of the women and men eligible for individual interviews, 1695 (22.8%) of the women and 1983 (27.8%) of the men
refused or did not complete an HIV test. The primary reason for non-response among eligible men was the failure to find
individuals at home despite repeated visits to the household, followed by refusal to be interviewed. The substantially
lower response rate for men reflects the more frequent and longer absence of men from the households.

The interviews in the 2007 Zambia DHS were carried out by 12 teams made up of 12 supervisors, 12 editors, 36 female
interviewers, and 36 male interviewers. Each team consisted of one supervisor, one female field editor, one laboratory
technician, three female interviewers, and three male interviewers. The interviews and questionnaires were translated
from English into one of seven major local language groups: Nyanja, Bemba, Kaonde, Lunda, Lozi, Tonga, and Luvale.

The observed prevalence of HIV positive among the cases with results, stratified by age, are given in Table 2 .
Even though in this study, the proportions of non-response is modest, we shall see that using instruments still bring
improvements on inferences in some cases.

We examine HIV prevalence between genders, and across different age groups. Previous studies have suggested that
variables related to the data collection process may be used as instruments because they affect the response probability
but are unlikely to have a direct effect on the outcome [12, 24]. For example, an experienced interviewer or an
interviewer of a similar age as the interviewee may have a better chance of eliciting a positive response. Furthermore,
whether the language of the interview or questionnaire is the same language as the interviewee may affect response
rate. It has also been argued that timing of the first interview attempt that coincides with the economic cycle affects the
probability of finding the interviewees at home. Individuals selected to be interviewed on the first day of the interviews
within a cluster of households will also have more chances to be contacted even if they are not at home, giving rise to a
higher response probability. Finally we also consider a variable based on the individual’s attitude to HIV. The current
literature finds that more negative attitudes are associated with refusal of an HIV test or never having had an HIV test in
sub-Saharan Africa [25, 26].

The final list of instrumental variables we use are: iv.lan (whether the language used in the questionnaire or interview is
the same as the respondent’s language, yes vs. no), iv.firstday (whether the interview was conducted on the first day
of the interviews, yes vs. no), iv.interviewer (number of interviews the interviewer has performed, < 50, 50 − 100,
100− 200, > 200), iv.mon (whether the interview was carried out during a month of harvest or planting, yes vs. no),
iv.doa (whether the respondent knows someone who has died of AIDS, yes vs. no).

It is well known that the validity of an instrument (4) is an untestable hypothesis. Nevertheless, we can determine
whether an instrument is strong by evaluating (3). Table 3 shows chi-square tests between non-response and the
candidate instrumental variables we consider; all tests are highly significant.

We assume a = 3, that is, at least 3 out of the 5 candidates are valid. In any survey such as the 2007 Zambia DHS,
non-response, and the potential for an associated bias, is always a concern. The standard procedure is an imputation
analysis on those who are not tested to adjust for potential biases [27]. The individuals in the survey can be classified
into one of three groups: (a) those who participated in the household and individual surveys and tested (b) those who
participated in the household and individual surveys but not tested and (c) those who only participated in the household
surveys. For those in groups (b) and (c), their HIV test results are absent.

For individuals in groups (b) and (c), their probability of HIV is predicted based on multivariate models using data from
those who were tested. A logistic regression model is used to calculate HIV probability separately for groups (b) and
(c). For group (b), the variables used in the model include the following household survey variables: age, education,
wealth quintile, residence, and geographic region, as well as the following variables from the individual survey: marital
union, current work status, media exposure, religion, sexually transmitted infections (STIs) or STI symptoms in past 12
months, cigarette smoking/tobacco use, age at first sex, number of sex partners in past 12 months, higher-risk sex in
past 12 months, condom use at last sex in past 12 months, and willingness to care for a family member with AIDS.
Prediction for group (c) uses only the household variables. The models are used to impute HIV statuses for individuals
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in groups (b) and (c) and the results are combined with those in group (a) to form adjusted HIV prevalence estimates for
the population.

For all estimates, the data are weighted by survey weights. For individuals in group (a), HIV weights were used, for
individuals in group (b), the individual survey weights were used and for those in group (c), household survey weights
were used.

We compare adjustments using standard imputation with those using partial identification bounds. For partial
identification bounds, we report results based on the worst case bounds as well as the instrumental variable bounds. For
brevity, we only report the 95% confidence intervals (CIs) in Table 4a-b. We also include confidence intervals based
on the observed, unadjusted prevalence among the tested individuals. The results are stratified by gender and by age
groups.

We hereafter focus the discussion on men’s results, the women’s results exhibit similar patterns. The imputation method
uses models based on data from the tested, and hence implicitly it assumes that conditioned on the covariates used in
the models, a non-tested individual has the same propensity of HIV as a tested individual. This fact is borne out in the
95% CIs using imputation. All of them include the corresponding observed prevalence among the tested in Table 2 and
they are all very similar to the corresponding CIs based on the unadjusted prevalence estimates. Each imputation CI is
never wider than its unadjusted counterpart due to the additional observations used. Both have relatively short widths
due to the large sample sizes in this study.

Using partial identification, the corresponding CIs are much wider than those using imputation. The much wider CIs
using partial identification reflect the uncertainties we have about the actual HIV status for the non-tested individuals.
The lower limits of the partial identification CIs are also in general quite a bit smaller than the corresponding imputation
lower limit. The reason is that a lower partial identification bound is derived by assuming all non-tested individuals are
HIV negative (for a given value of instrument for the IV bound), whereas imputation assumes the non-tested are the
same as the tested, given the covariates. Similarly, the upper limits of the partial identification CIs are much higher than
those given by imputation, since the upper partial identification bounds result from assuming all non-tested are HIV
positive (for a given value of instrument for the IV bound).

The most significant difference between the partial identification CIs and the imputation CIs lie in those situations
where the observed prevalence among the tested is low. For example, in the male aged 15-19 group. The upper limit of
the imputation CI is 0.045, against the upper limits of 0.32 and 0.278, respectively, for the worst case and instrumental
variable partial identification CIs. The reason for the very low upper limit for the imputation CI is that it assumes those
non-tested also have similarly low prevalence as the tested individuals. In contrast, the partial identification approach
allows for the possibility that even if a moderate proportion of the non-tested are actually HIV positive, the prevalence
would change significantly upwards.

Between the two partial identification methods, the worst case scenario makes no assumptions and the resulting CIs
are wider than those derived using the instrumental approach proposed in this paper. Since the width of a CI gives its
precision, the method proposed here is always more precise than the worst case CIs. In some cases, such as males aged
35-39, the gain in precision approaches 30%. Two other observations are worth noting. First, as expected, all CIs using
the proposed method have a larger lower confidence limit that the corresponding worst case CIs. A second observation
is the narrowing in widths in the CIs in the proposed method mainly comes from a much smaller upper limit than the
corresponding worst case CIs. This advantage is brought about when the population is stratified by different levels of a
valid instrument. if the proportion of tested individuals is higher at a particular level, the more precise information from
such a group can be used to infer about HIV prevalence of the entire population.

5 Discussion

Existing studies on refusal bias in the estimation of HIV prevalence typically either provide some evidence of the
existence of the bias or try to correct for the bias by making some (often strong) behavioural assumptions about the
subjects. In this paper, we have instead derived plausible lower and upper bounds for HIV prevalence under mild and
intuitive assumptions. This approach is potentially useful because it is often difficult to validate or falsify an underlying
assumption. Furthermore, it shows that a carefully designed and implemented localised study may also be helpful for
understanding the magnitude of non-response bias.

Partial identification approach using instruments has been widely used in the fields of Social Sciences and Economics,
though rare in Epidemiology and Public Health. As with other methods that exploits instruments, the key to the success
of this approach is the validity of the instruments used to create the bounds. However, it is well known that the exclusion
restriction assumption is a non-testable hypothesis. This paper offers a novel and simple solution to this challenge
by taking multiple candidate instruments. If at least one instrument in the pool of candidates is valid, the proposed

6

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2023. ; https://doi.org/10.1101/2023.06.03.23290936doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.03.23290936
http://creativecommons.org/licenses/by/4.0/


HIV estimation using population-based surveys

approach creates bounds that, in large samples, identify the true prevalence. The approach offered in this paper is
especially useful for practitioners because normally there are multiple variables, eg., interviewing process, interviewer
characteristics, etc., that are candidates to be considered as instruments and yet there is no way to determine which
one(s) is(are) valid. Using a large pool increases the chance of finding at least one that is valid but at the same time,
induces the possibility of including invalid ones. The proposed method solves this conundrum.

Our proposed method is similar to that proposed in [28] for estimating causal effects when some instruments are
possibly invalid. [28] also considers a union method but their context and process are different from the present paper. In
their paper, the goal is to obtain a confidence interval of some causal effect. They also assume a pool of N instruments
with no more than s∗ valid (in our notations). For each set of s∗ − 1 instruments, they form confidence interval of the
causal effect. They then take the union of confidence intervals over all

(
N

s∗−1

)
sets of instruments. On the contrary, our

method first creates the partial identification bound using each instrument, then find the union of bounds from every set
of N − s∗ + 1 instruments. In [28], the interval is narrowed by pretesting and eliminating possibly invalid instruments.
In our paper, no tests are used, instead, we take the intersection of the

(
N

N−s∗+1

)
union bounds.

There are two cautionary notes to be made about the proposed method. The first is that it is advisable not to include too
many instruments, particularly highly dubious ones. The goal of the proposed method is to create bounds that identify
the prevalence robust to invalid instruments. However, if we add mostly invalid instruments, L will increase without
corresponding increase in a. This will result in the increase in the number of instruments, L− a+ 1, leading to a wide
confidence bound in the proposed method. Therefore, a balance must be struck as to how many and what instruments
should be included as candidates. Obviously, we should include as many as needed so we have comfort that some
among the pool of candidates would be valid. Our simulations and empirical example suggest that just a few candidate
instruments would suffice.

Second, the proposed method is not immune to the problem of weak instrumental variables. A weak instrumental
variable is one that is not informative about the non-response process. Instrumental variable bounds based on weak
instruments may be very wide and not much different from the worst case bounds. Therefore, we must also be judicious
about the choice of instruments. Fortunately, the strength of an instrument is a testable hypothesis. We demonstrated a
way this can be done in the empirical study (Table 3).

In conclusion, the proposed approach is useful for providing HIV prevalence estimates in population-based surveys
where non-response is a ubiquitous phenomenon and little is known about the causes of the non-response.
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Table 1: Partial identification of E(Y ) with L = 5 instruments and s = 3 valid instruments with E(Y ) fixed at 0.15.
Results are stratified by average non-response rate 1− E(D) = 0.1 or 0.3; instruments either all strong or a mixture of
strong + weak; the last L− s instruments either weakly or strongly violate (4); and mild or moderate selection bias.

Instrument Non-response Selection Imputation Worst case IV
Strength rate bias bounds bounds

Strong 0.1 Mild Coverage 0.985 1 0.972
Lower CI 0.119 0.114 0.123
Upper CI 0.162 0.262 0.218

Width 0.043 0.148 0.095

Strong + Weak 0.1 Mild Coverage 1 1 0.868
Lower CI 0.125 0.121 0.127
Upper CI 0.169 0.266 0.248

Width 0.044 0.145 0.121

Strong 0.3 Mild Coverage 0.075 1 1
Lower CI 0.095 0.084 0.108
Upper CI 0.137 0.434 0.323

Width 0.042 0.35 0.216

Strong + Weak 0.3 Mild Coverage 0.078 1 1
Lower CI 0.088 0.072 0.098
Upper CI 0.134 0.42 0.287

Width 0.045 0.349 0.189

Strong 0.1 Moderate Coverage 0.003 1 1
Lower CI 0.091 0.088 0.11
Upper CI 0.129 0.234 0.201

Width 0.039 0.146 0.092

Strong + Weak 0.1 Moderate Coverage 0.118 1 1
Lower CI 0.102 0.098 0.116
Upper CI 0.142 0.239 0.207

Width 0.04 0.141 0.091

Strong 0.3 Moderate Coverage 0 1 1
Lower CI 0.05 0.046 0.07
Upper CI 0.081 0.388 0.287

Width 0.031 0.342 0.218

Strong + Weak 0.3 Moderate Coverage 0 1 1
Lower CI 0.065 0.058 0.083
Upper CI 0.1 0.399 0.313

Width 0.035 0.341 0.23
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Table 2: Observed proportions of HIV positive among the tested in 2007 Zambia DHS

Women Men
Age Observed Number Observed Number

HIV prevalence HIV prevalence
All 0.161 5713 0.123 5163

15-19 0.058 1256 0.035 1109
20-24 0.119 1119 0.053 830
25-29 0.198 1102 0.115 772
30-34 0.258 841 0.174 746
35-39 0.250 588 0.223 594
40-44 0.182 434 0.240 390
45-49 0.122 373 0.183 318
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Table 3: Relationship between HIV testing and some possible instrument variables

(a): Women
D 0 1
Variable N Percent N Percent Test
iv.lan 1695 5713 χ2 = 24.706∗∗∗

... 0 727 42.9% 2845 49.8%

... 1 968 57.1% 2868 50.2%
iv.firstday 1695 5713 χ2 = 22.774∗∗∗

... 0 1094 64.5% 3315 58%

... 1 601 35.5% 2398 42%
iv.interviewer 1433 5713 χ2 = 28.929∗∗∗

... 0 74 5.2% 256 4.5%

... 1 190 13.3% 807 14.1%

... 2 695 48.5% 2369 41.5%

... 3 474 33.1% 2281 39.9%
iv.mon 1695 5713 χ2 = 82.634∗∗∗

... 0 311 18.3% 1688 29.5%

... 1 1384 81.7% 4025 70.5%
iv.doa 1695 5713 χ2 = 14.097∗∗∗

... 0 688 40.6% 2616 45.8%

... 1 1007 59.4% 3097 54.2%
Statistical significance markers: * p<0.1; ** p<0.05; *** p<0.01

(b): Men
D 0 1
Variable N Percent N Percent Test
iv.lan 1983 5163 χ2 = 160.186∗∗∗

... 0 739 37.3% 2789 54%

... 1 1244 62.7% 2374 46%
iv.firstday 1983 5163 χ2 = 4.267∗∗

... 0 1251 63.1% 3118 60.4%

... 1 732 36.9% 2045 39.6%
iv.interviewer 1339 5161 χ2 = 13.453∗∗∗

... 0 167 12.5% 583 11.3%

... 1 62 4.6% 373 7.2%

... 2 493 36.8% 1791 34.7%

... 3 617 46.1% 2414 46.8%
iv.mon 1983 5163 χ2 = 200.984∗∗∗

... 0 293 14.8% 1621 31.4%

... 1 1690 85.2% 3542 68.6%
iv.doa 1983 5163 χ2 = 60.931∗∗∗

... 0 650 32.8% 2216 42.9%

... 1 1333 67.2% 2947 57.1%
Statistical significance markers: * p<0.1; ** p<0.05; *** p<0.01
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Table 4: 95% confidence intervals for HIV prevalence estimates in 2007 Zambia DHS

(a) Women

Age Unadjusted Imputation Worst case IV
bounds bounds

All LCI 0.153 0.153 0.118 0.123
UCI 0.169 0.169 0.361 0.339

Width 0.016 0.016 0.243 0.216

15-19 LCI 0.038 0.041 0.029 0.023
UCI 0.078 0.073 0.305 0.274

Width 0.04 0.032 0.276 0.251

20-24 LCI 0.099 0.105 0.073 0.076
UCI 0.139 0.137 0.36 0.331

Width 0.04 0.032 0.287 0.255

25-29 LCI 0.181 0.185 0.142 0.147
UCI 0.216 0.213 0.392 0.383

Width 0.035 0.028 0.25 0.236

30-34 LCI 0.237 0.239 0.187 0.202
UCI 0.279 0.272 0.44 0.401

Width 0.042 0.033 0.253 0.199

35-39 LCI 0.223 0.236 0.174 0.178
UCI 0.278 0.278 0.443 0.408

Width 0.055 0.042 0.269 0.23

40-44 LCI 0.151 0.163 0.12 0.131
UCI 0.212 0.211 0.391 0.342

Width 0.061 0.048 0.271 0.211

45-49 LCI 0.09 0.1 0.072 0.073
UCI 0.155 0.151 0.333 0.315

Width 0.065 0.051 0.261 0.242

(b) Men

Unadjusted Imputation Worst case IV
bounds bounds

0.116 0.118 0.084 0.087
0.13 0.133 0.375 0.322
0.014 0.015 0.291 0.235

0.018 0.021 0.014 0.011
0.051 0.045 0.32 0.278
0.033 0.024 0.306 0.267

0.034 0.039 0.024 0.025
0.073 0.067 0.352 0.317
0.039 0.028 0.328 0.292

0.097 0.105 0.068 0.085
0.132 0.129 0.406 0.358
0.035 0.024 0.338 0.273

0.156 0.171 0.112 0.124
0.192 0.197 0.425 0.386
0.036 0.026 0.313 0.262

0.199 0.211 0.145 0.154
0.246 0.246 0.459 0.378
0.047 0.035 0.314 0.224

0.212 0.222 0.163 0.168
0.268 0.262 0.455 0.413
0.056 0.04 0.292 0.245

0.153 0.17 0.116 0.129
0.211 0.214 0.431 0.382
0.058 0.044 0.315 0.253
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Supplementary material

In this supplement, we provide results for additional materials and clarifications.

S.1 Bounds using instruments

We assume for each individual in the population of interest, an outcome variable Y is measurable. Suppose we are
interested in the population mean of Y , E(Y ). In general we may also be interested in E(Y |X) for some covariates
X , but for brevity, we focus our discussion in the next two sections on estimating E(Y ) since the treatment for the
case with covariates is similar. Suppose a random sample of n is drawn from the population and in this sample, Y is
observed only in a subset of the sample. Let D be a binary variable such that D = 1 if Y is observed and 0 otherwise.
Using the law of iterated expectations, we can write

E(Y ) = E(Y |D = 1)P(D = 1) + E(Y |D = 0)P(D = 0). (S.1)

The sampling process identifies E(Y |D = 1), P(D = 1) and P(D = 0) = 1− P(D = 1) but there is no information on
E(Y |D = 0) unless we make strong assumptions about the joint distribution of Y and D. Let K0,K1 be, respectively,
the lower and upper bounds of Y . Furthermore, write µ ≡ E(Y ), µd· ≡ E(Y |D = d). The worst case partial
identification bounds [15] for µ are

(LB,UB) = (µ1·P(D = 1) +K0P(D = 0), µ1·P(D = 1) +K1P(D = 0)). (S.2)

The worst case bounds (S.2) are guaranteed to identify E(Y ) by construction. However, they are often criticised for
being too wide to be informative. The worst case bounds can be improved if additional assumptions are made. Let V be
an instrumental variable with discrete values v ∈ V , such that,

P(D = d|V = v1) ̸= P(D = d|V = v2), (S.3)

and
P(Y ) = P(Y |V = v1) = P(Y |V = v2), (S.4)

for d = 0, 1, all values v1, v2 ∈ V and v1 ̸= v2. Write µ·v ≡ E(Y |V = v) and µdv ≡ E(Y |D = d, V = v). Since
(S.4) implies E(Y |V = v) = E(Y ) = µ, it follows that [18], ∀v ∈ V ,

µ1vP(D = 1|V = v) +K0P(D = 0|V = v) ≤ µ·v ≤ µ1vP(D = 1|V = v) +K1P(D = 0|V = v).

The inequalities imply

µ ∈ ∩
v∈V

[µ1vP(D = 1|V = v) +K0P(D = 0|V = v), µ1vP(D = 1|V = v) +K1P(D = 0|V = v)]

⇒ LBV ≡ sup
v∈V

{µ1vP(D = 1|V = v) +K0P(D = 0|V = v)} ≤ µ

≤ inf
v∈V

{µ1vP(D = 1|V = v) +K1P(D = 0|V = v)} ≡ UBV ,
(S.5)

where (LBV ,UBV ) gives a set of IV lower and upper bounds for µ. It is straightforward to see that the IV bounds
are guaranteed to lie within the worst case bounds, hence if V is observed for all individuals in the sample, a set of
tighter bounds than those given by the worst case bounds can be achieved. Notice that in order for the IV bounds
to work, assumptions (S.3) and (S.4) must both be satisfied. Assumption (S.4) is a necessary condition; violation of
(S.4) gives an invalid instrument, which may lead to bounds that fail to identify the quantity of interest. Violation of
assumption (S.3) gives a weak instrument [29]. While using a weak instrument does not lead to invalid inferences,
the bounds (S.5) become uninformative. To see this last point, suppose (S.4) is satisfied but (S.3) is not, such that
P(D = d|V = v) = P(D = d) for all v ∈ V; then the left hand of the inequality (S.5) becomes

sup
v∈V

{µ1v}P(D = 1) +K0P(D = 0) = sup
v∈V

{µ1·}P(D = 1) +K0P(D = 0)

= µ1·P(D = 1) +K0P(D = 0),

which is identical to the lower worst case bound (S.2). Similarly, the right hand side of (S.5) becomes the upper worst
case bound. The observed data on D, however, allow us to verify whether an instrument is weak via (S.3).

In practice, more than one instrument is usually used in a particular study [see, e.g., 17, 21]. Suppose l candidate
instruments are considered for reducing the width of the worst case bounds. Define {V1, · · · , Vt} for any arbitrary set
of t ≥ 1 instruments. Suppose there are t = L > 1 instruments such that Vl, l = 1, · · · , L all satisfy (S.3) and (S.4).
Write for Vl, the bounds (LBVl

,UBVl
). Then µ must also lie in the “intersection" of the bounds [19]:

(LBIN,UBIN) = ∩
Vl,l=1,··· ,L

(LBVl
,UBVl

) = ( sup
v∈Vl

LBVl
, inf
v∈Vl

UBVl
). (S.6)
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Even though the IV and intersection bounds provide refinements on the worst case bounds, these refinements are
achieved at the expense of having to identify instrumental variables that satisfy assumptions (S.3) together with (S.4). It
is well known that valid and informative instruments are difficult to find. More importantly, assumption (S.4) is not
verifiable, and hence in practice, these bounds are anchored on our beliefs that the assumptions are satisfied. If even one
of the L instruments is invalid, the bounds would fail to identify E(Y ). This problem where some of the instruments
may be invalid is well known in the casual inference literature. Our remedy is to create union bounds:

(LBUN,UBUN) = ∪
Vl,l=1,··· ,L

(LBVl
,UBVl

) = ( inf
v∈Vl

LBVl
, sup
v∈Vl

UBVl
). (S.7)

It is trivial to see that (LBUN,UBUN) identifies E(Y ) as long as at least one of the candidate instruments is valid. To
reduce the width of the union bounds, we make the assumption that the true number of valid instruments, s is known to
satisfy s > a ≥ 1 for some known a. Under this assumption, each subset of (L− a+ 1) instruments must contain at
least one valid instrument. Hence, the union bound formed by each subset is guaranteed to identify E(Y ). For any two
sets of bounds that both include E(Y ), their intersection must be non-empty, and also correctly identify E(Y ). We
therefore propose to find the intersection of all union bounds formed with any (L− a+ 1) instruments among the L
instruments, because it will also identify E(Y ) but be no longer than any of these union bounds.

S.2 Confidence intervals

Applying the bounds empirically incurs uncertainty and this uncertainty can be incorporated in the form of confidence
intervals. Let (LB,UB) denote a set of generic theoretical lower and upper IV bounds for µ. Let (L̂B, ÛB) be any
empirical estimate of (LB,UB). A confidence interval should have a high asymptotic probability of containing both
(LB,UB) or µ. Here, we focus on finding an approximate b0 × 100 percent for µ. An approximate b0 × 100 percent
confidence interval for (LB,UB) is simply of the form (L̂B − z(1−b0)/2ŜELB, ÛB + z(1−b0)/2ŜEUB), where z(1−b0)/2

is the upper (1− b0)/2× 100 percentile of the standard normal distribution, SE represents standard error and ŜE its
sample analogue. As pointed out by [22], this interval would be too wide for µ. In fact, since (LB,UB) is a set of
bounds and if we are interested in µ, then it will be nearer to one of L̂B or ÛB but not both simultaneously. Hence, they
suggested the following bounds† :

(L̂B − CnŜELB, ÛB + CnŜEUB)

such that Cn is determined by

Φ

(
Cn +

ÛB − L̂B

max(ŜELB, ŜEUB)

)
− Φ(−Cn) = b0,

where Φ is the standard normal CDF. For example, if b0 is 0.95 such that we are interested in approximate 95%
confidence intervals, then the value of Cn approaches 1.64 when ÛB − L̂B is large and it approaches 1.96 when
ÛB − L̂B is near zero. Since ŜELB, ŜEUB are extremely difficult to find analytically in all practical cases, following
[30], we resort to bootstrapping. We sample with replacement from the data and we denote a generic bootstrap sample
(d∗i , v

∗
1,i, · · · , v∗L,i, y

∗
i · d∗i ), where i = 1, · · · , n is the index for individuals. Using each bootstrap sample, we find

(L̂B
∗
, ÛB

∗
) and from B bootstrap samples, we obtain ŜELB and ŜEUB.

S.3 Simulations

In this section we describe additional simulation results. We use a similar set-up of the simulation study in the main
paper. We assume the response Y is binary. We fix the values of s and L at 3 and 5, respectively. We only consider
binary 0-1 instruments; The valid instruments are generated by a multivariate binary distribution, MVB(µs,Σs×s)
with µs = 0.5 × 1s and Σs×s = (σjj′), j, j

′ = 1, · · · , s, where σjj = 1 and for ρ1 = σjj′ , j ̸= j′, we consider
two choices of ρ1: 0 and 0.3. The first choice corresponds to the situation when all valid instruments are mutually
independent, while the second choice assumes a correlation of 0.3 between each pair of instruments. We do not
believe a high correlation between instruments to be a realistic situation since if two instruments are highly correlated
there is no reason to use both. The invalid instruments are generated independently of the valid instruments using a
MVB(µL−s,Σ(L−s)×(L−s)), with µL−s = 0.5× 1L−s and Σ(L−s)×(L−s) = (σjj′), j, j

′ = 1, · · · , (L− s). We also
use the same two choices of 0 and 0.3 for ρ2 = σjj′ , j ̸= j′ between any two invalid instruments.

†Our expressions differ from those in equations (6) and (7) of [22] by a factor of
√
n because they use the notation of σ̂·/

√
n to

denote standard error.
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We generate Y using a logistic model

logitP(Y = 1) = b0 + b11V1 + · · ·+ b1LVL, (S.8)

where the coefficients b1 = (b11, · · · , b1L)T give the association between the instruments and Y . A non-zero value
of b1j induces an association and therefore renders the instrument invalid. We use two different combinations for b1:

b1 = (

s︷ ︸︸ ︷
0, · · · , 0,

(L−s)︷ ︸︸ ︷
1, · · · , 1)T ; and b1 = (

s︷ ︸︸ ︷
0, · · · , 0,

(L−s)︷ ︸︸ ︷
4, · · · , 4)T . For both situations, we assume without loss of generality

the first s instruments are valid while the remaining L − s are invalid. In the former, (4) is weakly violated by the
invalid instruments while the violation of (4) is strong for the latter.

The non-response indicator D is generated using another logistic model

logitP(D = 1) = c0 + c11V1 + · · ·+ c1LVL + cY Y. (S.9)

The coefficients c1 = (c11, · · · , c1L)T give the association between each instrument and D. We consider two situations,
(a) Strong instruments: c1 = (5, · · · , 5) and (b) Strong + weak instruments: s coefficients are randomly given a value
of 5 and the remaining L − s are given a value of 0.5. The coefficient cY is used to model the association of D to
the outcome Y . When cY = 0, then there is no selection biased when conditioned on the observed covariates. We
consider two choices of cY = −0.1||c1|| and −0.3||c1||, where the symbol || · || stands for the sum of the coefficients
c11, ..., c1L. We use negative association to reflect that in practice, we expect those who are HIV positive are less likely
to have an HIV test. These two values for cY correspond to weak to moderate associations between Y and D. We use
c0 to calibrate the average non-response rate, 1− E(D = 1), to be 0.1, 0.3, and 0.5 over the simulations.

Since Y is binary, the bounds for Y are (K0,K1) = (0, 1). Throughout the study, we use a sample size of n = 1000
observations for each simulation run. We use 1000 simulation runs for each combination of parameters and 100
bootstraps to estimate the standard errors of the partial identification bounds.

Tables 1(a)-(c) give the simulation results for E(D) = 0.1− 0.3, respectively, when Y is weakly negatively associated
with D. The corresponding results when Y is moderately associated with D are given in Tables 1(d)-(f).

We consider three different methods for estimating E(Y ): Imputation, partial identification bounds without any
assumptions (worst case bounds) and partial identification bounds using instrument variables. For the imputation
method, we use all the observed variables in the simulation study, i.e., the instruments. For partial identification, we
used the worst case bounds that do not make any assumptions, and also the method proposed in this article.

Each combination of parameters corresponds to four rows of results. The first row shows the proportion of times, out
of 1000 simulations, the approximate 95 percent confidence intervals include E(Y ). The second row gives the lower
confidence limits, averaged over 1000 simulations. The third row gives the upper confidence limits, averaged over 1000
simulations. The fourth row gives the average width of the confidence intervals. The results are given in Tables S.1
(a)-(f).
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Table S.1: Partial identification of E(Y ) with L = 5 instruments and s = 3 valid instruments; E(Y ) fixed at 0.15;
ρ = ρ1 = ρ2 gives correlation between pairs of valid (invalid) instruments; instruments either all strong or a mixture of
strong + weak; the last L− s instruments either weakly or strongly violate (4).

(a): Average non-response rate 1− E(D) = 0.1; Y weakly associated with D

ρ Instrument Violation Imputation Worst case IV
Strength of (4) bounds bounds

0 Strong Weak Coverage 0.985 1 0.972
Lower CI 0.119 0.114 0.123
Upper CI 0.162 0.262 0.218

Width 0.043 0.148 0.095

0 Strong Strong Coverage 1 1 1
Lower CI 0.125 0.124 0.126
Upper CI 0.175 0.28 0.224

Width 0.049 0.156 0.098

0 Strong + Weak Weak Coverage 1 1 0.868
Lower CI 0.125 0.121 0.127
Upper CI 0.169 0.266 0.248

Width 0.044 0.145 0.121

0 Strong + Weak Strong Coverage 1 1 0.999
Lower CI 0.124 0.122 0.123
Upper CI 0.169 0.27 0.265

Width 0.045 0.148 0.142

0.3 Strong Weak Coverage 0.988 1 0.893
Lower CI 0.115 0.111 0.114
Upper CI 0.168 0.269 0.226

Width 0.053 0.157 0.111

0.3 Strong Strong Coverage 1 1 0.998
Lower CI 0.081 0.081 0.08
Upper CI 0.22 0.356 0.25

Width 0.139 0.275 0.17

0.3 Strong + Weak Weak Coverage 1 1 0.886
Lower CI 0.122 0.119 0.124
Upper CI 0.168 0.267 0.244

Width 0.046 0.149 0.12

0.3 Strong + Weak Strong Coverage 1 1 1
Lower CI 0.124 0.124 0.125
Upper CI 0.173 0.281 0.252

Width 0.05 0.157 0.127
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(b): Average non-response rate 1− E(D) = 0.3; Y weakly associated with D

ρ Instrument Violation Imputation Worst case IV
Strength of (4) bounds bounds

0 Strong Weak Coverage 0.075 1 1
Lower CI 0.095 0.084 0.108
Upper CI 0.137 0.434 0.323

Width 0.042 0.35 0.216

0 Strong Strong Coverage 0.959 1 0.991
Lower CI 0.114 0.105 0.123
Upper CI 0.157 0.46 0.341

Width 0.043 0.355 0.218

0 Strong + Weak Weak Coverage 0.078 1 1
Lower CI 0.088 0.072 0.098
Upper CI 0.134 0.42 0.287

Width 0.045 0.349 0.189

0 Strong + Weak Strong Coverage 1 1 0.982
Lower CI 0.128 0.126 0.134
Upper CI 0.172 0.478 0.447

Width 0.044 0.353 0.312

0.3 Strong Weak Coverage 0.166 1 0.999
Lower CI 0.098 0.087 0.117
Upper CI 0.142 0.438 0.275

Width 0.044 0.351 0.158

0.3 Strong Strong Coverage 0.825 1 0.974
Lower CI 0.113 0.105 0.128
Upper CI 0.156 0.449 0.275

Width 0.043 0.345 0.147

0.3 Strong + Weak Weak Coverage 0.437 1 1
Lower CI 0.098 0.078 0.114
Upper CI 0.149 0.424 0.223

Width 0.051 0.346 0.11

0.3 Strong + Weak Strong Coverage 0.71 1 0.997
Lower CI 0.101 0.078 0.114
Upper CI 0.153 0.424 0.222

Width 0.052 0.346 0.107
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(c): Average non-response rate 1− E(D) = 0.5; Y weakly associated with D

ρ Instrument Violation Imputation Worst case IV
Strength of (4) bounds bounds

0 Strong Weak Coverage 0.072 1 1
Lower CI 0.077 0.061 0.085
Upper CI 0.127 0.607 0.472

Width 0.049 0.546 0.387

0 Strong Strong Coverage 0.624 1 1
Lower CI 0.105 0.086 0.111
Upper CI 0.151 0.633 0.498

Width 0.046 0.547 0.386

0 Strong + Weak Weak Coverage 0.314 1 1
Lower CI 0.083 0.061 0.086
Upper CI 0.142 0.606 0.454

Width 0.059 0.545 0.368

0 Strong + Weak Strong Coverage 0.723 1 1
Lower CI 0.106 0.079 0.111
Upper CI 0.157 0.624 0.514

Width 0.051 0.545 0.403

0.3 Strong Weak Coverage 0.137 1 1
Lower CI 0.081 0.064 0.098
Upper CI 0.133 0.607 0.409

Width 0.052 0.543 0.311

0.3 Strong Strong Coverage 0.459 1 1
Lower CI 0.1 0.079 0.116
Upper CI 0.149 0.629 0.429

Width 0.049 0.55 0.313

0.3 Strong + Weak Weak Coverage 0.368 1 1
Lower CI 0.082 0.061 0.096
Upper CI 0.144 0.609 0.49

Width 0.062 0.548 0.394

0.3 Strong + Weak Strong Coverage 0.669 1 0.999
Lower CI 0.098 0.072 0.112
Upper CI 0.154 0.618 0.502

Width 0.056 0.546 0.39
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(d): Average non-response rate 1− E(D) = 0.1; Y moderately associated with Dρ Instrument Violation Imputation Worst case IV
Strength of (4) bounds bounds

0 Strong Weak Coverage 0.003 1 1
Lower CI 0.091 0.088 0.11
Upper CI 0.129 0.234 0.201

Width 0.039 0.146 0.092

0 Strong Strong Coverage 0.88 1 1
Lower CI 0.114 0.108 0.113
Upper CI 0.156 0.254 0.21

Width 0.042 0.146 0.097

0 Strong + Weak Weak Coverage 0.118 1 1
Lower CI 0.102 0.098 0.116
Upper CI 0.142 0.239 0.207

Width 0.04 0.141 0.091

0 Strong + Weak Strong Coverage 0.403 1 1
Lower CI 0.108 0.095 0.105
Upper CI 0.151 0.237 0.194

Width 0.043 0.143 0.089

0.3 Strong Weak Coverage 0.161 1 0.993
Lower CI 0.102 0.099 0.115
Upper CI 0.142 0.244 0.194

Width 0.04 0.146 0.079

0.3 Strong Strong Coverage 0.974 1 0.999
Lower CI 0.098 0.094 0.098
Upper CI 0.179 0.29 0.213

Width 0.081 0.195 0.115

0.3 Strong + Weak Weak Coverage 0.662 1 0.982
Lower CI 0.11 0.108 0.112
Upper CI 0.151 0.255 0.231

Width 0.041 0.147 0.119

0.3 Strong + Weak Strong Coverage 0.929 1 1
Lower CI 0.109 0.104 0.108
Upper CI 0.161 0.266 0.224

Width 0.052 0.162 0.116
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(e): Average non-response rate 1− E(D) = 0.3; Y moderately associated with D

ρ Instrument Violation Imputation Worst case IV
Strength of (4) bounds bounds

0 Strong Weak Coverage 0 1 1
Lower CI 0.05 0.046 0.07
Upper CI 0.081 0.388 0.287

Width 0.031 0.342 0.218

0 Strong Strong Coverage 0 1 1
Lower CI 0.079 0.069 0.098
Upper CI 0.117 0.413 0.302

Width 0.038 0.344 0.204

0 Strong + Weak Weak Coverage 0 1 1
Lower CI 0.065 0.058 0.083
Upper CI 0.1 0.399 0.313

Width 0.035 0.341 0.23

0 Strong + Weak Strong Coverage 0.006 1 1
Lower CI 0.088 0.074 0.106
Upper CI 0.129 0.423 0.326

Width 0.041 0.349 0.22

0.3 Strong Weak Coverage 0 1 1
Lower CI 0.067 0.062 0.097
Upper CI 0.102 0.404 0.252

Width 0.035 0.342 0.155

0.3 Strong Strong Coverage 0 1 0.999
Lower CI 0.085 0.077 0.115
Upper CI 0.123 0.424 0.257

Width 0.038 0.347 0.143

0.3 Strong + Weak Weak Coverage 0 1 1
Lower CI 0.063 0.057 0.091
Upper CI 0.099 0.407 0.212

Width 0.036 0.35 0.122

0.3 Strong + Weak Strong Coverage 0 1 1
Lower CI 0.069 0.059 0.099
Upper CI 0.108 0.404 0.21

Width 0.039 0.345 0.111
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(f): Average non-response rate 1− E(D) = 0.5; Y moderately associated with D

ρ Instrument Violation Imputation Worst case IV
Strength of (4) bounds bounds

0 Strong Weak Coverage 0 1 1
Lower CI 0.029 0.026 0.044
Upper CI 0.054 0.57 0.44

Width 0.025 0.544 0.396

0 Strong Strong Coverage 0 1 1
Lower CI 0.054 0.045 0.072
Upper CI 0.087 0.588 0.455

Width 0.033 0.543 0.383

0 Strong + Weak Weak Coverage 0 1 1
Lower CI 0.041 0.037 0.061
Upper CI 0.071 0.582 0.448

Width 0.03 0.545 0.386

0 Strong + Weak Strong Coverage 0 1 1
Lower CI 0.052 0.04 0.069
Upper CI 0.089 0.584 0.481

Width 0.038 0.543 0.412

0.3 Strong Weak Coverage 0 1 1
Lower CI 0.04 0.037 0.065
Upper CI 0.069 0.575 0.382

Width 0.029 0.539 0.316

0.3 Strong Strong Coverage 0 1 1
Lower CI 0.056 0.05 0.088
Upper CI 0.09 0.595 0.394

Width 0.034 0.545 0.306

0.3 Strong + Weak Weak Coverage 0 1 1
Lower CI 0.037 0.034 0.06
Upper CI 0.067 0.583 0.464

Width 0.029 0.548 0.404

0.3 Strong + Weak Strong Coverage 0 1 1
Lower CI 0.054 0.046 0.085
Upper CI 0.09 0.587 0.472

Width 0.036 0.541 0.387
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S.4 HIV prevalence using 2007 Zambia DHS

We use the 2007 Zambia DHS data to study non-response adjustment using partial identification bounds. We compare
the results to conventional non-response adjustment using imputation. For partial identification, we consider worst case
bounds without making any assumptions and also instrumental variable bounds. For the instrumental variable bounds,
we use six candidate instrumental variables: iv.lan ( whether the language used in the questionnaire or interview is
the same as the respondent’s language, yes vs. no), iv.firstday (whether the interview was conducted on the first day
of the interviews, yes vs. no), iv.interviewer (number of interviews the interviewer has performed, < 50, 50 − 100,
100− 200, > 200), iv.mon (whether the interview was carried out during a month of harvest or planting, yes vs. no),
iv.doa (whether the respondent has known someone who has died of AIDS yes vs. no).

The standard non-response adjustment is an imputation analysis on those who are not tested to adjust for potential
biases [27]. The individuals in the survey can be classified into one of three groups: (a) those who participated in the
household and individual surveys and tested (b) those who participated in the household and individual surveys but not
tested and (c) those who only participated in the household surveys. For those in groups (b) and (c), their HIV test
results are absent.

For individuals in groups (b) and (c), their probability of HIV is predicted based on multivariate models using data from
those who were tested. A logistic regression model is used to calculate HIV probability separately for groups (b) and (c).
For group (b), the variables used in the model include the following household survey variables: age, education, wealth
quintile, residence, and geographic region, as well as the following variables from the individual survey: marital union,
current work status, media exposure, religion, STI or STI symptoms in past 12 months, cigarette smoking/tobacco
use, age at first sex, number of sex partners in past 12 months, higher-risk sex in past 12 months, condom use at last
sex in past 12 months, and willingness to care for a family member with AIDS. Prediction for group (c) uses only the
household variables. The models are used to impute HIV statuses for individuals in groups (b) and (c) and the results
are combined with those in group (a) to form adjusted HIV prevalence estimates for the population.

For the partial identification bounds method proposed in this paper, we require instruments. We consider 5 candidate
instruments: iv.lan ( whether the language used in the questionnaire or interview is the same as the respondent’s
language, yes vs. no), iv.firstday (whether the interview was conducted on the first day of the interviews, yes vs. no),
iv.interviewer (number of interviews the interviewer has performed, < 50, 50 − 100, 100 − 200, > 200), iv.mon
(whether the interview was carried out during a month of harvest or planting, yes vs. no), iv.doa (whether the respondent
has known someone who has died of AIDS yes vs. no). We assume a = 3, that is, at least 3 out of the 5 candidates are
valid.

For all estimates, the data are weighted by survey weights. For individuals in group (a), HIV weights were used, for
individuals in group (b), the individual survey weights were used and for those in group (c), household survey weights
were used.

We examine HIV prevalence between genders, and across different demographic, socio-economic and behavioural
groups (Table S.2). Overall prevalence for women (16.1%) is higher than men (12.3%). In addition, this difference is
consistent across all strata groups we examined. There are also significant differences among groups within a strata.
For example, women at the lowest wealth quintile has a prevalence of only 8.8% compared to those in the highest two
quintiles with over 20% prevalence.

Our results (Table S.3) show that across all scenarios, the imputation method gives very similar results to the unadjusted
results. The partial identification bounds always give confidence intervals that are much wider. Between the two partial
identification methods, the worst case is always less precise than the method proposed in this paper. The improved
precision of the proposed method comes from a big reduction of the upper confidence interval. The improvement ranges
from about 10% to 30%.
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Table S.2: Observed proportions of HIV positive among the tested in 2007 Zambia DHS

Women Men
Observed Number Observed Number

HIV prevalence HIV prevalence
All 0.161 5713 0.123 5163

Age 15-19 0.058 1256 0.035 1109
20-24 0.119 1119 0.053 830
25-29 0.198 1102 0.115 772
30-34 0.258 841 0.174 746
35-39 0.25 588 0.223 594
40-44 0.182 434 0.24 390
45-49 0.122 373 0.183 318

Religion Catholic 0.142 1086 0.116 1080
Protestant 0.167 4525 0.125 3921

Location Large city 0.247 450 0.205 439
Small city 0.261 424 0.159 339

Town 0.202 1662 0.126 1410
Countryside 0.11 3177 0.095 2975

Wealth quintile 1st 0.088 903 0.07 938
2nd 0.096 987 0.098 771
3rd 0.133 1122 0.104 1044
4th 0.229 1387 0.18 1271
5th 0.216 1314 0.138 1139

Education ≤ 6 0.123 2516 0.085 1647
> 6 0.191 3197 0.14 3516

Married No 0.183 2269 0.083 2260
Yes 0.147 3444 0.155 2901

Partners last 12m 0 0.153 1440 0.066 1223
1 0.161 4188 0.127 3113

1+ 0.316 82 0.199 815

High risk sex last 12m No 0.151 4903 0.118 3683
Yes 0.231 807 0.136 1468

Condom use last sex No 0.15 5141 0.111 4260
Yes 0.268 569 0.179 898

STD last 12m No 0.153 5428 0.113 4878
Yes 0.339 264 0.306 269

Age first sex Never 0.037 726 0.035 674
≤ 15 0.173 1905 0.13 1652
> 15 0.183 3080 0.141 2834

Sex last 12m No 0.153 1440 0.066 1223
Yes 0.164 4270 0.141 3928

Ever tested for HIV No 0.132 3339 0.108 3945
Yes 0.206 2349 0.173 1216
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Table S.3: 95% confidence intervals for HIV prevalence estimates in 2007 Zambia DHS

Women

Unadjusted Imputation Worst case IV
bounds bounds

All LCI 0.153 0.152 0.118 0.123
UCI 0.169 0.169 0.361 0.339

Width 0.016 0.017 0.243 0.216

Age 15-19 LCI 0.038 0.041 0.029 0.023
UCI 0.078 0.073 0.305 0.274

Width 0.04 0.032 0.276 0.251

20-24 LCI 0.099 0.105 0.073 0.076
UCI 0.139 0.136 0.36 0.331

Width 0.04 0.031 0.287 0.255

25-29 LCI 0.181 0.186 0.142 0.147
UCI 0.216 0.213 0.392 0.383

Width 0.035 0.027 0.25 0.236

30-34 LCI 0.237 0.239 0.187 0.202
UCI 0.279 0.272 0.44 0.401

Width 0.042 0.033 0.253 0.199

35-39 LCI 0.223 0.234 0.174 0.178
UCI 0.278 0.276 0.443 0.408

Width 0.055 0.042 0.269 0.23

40-44 LCI 0.151 0.163 0.12 0.131
UCI 0.212 0.211 0.391 0.342

Width 0.061 0.048 0.271 0.211

45-49 LCI 0.09 0.101 0.072 0.073
UCI 0.155 0.152 0.333 0.315

Width 0.065 0.051 0.261 0.242

Religion Catholic LCI 0.122 0.132 0.097 0.105
UCI 0.163 0.166 0.339 0.31

Width 0.041 0.034 0.242 0.205

Protestant LCI 0.159 0.158 0.127 0.136
UCI 0.175 0.171 0.341 0.325

Width 0.016 0.013 0.214 0.189

Men

Unadjusted Imputation Worst case IV
bounds bounds

0.116 0.118 0.084 0.087
0.13 0.133 0.375 0.322

0.014 0.015 0.291 0.235

0.018 0.021 0.014 0.011
0.051 0.045 0.32 0.278
0.033 0.024 0.306 0.267

0.034 0.038 0.024 0.025
0.073 0.067 0.352 0.317
0.039 0.029 0.328 0.292

0.097 0.104 0.068 0.085
0.132 0.129 0.406 0.358
0.035 0.025 0.338 0.273

0.156 0.17 0.112 0.124
0.192 0.197 0.425 0.386
0.036 0.027 0.313 0.262

0.199 0.211 0.145 0.154
0.246 0.246 0.459 0.378
0.047 0.035 0.314 0.224

0.212 0.221 0.163 0.168
0.268 0.262 0.455 0.413
0.056 0.041 0.292 0.245

0.153 0.172 0.116 0.129
0.211 0.214 0.431 0.382
0.058 0.042 0.315 0.253

0.097 0.106 0.079 0.081
0.135 0.133 0.313 0.297
0.038 0.027 0.234 0.216

0.116 0.117 0.093 0.099
0.134 0.13 0.315 0.303
0.018 0.013 0.222 0.204
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Table S.3: Continued

Women

Unadjusted Imputation Worst case IV
bounds bounds

Location Large city LCI 0.224 0.227 0.155 0.163
UCI 0.27 0.263 0.504 0.466

Width 0.046 0.036 0.349 0.303

Small city LCI 0.234 0.237 0.173 0.2
UCI 0.289 0.28 0.482 0.462

Width 0.055 0.043 0.309 0.262

Town LCI 0.184 0.187 0.146 0.154
UCI 0.221 0.215 0.388 0.369

Width 0.037 0.028 0.242 0.215

Countryside LCI 0.1 0.099 0.077 0.081
UCI 0.12 0.116 0.32 0.304

Width 0.02 0.017 0.243 0.223

Wealth quintile 1st LCI 0.068 0.072 0.052 0.056
UCI 0.108 0.103 0.315 0.303

Width 0.04 0.031 0.263 0.247

2nd LCI 0.078 0.082 0.06 0.059
UCI 0.114 0.111 0.323 0.297

Width 0.036 0.029 0.263 0.238

3rd LCI 0.113 0.112 0.087 0.088
UCI 0.153 0.144 0.351 0.315

Width 0.04 0.032 0.264 0.227

4th LCI 0.213 0.215 0.165 0.176
UCI 0.245 0.239 0.423 0.385

Width 0.032 0.024 0.258 0.209

5th LCI 0.199 0.204 0.153 0.161
UCI 0.233 0.232 0.416 0.393

Width 0.034 0.028 0.263 0.232

Education ≤ 6 LCI 0.112 0.113 0.084 0.086
UCI 0.134 0.132 0.349 0.321

Width 0.022 0.019 0.265 0.235

> 6 LCI 0.179 0.182 0.14 0.146
UCI 0.203 0.202 0.379 0.354

Width 0.024 0.02 0.239 0.208

Men

Unadjusted Imputation Worst case IV
bounds bounds

0.177 0.185 0.115 0.114
0.233 0.226 0.505 0.468
0.056 0.041 0.39 0.354

0.135 0.147 0.08 0.081
0.183 0.183 0.516 0.434
0.048 0.036 0.436 0.353

0.111 0.118 0.078 0.094
0.141 0.141 0.401 0.325
0.03 0.023 0.323 0.231

0.084 0.085 0.064 0.072
0.106 0.101 0.328 0.296
0.022 0.016 0.264 0.224

0.051 0.053 0.041 0.039
0.089 0.084 0.286 0.26
0.038 0.031 0.245 0.221

0.077 0.08 0.056 0.073
0.12 0.11 0.361 0.336
0.043 0.03 0.305 0.263

0.087 0.089 0.065 0.067
0.121 0.115 0.364 0.321
0.034 0.026 0.299 0.254

0.164 0.167 0.115 0.113
0.196 0.19 0.445 0.386
0.032 0.023 0.33 0.273

0.122 0.134 0.083 0.095
0.154 0.158 0.435 0.354
0.032 0.024 0.352 0.259

0.071 0.074 0.052 0.055
0.098 0.096 0.345 0.306
0.027 0.022 0.293 0.251

0.13 0.136 0.094 0.096
0.15 0.152 0.394 0.337
0.02 0.016 0.3 0.241
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Table S.3: Continued

Women

Unadjusted Imputation Worst case IV
bounds bounds

Married No LCI 0.171 0.171 0.138 0.141
UCI 0.195 0.192 0.359 0.345

Width 0.024 0.021 0.221 0.204

Yes LCI 0.136 0.138 0.108 0.119
UCI 0.158 0.157 0.33 0.3

Width 0.022 0.019 0.222 0.181

Partners last 12m 0 LCI 0.134 0.137 0.106 0.111
UCI 0.172 0.166 0.348 0.341

Width 0.038 0.029 0.242 0.23

1 LCI 0.151 0.153 0.122 0.128
UCI 0.17 0.169 0.338 0.311

Width 0.019 0.016 0.216 0.183

1+ LCI 0.254 0.27 0.228 0.264
UCI 0.379 0.358 0.479 0.525

Width 0.125 0.088 0.251 0.261

High risk sex last 12m No LCI 0.142 0.143 0.113 0.119
UCI 0.159 0.158 0.332 0.313

Width 0.017 0.015 0.219 0.194

Yes LCI 0.206 0.211 0.169 0.171
UCI 0.255 0.248 0.404 0.384

Width 0.049 0.037 0.235 0.213

Condom use last sex No LCI 0.142 0.142 0.113 0.118
UCI 0.159 0.157 0.332 0.315

Width 0.017 0.015 0.219 0.197

Yes LCI 0.245 0.252 0.202 0.204
UCI 0.29 0.288 0.421 0.39

Width 0.045 0.036 0.219 0.186

STD last 12m No LCI 0.145 0.146 0.116 0.122
UCI 0.161 0.16 0.333 0.313

Width 0.016 0.014 0.217 0.191

Yes LCI 0.304 0.312 0.26 0.283
UCI 0.373 0.366 0.475 0.422

Width 0.069 0.054 0.215 0.139

Men

Unadjusted Imputation Worst case IV
bounds bounds

0.071 0.074 0.057 0.059
0.094 0.091 0.29 0.278
0.023 0.017 0.233 0.219

0.143 0.147 0.116 0.12
0.167 0.164 0.337 0.32
0.024 0.017 0.221 0.2

0.047 0.052 0.037 0.037
0.086 0.08 0.305 0.282
0.039 0.028 0.268 0.245

0.116 0.12 0.093 0.099
0.138 0.138 0.319 0.302
0.022 0.018 0.226 0.203

0.174 0.181 0.15 0.159
0.224 0.217 0.351 0.33
0.05 0.036 0.201 0.171

0.108 0.11 0.085 0.087
0.127 0.126 0.32 0.31
0.019 0.016 0.235 0.223

0.119 0.122 0.101 0.103
0.154 0.148 0.307 0.286
0.035 0.026 0.206 0.183

0.104 0.105 0.082 0.088
0.119 0.118 0.306 0.291
0.015 0.013 0.224 0.203

0.162 0.166 0.133 0.137
0.196 0.191 0.358 0.332
0.034 0.025 0.225 0.195

0.105 0.107 0.083 0.089
0.121 0.12 0.307 0.289
0.016 0.013 0.224 0.2

0.272 0.281 0.235 0.238
0.34 0.329 0.453 0.447

0.068 0.048 0.218 0.209
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Table S.3: Continued

Women

Unadjusted Imputation Worst case IV
bounds bounds

Age first sex Never LCI 0.016 0.021 0.012 0.015
UCI 0.057 0.053 0.271 0.267

Width 0.041 0.032 0.259 0.252

≤ 15 LCI 0.161 0.161 0.132 0.139
UCI 0.185 0.181 0.336 0.315

Width 0.024 0.02 0.204 0.176

> 15 LCI 0.172 0.175 0.136 0.144
UCI 0.194 0.192 0.364 0.34

Width 0.022 0.017 0.228 0.196

Sex last 12m No LCI 0.134 0.137 0.106 0.111
UCI 0.172 0.166 0.348 0.341

Width 0.038 0.029 0.242 0.23

Yes LCI 0.154 0.156 0.124 0.133
UCI 0.173 0.171 0.339 0.311

Width 0.019 0.015 0.215 0.178

Ever tested for HIV No LCI 0.12 0.121 0.096 0.1
UCI 0.144 0.14 0.323 0.3

Width 0.024 0.019 0.227 0.2

Yes LCI 0.191 0.196 0.155 0.169
UCI 0.221 0.219 0.373 0.361

Width 0.03 0.023 0.218 0.192

Men

Unadjusted Imputation Worst case IV
bounds bounds

0.014 0.018 0.011 0.009
0.057 0.052 0.31 0.298
0.043 0.034 0.299 0.289

0.117 0.121 0.097 0.097
0.144 0.141 0.302 0.298
0.027 0.02 0.205 0.201

0.131 0.135 0.105 0.113
0.151 0.15 0.33 0.313
0.02 0.015 0.225 0.2

0.047 0.052 0.037 0.037
0.086 0.08 0.305 0.282
0.039 0.028 0.268 0.245

0.132 0.135 0.107 0.114
0.151 0.15 0.322 0.302
0.019 0.015 0.215 0.188

0.099 0.101 0.079 0.084
0.117 0.116 0.305 0.289
0.018 0.015 0.226 0.205

0.157 0.162 0.128 0.136
0.19 0.186 0.354 0.351

0.033 0.024 0.226 0.215
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