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Abstract 45 

Chronological age is a major risk factor for numerous diseases. However, chronological age does not 46 

capture the complex biological aging process. Biological aging can occur at a different pace in 47 

individuals of the same chronological age. Therefore, the difference between the chronological age 48 

and biologically driven aging could be more informative in reflecting health status. Metabolite levels 49 

are thought to reflect the integrated effects of both genetic and environmental factors on the rate of 50 

aging, and may thus provide a stronger signature for biological age than those previously developed 51 

using methylation and proteomics. Here, we set out to develop a metabolomic age prediction model 52 

by applying ridge regression and bootstrapping with 826 metabolites (of which 678 endogenous and 53 

148 xenobiotics) measured by an untargeted high-performance liquid chromatography mass 54 

spectrometry platform (Metabolon) in 11,977 individuals (50.2% men) from the INTERVAL study 55 

(Cambridge, UK). Participants of the INTERVAL study are relatively healthy blood donors aged 18-75 56 

years. After internal validation using bootstrapping, the models demonstrated high performance with 57 

an adjusted R2 of 0.82 using the endogenous metabolites only and an adjusted R2 of 0.83 when using 58 

the full set of 826 metabolites with age as outcome. The latter model performance could be indicative 59 

of xenobiotics predicting frailty. In summary, we developed robust models for predicting metabolomic 60 

age in a large relatively healthy population with a wide age range.  61 

Introduction 62 

Chronological age is a major risk factor for a multitude of diseases (1, 2). The biology of aging 63 

comprises complex and multifactorial processes that are influenced by genetic, lifestyle and 64 

environmental factors (3-5). Evidently, the rate of biological aging varies between individuals, as in 65 

contrast to other individuals of the same age group, wherein, some individuals are able to live to an 66 

older chronological age without age-related diseases and disability (3). This suggests that 67 

chronological age does not align with the biological aging process. For this reason, several studies have 68 

aimed to capture the signature of biological changes due to aging process by predicting its rate based 69 

on biological factors using, for example, DNA methylation (6) and proteins (7).  70 

Metabolomic profiling aims to identify small molecules that are mostly substrates or products of 71 

metabolism (metabolites). The number of metabolomics studies has increased in recent years due to 72 

major technological advances and the availability of (validated and high throughput) commercial and 73 

noncommercial analyses platforms. In addition, the current platforms have improved their capability 74 

to detect and quantify large numbers of endogenous and xenobiotic metabolites(8, 9). Since individual 75 

metabolomic profiles reflect the influences of both genetic and acquired factors, they are thought to 76 

provide a more holistic representation of biological processes, such as aging (8, 9). Furthermore, as 77 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 9, 2023. ; https://doi.org/10.1101/2023.06.03.23290933doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.03.23290933
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

metabolomic profiles are strongly affected by chronological age (4, 10) and sex (11, 12), they have 78 

been used to develop prediction models of chronological age (i.e., the metabolomic age) (13-16). 79 

However, predicting metabolomic age using metabolomics had limited success or faced 80 

methodological limitations due to several reasons. First, some studies used a relatively small sample 81 

size to predict age using hundreds or even thousands of metabolite predictors (10, 17). The inclusion 82 

of a larger number of predictors than the number of samples may cause overfitting and bias. Second, 83 

previous metabolomic age studies used targeted platforms, such as the Nightingale platform, that 84 

specifically measure a small number of lipoproteins and some low-molecular metabolites. This limits 85 

the variety of the metabolites and the information used for the prediction of age.  Third, studies may 86 

be limited by the age distribution of the cohort study. This may restrict the model to a specific age 87 

range which affects the generalizability of the model in other studies and other age groups (10). 88 

Fourth, generalizability may also be reduced if the model is developed in cohorts with an oversampling 89 

of individuals with specific disease outcomes or specific population characteristics (7, 13). Fifth, 90 

statistical methodology such as stepwise selection, have been reported to cause overfitting of the 91 

prediction model (18). Finally, it is challenging to examine the model’s validity and generalizability in 92 

external studies or different populations particularly due to the dynamic nature of metabolite levels 93 

(19-21).  94 

In this study, we aimed to develop a model to predict metabolomic age in a large healthy population 95 

with a widespread age range, using a single untargeted metabolomics platform. To attain this goal, 96 

we developed a prediction model using data from the INTERVAL study (22) (University of Cambridge, 97 

Cambridge, UK). Metabolomic profiles were available in 11,977 participants as measured using 98 

Metabolon’s (Durham, North Carolina, USA) untargeted metabolomics platform. These 99 

measurements included a broad range of endogenous and xenobiotic metabolites (n=1,363) from 100 

various biochemical pathways, thereby enabling the capture of metabolites related to a vast range of 101 

ageing effects.  102 

Methods 103 

INTERVAL Study  104 

The INTERVAL study is a prospective cohort study of approximately 50,000 participants nested within 105 

a pragmatic randomized sample of blood donors (22). Between 2012 and 2014, blood donors, aged 106 

18 years and older, were consented and recruited from 25 National Health Service Blood and 107 

Transplant (NHSBT) static donor centers across the UK. The INTERVAL study was approved by The 108 

National Research Ethics Service (11/EE/0538). Individuals with major disease (myocardial infarction, 109 
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stroke, cancer etc.) as well as those who reported being unwell or having had recent illness or infection 110 

or did not fulfill the other criteria required for blood donation (22, 23) were ineligible for the study. 111 

Therefore, participants included in the study were predominantly healthy. Participants completed 112 

online questionnaires addressing basic lifestyle and health-related information, including self-113 

reported height and weight, ethnicity, smoking status, alcohol consumption, doctor-diagnosed 114 

anemia, use of medications (hormone replacement therapy, iron supplements) and menopausal 115 

status (22). Untargeted metabolomic data were available in 11,979 individuals (age range 18 - 75). 116 

Two individuals had incorrect or missing height/weight values and were therefore excluded from the 117 

study. Thus, the final sample size for the current study was 11,977. 118 

Untargeted metabolomic measurements  119 

Untargeted metabolomic measurements were quantified at Metabolon Inc. (Durham, North Carolina, 120 

USA) using Metabolon™ Discovery HD4 platform. In brief, this process involves four independent ultra-121 

high-performance liquid chromatography mass spectrometry (UHPLC-MS/MS) platforms (24, 25). Of 122 

these platforms, two used positive ionization reverse phase chromatography, one used negative 123 

ionization reverse phase chromatography, and one used hydrophilic interaction liquid 124 

chromatography negative ionization (25). Known metabolites were annotated at Metabolon Inc. with 125 

chemical names, super pathways, sub pathways, biochemical properties, and compound identifiers 126 

from various metabolite databases. Metabolomic measurements in the INTERVAL study were 127 

conducted in three batches (n=4087, 4566, and 3326). Subsequent harmonization and quality checks 128 

were performed between the batches by Metabolon. All metabolite measurements were scaled to a 129 

median of 1. 130 

Selection of Predictors  131 

We aimed to select metabolites consistently and reliably measured by the Metabolon platform. In 132 

total 1,411 metabolites were measured in the INTERVAL study. First, we removed metabolites 133 

completely missing in at least one of the batches (n=175). Second, we excluded metabolites without 134 

annotation (unnamed metabolites) (n=258), keeping only endogenous and xenobiotic metabolites. 135 

These metabolites were excluded as they are inconsistently measured by the platform and are highly 136 

variable between batches and studies. Moreover, the lack of full annotation increases the uncertainty 137 

that we are using the same metabolite across batches and studies and leaves no secondary 138 

information for further verification. Third, we excluded metabolites measured in less than 100 139 

individuals (n=30). Fourth, to ensure that the metabolites that are used for our model are not unique 140 

for the INTERVAL study, we cross-referenced our dataset with an independent study with Metabolon 141 
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measurements. For this we used the Netherlands Epidemiology of Obesity (NEO) study, a population-142 

based (n=599) cohort study of individuals aged 45–65 years (26, 27). Based on this comparison, we 143 

additionally excluded 122 metabolites that were not detected in the NEO study. The final set of 144 

metabolites included 826 metabolites, with 678 endogenous and 148 xenobiotic metabolites that 145 

were confirmed to be regularly measured by the Metabolon platform (Figure 1). 146 

Missing value imputation 147 

Missing values were imputed using the pipeline as described in our previous work (27). In brief, 148 

endogenous metabolites were imputed by multiple imputation using chained equations method to 149 

generate five imputed datasets (m=5). For each metabolite with missing values, we used the outcome 150 

variable (i.e., age), 5-10 highly correlated related metabolites, body mass index (BMI), center number 151 

where the blood samples were collected, and the batch number to impute the missing values. 152 

Xenobiotic metabolites were imputed to zero to account for true missingness.  153 

Model Development 154 

For the development of the model, we used ridge regression (28) to reduce potential overfitting. Cross 155 

validation was performed (n=10) in each imputed dataset to calculate the optimal shrinkage term 156 

(lambda). Subsequently the mean of the lambda values was used to develop the model on the stacked 157 

imputed datasets (i.e., all 5 datasets combined as one). Accordingly, the weight of the observations in 158 

the stacked dataset was set to 1/m = 1/5 = 0.2 (20). As the outcome (age) is a continuous variable, we 159 

assessed the fit of the model by deriving the R2. As an additional sensitivity test, we used generalized 160 

additive model (GAM) to examine and calculate the R2 for the nonlinear correlation. Internal validation 161 

was performed using bootstrapping (b=100). Bootstrapping results were used for the optimization of 162 

R2 and the calculation of the mean squared error (MSE) and the mean absolute error (MAE) of the 163 

model. Two models were developed using two sets of the selected metabolite predictors. First, we 164 

used the full set of endogenous and xenobiotic metabolites (n=826) to develop “model A”. Second, 165 

we used only the endogenous metabolites (n=678) to develop “model B”. As previous studies found 166 

that metabolomic profiles (12, 29) and aging (30-32) are influenced by the sex of individuals, we 167 

included sex as an additional predictor in both models. 168 

Sample size considerations 169 

The primary database used to create the prediction model was the INTERVAL study (n= 11,977) with 170 

826 predictors. We used the formulas described by Riley et al. (33) to confirm that our sample size (n) 171 

and number of predictor (p) are sufficient to minimize overfitting and provide high prediction 172 

precision. First, we calculated Copas global shrinkage factor for our data (34, 35) to see if it is above 173 
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the recommended 0.9 threshold (33). Based on this calculation the estimated shrinkage factor was 174 

0.95 if the adjusted R2 of the model was assumed to be 0.7. Second, we calculated the sample size 175 

required to ensure a small difference between the R2 and the adjusted R2 for the development model. 176 

Assuming the adjusted R2 was 0.7 again and a small desired R2 difference (R2
diff=0.025), then the 177 

sample size required to achieve this should be at least n=9913.  Third, we checked the sample size 178 

required for precise residual standard deviation of the model. Accordingly, we found the multiplicative 179 

margin of error (MMOE) to be less than 10% (MMOE =1.3%) using our n and p in the INTERVAL study. 180 

Finally, we checked the precision of the mean predicted outcome value (predicted age) of the model. 181 

We used n and p for the INTERVAL study and assumed that predicted age would have a mean of 45 182 

and a variance of 35. Accordingly, the upper and lower bounds were approximately 45.34 and 44.65 183 

respectively. Thus, the MMOE for the mean predicted outcome was less 1% (MMOE= 45.34 /45 = 184 

1.007 = 0.7%).  Therefore, the sample size of the INTERVAL study was optimal to minimize overfitting, 185 

optimism, and provide a precise estimation of the residual standard deviation and mean predicted 186 

values.  187 
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Results 188 

Population characteristics  189 

Characteristics of the total INTERVAL study population and age subgroups are summarized in Table 1. 190 

In total 11,977 individuals were included and had a normal age distribution with a mean age of 45 191 

years and a range of 18 – 75 years. The number of men and women was approximately equal (50.2% 192 

were men). BMI was largely in the recommended range of 18.5-24.9 kg/m2 (36) with a mean BMI of 193 

22.8 kg/m2 and was similar in all age groups.   194 

 195 

 
Total 18 to 25 25 to 35 35 to 45 45 to 55 55 to 65 65 to 75 

N 11977 1178 2245 2152 2867 2602 811 
Age (years), mean (range) 45 (18-75) 

      

Men, n (%) 6019 (50.2%) 485 (41.2%) 965 (42.3%) 1042 (48.4%) 1560 (54.4%) 1480 (56.9%) 546 (67.3%) 
BMI (kg/m2), mean (SD) 22.8 (4.2) 21.3 (4.0) 22.0 (4.2) 23.3 (4.4) 23.5 (4.3) 23.0 (3.9) 22.6 (3.5) 

Table 1. Characteristics of the INTERVAL study population. 196 

Metabolomic Age Prediction 197 

Prediction models A (endogenous plus xenobiotic metabolites) and B (endogenous metabolites only) 198 

were developed in the INTERVAL study using ridge regression. The workflow including metabolite 199 

selection, missing value imputation, and analyses are summarized in Figure 1. Internal validation using 200 

bootstrapping (resampling n = 100) and optimization provided an R2 of 0.83 (MSE=31, MAE=4.4) for 201 

model A, and 0.82 (MSE=33.7, MAE=4.6) for model B. The R2 for the generalized additional model 202 

(GAM) were slightly higher for both models, 0.85 for model A and 0.84 for model B (Figure 2, 203 

Supplementary Table 1, Supplementary Figure 1). Full tables with the intercept, sex and metabolite 204 

coefficients for model A and B are provided in Supplementary Table 2. This table also contains the 205 

mean values for the metabolites from the INTERVAL study.  206 

 207 
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 208 

Figure 1: Flowchart of the selection of predictor metabolites and the development steps for the 209 

metabolomic age prediction model in the INTERVAL study 210 
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 211 

Figure 2: Correlation plots of the Metabolomic age (predicted age) on the horizontal axis and the 212 
chronological age on the vertical axis for model A (A) and model B (B). The data used is the stacked 213 

imputed datasets in the INTERVAL study. Abbreviations: GAM, generalized additive model. 214 

Discussion 215 

In this study, we developed a prediction model for metabolomic age based on metabolite 216 

measurements, including a wide range of endogenous and xenobiotic metabolites belonging to a 217 

variety of biochemical pathways. The metabolomic measurements were performed in a single study 218 

using the same metabolomic platform and harmonized for within study and between batch variation. 219 

Importantly, we used multiple imputation, ridge regression, and bootstrapping (20) to develop and 220 

internally validate the metabolomic age prediction models. We developed two models, with the first 221 

model A using both endogenous and xenobiotic metabolites (n=826), and the second model B using 222 

the endogenous metabolites only (n=678). Both models had high adjusted R2 (model A = 0.83; Model 223 

B = 0.82), however, model B had slightly higher MSE and MAE, indicating higher error for the predicted 224 

values.  225 

Ridge Regression for Metabolomic Age 226 

Our metabolomic age model is based on ridge regression which generates shrinkage factors that 227 

shrink metabolite coefficients with weak influence on the model to small values. Unlike methods such 228 

as LASSO and elastic net regression, this shrinkage never causes the coefficients to reach zero. 229 

Therefore, unlike those methods, ridge regression does not perform selection of predictors, in this 230 

case metabolites, due to the shrinkage term. Thus, the model consistently includes the same 231 

metabolites during the cross validation and internal validation by bootstrapping (20).  Ridge regression 232 
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thus ensures rigorousness and consideration of all the selected metabolite predictors. In addition, we 233 

found in our model that nonlinear GAM R2 to be slightly higher than linear R2 in both models. Figure 2 234 

also shows that the GAM line curves at the edges of the age ranges. Therefore, predicting 235 

metabolomic age from this model in a nonlinear form, by adding a quadratic term or using a spline 236 

function, may further expand the model flexibility. 237 

Strengths and Limitations 238 

A major strength of our current study is the development of robust metabolomic age prediction 239 

models based on a large number of metabolites measured in a large cohort with a wide age 240 

distribution. This sample size was confirmed to fit the required criteria for developing a model with 241 

low overfitting (33). Furthermore, the INTERVAL study included relatively healthy blood donors as 242 

participants. Blood donors are prescreened for a number of common diseases, making it a suitable 243 

study to develop a metabolomic age without being affected by specific disease-related effects on 244 

metabolites. Unlike previous metabolomic age predictors (alternatively referred to as metabolomic 245 

“clocks”), we developed our model using the latest Metabolon metabolomics platform that measures 246 

a large selection of metabolites. An advantage of this platform is the inclusion of xenobiotics, such as 247 

those derived from medication or pollution as well as endogenous metabolites. Thus, we were able to 248 

include metabolites originating from various internal and external sources. The xenobiotic metabolites 249 

represent some of the acquired environmental and lifestyle exposures of individuals that could play a 250 

role in biological aging. For example, medication metabolites could be a predictor of frailty. However, 251 

our study has two limitations. First, because the INTERVAL study does not have data for health-related 252 

outcomes, we could not assess the effects of different disease outcomes and health phenotypes on 253 

the metabolomic age. Second, as the INTERVAL study used here was cross sectional, we could not 254 

examine the model overtime or examine the ability of metabolomic age to predict disease outcomes 255 

or mortality in a future time point.  256 

External Validation for Metabolomic Age and Future Applications 257 

Prediction models may suffer from overfitting due to selection bias, small sample size, methodology 258 

limitations, and lack of internal validation and calibration during development. However, another 259 

common issue regarding prediction modelling, such as the case with metabolomic age, is the challenge 260 

to externally validate them. This a common issue with prediction models in general. Indeed, few 261 

studies perform external validation of prediction models (19, 37). The reasons for the lack of external 262 

validation include the difficulty of applying and reproducing the prediction model method, lack of the 263 

full prediction variables to develop the model in the new dataset, or a lack of an appropriate sample 264 
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size for external validation. Without external validation, the quality of the models cannot be properly 265 

assessed, and a model could still be overfitted despite presenting good results during internal 266 

validation(20, 21, 38). We took advantage of the sample size and wide age range to use a stringent 267 

ridge regression and internal validation method to develop the metabolomic age model. The resulting 268 

model demonstrated a high R2 for the metabolomic age. The high R2 from our models is unlikely to be 269 

due be overfitting as we considered and calculated the power and sensitivity of the model based on 270 

the sample size and number predictors (33), in addition to the rigorous prediction modelling 271 

methodology. The metabolomic age was able to predict chronological age well but not perfectly. The 272 

missing 0.2 from R2  is likely a reflection the biological aging process captured by the metabolomic age. 273 

However, future robust external validation, using weak and moderate calibrations in other 274 

populations (38) would be valuable for the metabolomic age models presented in this paper.  275 

Several age prediction models have been developed that utilize different biological measurements 276 

such as targeted metabolomics (7, 14), proteomics (7), and epigenetics (DNA methylation)(6). These 277 

studies have reported that the metabolites were a strong predictor of body mass index, metabolic 278 

syndrome, cancer (7), type 2 diabetes, and cardiovascular disease (14). Furthermore, other biological 279 

clocks using proteomics and epigenetics were reported to be associated with depression and other 280 

outcomes (7). Therefore, it will be valuable to apply the prediction models presented in this paper in 281 

large longitudinal cohorts and examine the metabolomic age in relation to calendar age with the 282 

aforementioned phenotypes and other health related outcomes. Assessing the association between 283 

the residual between the chronological and metabolomic age with disease and health phenotypes 284 

overtime will provide clinically relevant prediction. The prediction strength will indicate the 285 

robustness of our model and provide the means to for external validation and re-calibration of the 286 

model.  287 

In addition to our aim of addressing primary issues of the development of metabolomic age models, 288 

the Metabolon platform is expanded on the range of metabolites that can potentially be a better 289 

predictor of age. For example, previous metabolomic age studies have not measured or included 290 

xenobiotic metabolites. In our study, we were able to include this additional group of metabolites in 291 

model A. Furthermore, Model A may also be used in tandem with metabolomic age from targeted 292 

platforms, and biological clocks of different biological molecules measurements, similar to the work 293 

by Jansen et al. (7), to possibly improve or compare their predictive performance and their ability of 294 

capturing the effects of health-related phenotypes.  295 

Conclusions 296 
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We developed metabolomic age prediction models in a large relatively healthy population using a 297 

wide array of endogenous and xenobiotic metabolites. In model A with the endogenous and 298 

xenobiotic metabolites and in model B with endogenous metabolites only, the R2 of the linear fit was 299 

0.82 and 0.83, respectively. We provided the full list of metabolites and their coefficients for both 300 

models. This data can enable other researchers to replicate our metabolomic age prediction model, 301 

externally validate it in their own studies with different disease outcomes and combine them with 302 

other age prediction models.  303 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 9, 2023. ; https://doi.org/10.1101/2023.06.03.23290933doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.03.23290933
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

References 304 

1. North BJ, Sinclair DA. The intersection between aging and cardiovascular disease. Circ Res. 305 
2012;110(8):1097-108. doi:10.1161/CIRCRESAHA.111.246876 306 
2. Broglio SP, Eckner JT, Paulson HL, Kutcher JS. Cognitive decline and aging: the role of 307 
concussive and subconcussive impacts. 2012;40(3):138.  308 
3. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 309 
2013;153(6):1194-217. doi:10.1016/j.cell.2013.05.039 310 
4. Hoffman JM, Lyu Y, Pletcher SD, Promislow DEL. Proteomics and metabolomics in ageing 311 
research: from biomarkers to systems biology. Essays Biochem. 2017;61(3):379-88. 312 
doi:10.1042/EBC20160083 313 
5. Brooks-Wilson AR. Genetics of healthy aging and longevity. 2013;132(12):1323-38.  314 
6. Horvath S. DNA methylation age of human tissues and cell types. Genome Biology. 315 
2013;14(10):3156. doi:10.1186/gb-2013-14-10-r115 316 
7. Jansen R, Han LK, Verhoeven JE, et al. An integrative study of five biological clocks in somatic 317 
and mental health. Elife. 2021;10. doi:10.7554/eLife.59479 318 
8. Alonso A, Marsal S, Julia A. Analytical methods in untargeted metabolomics: state of the art 319 
in 2015. Front Bioeng Biotechnol. 2015;3:23. doi:10.3389/fbioe.2015.00023 320 
9. Rattray NJW, Deziel NC, Wallach JD, et al. Beyond genomics: understanding exposotypes 321 
through metabolomics. Hum Genomics. 2018;12(1):4. doi:10.1186/s40246-018-0134-x 322 
10. Rutledge J, Oh H, Wyss-Coray T. Measuring biological age using omics data. Nature Reviews 323 
Genetics. 2022. doi:10.1038/s41576-022-00511-7 324 
11. Martin FJ, Montoliu I, Kussmann M. Metabonomics of ageing - Towards understanding 325 
metabolism of a long and healthy life. Mech Ageing Dev. 2017;165(Pt B):171-9. 326 
doi:10.1016/j.mad.2016.12.009 327 
12. Yu Z, Zhai G, Singmann P, et al. Human serum metabolic profiles are age dependent. Aging 328 
Cell. 2012;11(6):960-7. doi:10.1111/j.1474-9726.2012.00865.x 329 
13. Macdonald-Dunlop E, Taba N, Klarić L, et al. A catalogue of omics biological ageing clocks 330 
reveals substantial commonality and associations with disease risk. Aging. 2022;14(2):623-59. 331 
doi:10.18632/aging.203847 332 
14. van den Akker EB, Trompet S, Barkey Wolf JJH, et al. Metabolic Age Based on the BBMRI-NL 333 
(1)H-NMR Metabolomics Repository as Biomarker of Age-related Disease. Circulation. Genomic and 334 
precision medicine. 2020;13(5):541-7. doi:10.1161/circgen.119.002610 335 
15. Hertel J, Friedrich N, Wittfeld K, et al. Measuring Biological Age via Metabonomics: The 336 
Metabolic Age Score. J Proteome Res. 2016;15(2):400-10. doi:10.1021/acs.jproteome.5b00561 337 
16. Rist MJ, Roth A, Frommherz L, et al. Metabolite patterns predicting sex and age in 338 
participants of the Karlsruhe Metabolomics and Nutrition (KarMeN) study. PLoS One. 339 
2017;12(8):e0183228. doi:10.1371/journal.pone.0183228 340 
17. Hwangbo N, Zhang X, Raftery D, et al. A Metabolomic Aging Clock Using Human 341 
Cerebrospinal Fluid. The Journals of Gerontology: Series A. 2021;77(4):744-54. 342 
doi:10.1093/gerona/glab212 %J The Journals of Gerontology: Series A 343 
18. Smith G. Step away from stepwise. Journal of Big Data. 2018;5(1):32. doi:10.1186/s40537-344 
018-0143-6 345 
19. Ramspek CL, Jager KJ, Dekker FW, Zoccali C, van Diepen M. External validation of prognostic 346 
models: what, why, how, when and where? Clinical Kidney Journal. 2020;14(1):49-58. 347 
doi:10.1093/ckj/sfaa188 %J Clinical Kidney Journal 348 
20. Steyerberg EW. Clinical Prediction Models. 2nd ed. Cham, Switzerland: Springer 349 
International Publishing; 2019. 350 
21. Bleeker SE, Moll HA, Steyerberg EW, et al. External validation is necessary in prediction 351 
research:: A clinical example. Journal of Clinical Epidemiology. 2003;56(9):826-32. 352 
doi:https://doi.org/10.1016/S0895-4356(03)00207-5 353 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 9, 2023. ; https://doi.org/10.1101/2023.06.03.23290933doi: medRxiv preprint 

https://doi.org/10.1016/S0895-4356(03)00207-5
https://doi.org/10.1101/2023.06.03.23290933
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

22. Moore C, Sambrook J, Walker M, et al. The INTERVAL trial to determine whether intervals 354 
between blood donations can be safely and acceptably decreased to optimise blood supply: study 355 
protocol for a randomised controlled trial. Trials. 2014;15:363-. doi:10.1186/1745-6215-15-363 356 
23. NHS Blood Donation Who can give blood. 2022. https://www.blood.co.uk/who-can-give-357 
blood. 358 
24. Evans A, Bridgewater B, Liu Q, et al. High resolution mass spectrometry improves data 359 
quantity and quality as compared to unit mass resolution mass spectrometry in high-throughput 360 
profiling metabolomics. 2014;4(2):1.  361 
25. Rhee EP, Waikar SS, Rebholz CM, et al. Variability of Two Metabolomic Platforms in CKD. 362 
Clinical Journal of the American Society of Nephrology. 2019;14(1):40. doi:10.2215/CJN.07070618 363 
26. de Mutsert R, den Heijer M, Rabelink TJ, et al. The Netherlands Epidemiology of Obesity 364 
(NEO) study: study design and data collection. Eur J Epidemiol. 2013;28(6):513-23. 365 
doi:10.1007/s10654-013-9801-3 366 
27. Faquih T, van Smeden M, Luo J, et al. A Workflow for Missing Values Imputation of 367 
Untargeted Metabolomics Data. Metabolites. 2020;10(12). doi:10.3390/metabo10120486 368 
28. Hoerl AE, Kennard RW. Ridge Regression: Biased Estimation for Nonorthogonal Problems. 369 
Technometrics. 1970;12(1):55-67. doi:10.1080/00401706.1970.10488634 370 
29. Saner C, Harcourt BE, Pandey A, et al. Sex and puberty-related differences in metabolomic 371 
profiles associated with adiposity measures in youth with obesity. Metabolomics. 2019;15(5):75. 372 
doi:10.1007/s11306-019-1537-y 373 
30. Hägg S, Jylhävä J. Sex differences in biological aging with a focus on human studies. eLife. 374 
2021;10:e63425. doi:10.7554/eLife.63425 375 
31. Nakamura E, Miyao KJTJoGSABS, Sciences M. Sex differences in human biological aging. 376 
2008;63(9):936-44.  377 
32. McCrory C, Fiorito G, McLoughlin S, et al. Epigenetic clocks and allostatic load reveal 378 
potential sex-specific drivers of biological aging. 2020;75(3):495-503.  379 
33. Riley RD, Snell KIE, Ensor J, et al. Minimum sample size for developing a multivariable 380 
prediction model: Part I - Continuous outcomes. Statistics in medicine. 2019;38(7):1262-75. 381 
doi:10.1002/sim.7993 382 
34. Copas JB. Regression, prediction and shrinkage. Journal of the Royal Statistical Society: Series 383 
B. 1983;45(3):311-35.  384 
35. Copas JB. Using regression models for prediction: shrinkage and regression to the mean. 385 
Statistical methods in medical research. 1997;6(2):167-83. doi:10.1177/096228029700600206 386 
36. WHO WHO. A healthy lifestyle - WHO recommendations. World Health Organization: WHO. 387 
2010.  388 
37. Siontis GCM, Tzoulaki I, Castaldi PJ, Ioannidis JPA. External validation of new risk prediction 389 
models is infrequent and reveals worse prognostic discrimination. Journal of Clinical Epidemiology. 390 
2015;68(1):25-34. doi:https://doi.org/10.1016/j.jclinepi.2014.09.007 391 
38. Van Calster B, McLernon DJ, van Smeden M, et al. Calibration: the Achilles heel of predictive 392 
analytics. BMC Medicine. 2019;17(1):230. doi:10.1186/s12916-019-1466-7 393 

 394 

395 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 9, 2023. ; https://doi.org/10.1101/2023.06.03.23290933doi: medRxiv preprint 

https://www.blood.co.uk/who-can-give-blood
https://www.blood.co.uk/who-can-give-blood
https://doi.org/10.1016/j.jclinepi.2014.09.007
https://doi.org/10.1101/2023.06.03.23290933
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

Funding 396 

The INTERVAL study was funded by NHSBT and the NIHR Blood and Transplant Research Unit in 397 
Donor Health and Genomics (NIHR BTRU-2014-10024). The trial’s coordinating centre at the 398 
Department of Public Health and Primary Care at the University of Cambridge, Cambridge, UK, has 399 
received core support from the UK Medical Research Council (G0800270), British Heart Foundation 400 
(SP/09/002), and the NIHR Cambridge Biomedical Research Centre. Investigators at the University of 401 
Oxford, Oxford, UK, have been supported by the Research and Development Programme of NHSBT, 402 
the NHSBT Howard Ostin Trust Fund, and the NIHR Oxford Biomedical Research Centre through the 403 
programme grant NIHR-RP-PG-0310-1004. We thank the blood donors who participated in the trial 404 
and NHSBT’s operational staff.  405 

The NEO study is supported by the participating Departments, the Division, and the Board of 406 
Directors of the Leiden University Medical Centre, and by the Leiden University, Research Profile 407 
Area ‘Vascular and Regenerative Medicine’. The analyses of metabolites are funded by the VENI 408 
grant (ZonMW-VENI Grant 916.14.023) of D.O.M.-K., D.v.H. and R.N. were supported by a grant of 409 
the VELUX Stiftung [grant number 1156]. T.O.F. was supported by the King Abdullah Scholarship 410 
Program and King Faisal Specialist Hospital & Research Center [No. 1012879283]. 411 

Conflicts of Interest 412 

P.S. is an associate director of applied and statistical genetics at GlaxoSmithKline plc. A.S.B. reports 413 
institutional grants from AstraZeneca, Bayer, Biogen, BioMarin, Bioverativ, Novartis, Regeneron and 414 
Sanofi. R.L.-G. is a part-time clinical research consultant for Metabolon, Inc. All other co- authors 415 
have no conflicts of interest to declare. 416 

Acknowledgments and Disclosures 417 

The authors of the NEO study thank all participants, all participating general practitioners for inviting 418 
eligible participants, all research nurses for data collection, and the NEO study group: Pat van 419 
Beelen, Petra Noordijk, and Ingeborg de Jonge for coordination, laboratory, and data management. 420 
The NEO study was approved by the medical ethical committee of the Leiden University Medical 421 
Centre (LUMC) and all participants provided written informed consent. The INTERVAL study was 422 
approved by The National Research Ethics Service (11/EE/0538) and all eligible donors provided a 423 
trial consent form before giving a blood donation. 424 

Author Contributions 425 

T.O.F.- conceptualization, data curation, formal analysis, investigation, methodology, software, 426 
visualization, writing-original draft. R.L.-G.- validation, writing – review & editing. P.S. – supervision, 427 
conceptualization, project administration, resources, funding acquisition, writing – review & editing - 428 
A.S.B – project administration, resources, funding acquisition, writing – review & editing. R.d.M.- 429 
project administration, resources, funding acquisition, writing – review & editing. R.N. and D.V.H.- 430 
funding acquisition, writing – review & editing. F.R.R.- funding acquisition. A.v.H.V. and K.W.v.D- 431 
conceptualization, supervision, writing – review & editing. D.O.M.-K.- conceptualization, supervision, 432 
funding acquisition, writing – review & editing. 433 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 9, 2023. ; https://doi.org/10.1101/2023.06.03.23290933doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.03.23290933
http://creativecommons.org/licenses/by-nc-nd/4.0/

