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Abstract 32 

Chronological age is a major risk factor for numerous diseases. However, chronological age does not 33 

capture the complex biological aging process. Biological aging can occur at a different pace in 34 

individuals of the same chronological age. Therefore, the difference between the chronological age 35 

and biologically driven aging could be more informative in reflecting health status. Metabolite levels 36 

are thought to reflect the integrated effects of both genetic and environmental factors on the rate of 37 

aging, and may thus provide a stronger signature for biological age than those previously developed 38 

using methylation and proteomics. Here, we set out to develop a metabolomic age prediction model 39 

by applying ridge regression and bootstrapping with 826 metabolites (of which 678 endogenous and 40 

148 xenobiotics) measured by an untargeted high-performance liquid chromatography mass 41 

spectrometry platform (Metabolon) in 11,977 individuals (50.2% men) from the INTERVAL study 42 

(Cambridge, UK). Participants of the INTERVAL study are relatively healthy blood donors aged 18-75 43 

years. After internal validation using bootstrapping, the models demonstrated high performance with 44 

an adjusted R2 of 0.82 using the endogenous metabolites only and an adjusted R2 of 0.83 when using 45 

the full set of 826 metabolites with age as outcome. The latter model performance could be indicative 46 

of xenobiotics predicting frailty. In summary, we developed robust models for predicting metabolomic 47 

age in a large relatively healthy population with a wide age range.  48 

Introduction 49 

Chronological age is a major risk factor for a multitude of diseases (1, 2). The biology of aging 50 

comprises complex and multifactorial processes that are influenced by genetic, lifestyle and 51 

environmental factors (3-5). Evidently, the rate of biological aging varies between individuals, as in 52 

contrast to other individuals of the same age group, wherein, some individuals are able to live to an 53 

older chronological age without age-related diseases and disability (3). This suggests that 54 

chronological age does not align with the biological aging process. For this reason, several studies have 55 

aimed to capture the signature of biological changes due to aging process by predicting its rate based 56 

on biological factors using, for example, DNA methylation (6) and proteins (7).  57 

Metabolomic profiling aims to identify small molecules that are mostly substrates or products of 58 

metabolism (metabolites). The number of metabolomics studies has increased in recent years due to 59 

major technological advances and the availability of (validated and high throughput) commercial and 60 

noncommercial analyses platforms. In addition, the current platforms have improved their capability 61 

to detect and quantify large numbers of endogenous and xenobiotic metabolites(8, 9). Since individual 62 

metabolomic profiles reflect the influences of both genetic and acquired factors, they are thought to 63 

provide a more holistic representation of biological processes, such as aging (8, 9). Furthermore, as 64 
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metabolomic profiles are strongly affected by chronological age (4, 10) and sex (11, 12), they have 65 

been used to develop prediction models of chronological age (i.e., the metabolomic age) (13-16). 66 

However, predicting metabolomic age using metabolomics had limited success or faced 67 

methodological limitations due to several reasons. First, some studies used a relatively small sample 68 

size to predict age using hundreds or even thousands of metabolite predictors (10, 17). The inclusion 69 

of a larger number of predictors than the number of samples may cause overfitting and bias. Second, 70 

previous metabolomic age studies used targeted platforms, such as the Nightingale platform, that 71 

specifically measure a small number of lipoproteins and some low-molecular metabolites. This limits 72 

the variety of the metabolites and the information used for the prediction of age.  Third, studies may 73 

be limited by the age distribution of the cohort study. This may restrict the model to a specific age 74 

range which affects the generalizability of the model in other studies and other age groups (10). 75 

Fourth, generalizability may also be reduced if the model is developed in cohorts with an oversampling 76 

of individuals with specific disease outcomes or specific population characteristics (7, 13). Fifth, 77 

statistical methodology such as stepwise selection, have been reported to cause overfitting of the 78 

prediction model (18). Finally, it is challenging to examine the model’s validity and generalizability in 79 

external studies or different populations particularly due to the dynamic nature of metabolite levels 80 

(19-21).  81 

In this study, we aimed to develop a model to predict metabolomic age in a large healthy population 82 

with a widespread age range, using a single untargeted metabolomics platform. To attain this goal, 83 

we developed a prediction model using data from the INTERVAL study (22) (University of Cambridge, 84 

Cambridge, UK). Metabolomic profiles were available in 11,977 participants as measured using 85 

Metabolon’s (Durham, North Carolina, USA) untargeted metabolomics platform. These 86 

measurements included a broad range of endogenous and xenobiotic metabolites (n=1,363) from 87 

various biochemical pathways, thereby enabling the capture of metabolites related to a vast range of 88 

ageing effects.  89 

Methods 90 

INTERVAL Study  91 

The INTERVAL study is a prospective cohort study of approximately 50,000 participants nested within 92 

a pragmatic randomized sample of blood donors (22). Between 2012 and 2014, blood donors, aged 93 

18 years and older, were consented and recruited from 25 National Health Service Blood and 94 

Transplant (NHSBT) static donor centers across the UK. The INTERVAL study was approved by The 95 

National Research Ethics Service (11/EE/0538). Individuals with major disease (myocardial infarction, 96 
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stroke, cancer etc.) as well as those who reported being unwell or having had recent illness or infection 97 

or did not fulfill the other criteria required for blood donation (22, 23) were ineligible for the study. 98 

Therefore, participants included in the study were predominantly healthy. Participants completed 99 

online questionnaires addressing basic lifestyle and health-related information, including self-100 

reported height and weight, ethnicity, smoking status, alcohol consumption, doctor-diagnosed 101 

anemia, use of medications (hormone replacement therapy, iron supplements) and menopausal 102 

status (22). Untargeted metabolomic data were available in 11,979 individuals (age range 18 - 75). 103 

Two individuals had incorrect or missing height/weight values and were therefore excluded from the 104 

study. Thus, the final sample size for the current study was 11,977. 105 

Untargeted metabolomic measurements  106 

Untargeted metabolomic measurements were quantified at Metabolon Inc. (Durham, North Carolina, 107 

USA) using Metabolon™ Discovery HD4 platform. In brief, this process involves four independent ultra-108 

high-performance liquid chromatography mass spectrometry (UHPLC-MS/MS) platforms (24, 25). Of 109 

these platforms, two used positive ionization reverse phase chromatography, one used negative 110 

ionization reverse phase chromatography, and one used hydrophilic interaction liquid 111 

chromatography negative ionization (25). Known metabolites were annotated at Metabolon Inc. with 112 

chemical names, super pathways, sub pathways, biochemical properties, and compound identifiers 113 

from various metabolite databases. Metabolomic measurements in the INTERVAL study were 114 

conducted in three batches (n=4087, 4566, and 3326). Subsequent harmonization and quality checks 115 

were performed between the batches by Metabolon. All metabolite measurements were scaled to a 116 

median of 1. 117 

Selection of Predictors  118 

We aimed to select metabolites consistently and reliably measured by the Metabolon platform. In 119 

total 1,411 metabolites were measured in the INTERVAL study. First, we removed metabolites 120 

completely missing in at least one of the batches (n=175). Second, we excluded metabolites without 121 

annotation (unnamed metabolites) (n=258), keeping only endogenous and xenobiotic metabolites. 122 

These metabolites were excluded as they are inconsistently measured by the platform and are highly 123 

variable between batches and studies. Moreover, the lack of full annotation increases the uncertainty 124 

that we are using the same metabolite across batches and studies and leaves no secondary 125 

information for further verification. Third, we excluded metabolites measured in less than 100 126 

individuals (n=30). Fourth, to ensure that the metabolites that are used for our model are not unique 127 

for the INTERVAL study, we cross-referenced our dataset with an independent study with Metabolon 128 
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measurements. For this we used the Netherlands Epidemiology of Obesity (NEO) study, a population-129 

based (n=599) cohort study of individuals aged 45–65 years (26, 27). Based on this comparison, we 130 

additionally excluded 122 metabolites that were not detected in the NEO study. The final set of 131 

metabolites included 826 metabolites, with 678 endogenous and 148 xenobiotic metabolites that 132 

were confirmed to be regularly measured by the Metabolon platform (Figure 1). 133 

Missing value imputation 134 

Missing values were imputed using the pipeline as described in our previous work (27). In brief, 135 

endogenous metabolites were imputed by multiple imputation using chained equations method to 136 

generate five imputed datasets (m=5). For each metabolite with missing values, we used the outcome 137 

variable (i.e., age), 5-10 highly correlated related metabolites, body mass index (BMI), center number 138 

where the blood samples were collected, and the batch number to impute the missing values. 139 

Xenobiotic metabolites were imputed to zero to account for true missingness.  140 

Model Development 141 

For the development of the model, we used ridge regression (28) to reduce potential overfitting. Cross 142 

validation was performed (n=10) in each imputed dataset to calculate the optimal shrinkage term 143 

(lambda). Subsequently the mean of the lambda values was used to develop the model on the stacked 144 

imputed datasets (i.e., all 5 datasets combined as one). Accordingly, the weight of the observations in 145 

the stacked dataset was set to 1/m = 1/5 = 0.2 (20). As the outcome (age) is a continuous variable, we 146 

assessed the fit of the model by deriving the R2. As an additional sensitivity test, we used generalized 147 

additive model (GAM) to examine and calculate the R2 for the nonlinear correlation. Internal validation 148 

was performed using bootstrapping (b=100). Bootstrapping results were used for the optimization of 149 

R2 and the calculation of the mean squared error (MSE) and the mean absolute error (MAE) of the 150 

model. Two models were developed using two sets of the selected metabolite predictors. First, we 151 

used the full set of endogenous and xenobiotic metabolites (n=826) to develop “model A”. Second, 152 

we used only the endogenous metabolites (n=678) to develop “model B”. As previous studies found 153 

that metabolomic profiles (12, 29) and aging (30-32) are influenced by the sex of individuals, we 154 

included sex as an additional predictor in both models. 155 

Sample size considerations 156 

The primary database used to create the prediction model was the INTERVAL study (n= 11,977) with 157 

826 predictors. We used the formulas described by Riley et al. (33) to confirm that our sample size (n) 158 

and number of predictor (p) are sufficient to minimize overfitting and provide high prediction 159 

precision. First, we calculated Copas global shrinkage factor for our data (34, 35) to see if it is above 160 
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the recommended 0.9 threshold (33). Based on this calculation the estimated shrinkage factor was 161 

0.95 if the adjusted R2 of the model was assumed to be 0.7. Second, we calculated the sample size 162 

required to ensure a small difference between the R2 and the adjusted R2 for the development model. 163 

Assuming the adjusted R2 was 0.7 again and a small desired R2 difference (R2
diff=0.025), then the 164 

sample size required to achieve this should be at least n=9913.  Third, we checked the sample size 165 

required for precise residual standard deviation of the model. Accordingly, we found the multiplicative 166 

margin of error (MMOE) to be less than 10% (MMOE =1.3%) using our n and p in the INTERVAL study. 167 

Finally, we checked the precision of the mean predicted outcome value (predicted age) of the model. 168 

We used n and p for the INTERVAL study and assumed that predicted age would have a mean of 45 169 

and a variance of 35. Accordingly, the upper and lower bounds were approximately 45.34 and 44.65 170 

respectively. Thus, the MMOE for the mean predicted outcome was less 1% (MMOE= 45.34 /45 = 171 

1.007 = 0.7%).  Therefore, the sample size of the INTERVAL study was optimal to minimize overfitting, 172 

optimism, and provide a precise estimation of the residual standard deviation and mean predicted 173 

values.  174 
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Results 175 

Population characteristics  176 

Characteristics of the total INTERVAL study population and age subgroups are summarized in Table 1. 177 

In total 11,977 individuals were included and had a normal age distribution with a mean age of 45 178 

years and a range of 18 – 75 years. The number of men and women was approximately equal (50.2% 179 

were men). BMI was largely in the recommended range of 18.5-24.9 kg/m2 (36) with a mean BMI of 180 

22.8 kg/m2 and was similar in all age groups.   181 

 182 

 
Total 18 to 25 25 to 35 35 to 45 45 to 55 55 to 65 65 to 75 

N 11977 1178 2245 2152 2867 2602 811 
Age (years), mean (range) 45 (18-75) 

      

Men, n (%) 6019 (50.2%) 485 (41.2%) 965 (42.3%) 1042 (48.4%) 1560 (54.4%) 1480 (56.9%) 546 (67.3%) 
BMI (kg/m2), mean (SD) 22.8 (4.2) 21.3 (4.0) 22.0 (4.2) 23.3 (4.4) 23.5 (4.3) 23.0 (3.9) 22.6 (3.5) 

Table 1. Characteristics of the INTERVAL study population. 183 

Metabolomic Age Prediction 184 

Prediction models A (endogenous plus xenobiotic metabolites) and B (endogenous metabolites only) 185 

were developed in the INTERVAL study using ridge regression. The workflow including metabolite 186 

selection, missing value imputation, and analyses are summarized in Figure 1. Internal validation using 187 

bootstrapping (resampling n = 100) and optimization provided an R2 of 0.83 (MSE=31, MAE=4.4) for 188 

model A, and 0.82 (MSE=33.7, MAE=4.6) for model B. The R2 for the generalized additional model 189 

(GAM) were slightly higher for both models, 0.85 for model A and 0.84 for model B (Figure 2, 190 

Supplementary Table 1, Supplementary Figure 1). Full tables with the intercept, sex and metabolite 191 

coefficients for model A and B are provided in Supplementary Table 2. This table also contains the 192 

mean values for the metabolites from the INTERVAL study.  193 

 194 
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 195 

Figure 1: Flowchart of the selection of predictor metabolites and the development steps for the 196 

metabolomic age prediction model in the INTERVAL study 197 
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 198 

Figure 2: Correlation plots of the Metabolomic age (predicted age) on the horizontal axis and the 199 
chronological age on the vertical axis for model A (A) and model B (B). The data used is the stacked 200 

imputed datasets in the INTERVAL study. Abbreviations: GAM, generalized additive model. 201 

Discussion 202 

In this study, we developed a prediction model for metabolomic age based on metabolite 203 

measurements, including a wide range of endogenous and xenobiotic metabolites belonging to a 204 

variety of biochemical pathways. The metabolomic measurements were performed in a single study 205 

using the same metabolomic platform and harmonized for within study and between batch variation. 206 

Importantly, we used multiple imputation, ridge regression, and bootstrapping (20) to develop and 207 

internally validate the metabolomic age prediction models. We developed two models, with the first 208 

model A using both endogenous and xenobiotic metabolites (n=826), and the second model B using 209 

the endogenous metabolites only (n=678). Both models had high adjusted R2 (model A = 0.83; Model 210 

B = 0.82), however, model B had slightly higher MSE and MAE, indicating higher error for the predicted 211 

values.  212 

Ridge Regression for Metabolomic Age 213 

Our metabolomic age model is based on ridge regression which generates shrinkage factors that 214 

shrink metabolite coefficients with weak influence on the model to small values. Unlike methods such 215 

as LASSO and elastic net regression, this shrinkage never causes the coefficients to reach zero. 216 

Therefore, unlike those methods, ridge regression does not perform selection of predictors, in this 217 

case metabolites, due to the shrinkage term. Thus, the model consistently includes the same 218 

metabolites during the cross validation and internal validation by bootstrapping (20).  Ridge regression 219 
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thus ensures rigorousness and consideration of all the selected metabolite predictors. In addition, we 220 

found in our model that nonlinear GAM R2 to be slightly higher than linear R2 in both models. Figure 2 221 

also shows that the GAM line curves at the edges of the age ranges. Therefore, predicting 222 

metabolomic age from this model in a nonlinear form, by adding a quadratic term or using a spline 223 

function, may further expand the model flexibility. 224 

Strengths and Limitations 225 

A major strength of our current study is the development of robust metabolomic age prediction 226 

models based on a large number of metabolites measured in a large cohort with a wide age 227 

distribution. This sample size was confirmed to fit the required criteria for developing a model with 228 

low overfitting (33). Furthermore, the INTERVAL study included relatively healthy blood donors as 229 

participants. Blood donors are prescreened for a number of common diseases, making it a suitable 230 

study to develop a metabolomic age without being affected by specific disease-related effects on 231 

metabolites. Unlike previous metabolomic age predictors (alternatively referred to as metabolomic 232 

“clocks”), we developed our model using the latest Metabolon metabolomics platform that measures 233 

a large selection of metabolites. An advantage of this platform is the inclusion of xenobiotics, such as 234 

those derived from medication or pollution as well as endogenous metabolites. Thus, we were able to 235 

include metabolites originating from various internal and external sources. The xenobiotic metabolites 236 

represent some of the acquired environmental and lifestyle exposures of individuals that could play a 237 

role in biological aging. For example, medication metabolites could be a predictor of frailty. However, 238 

our study has two limitations. First, because the INTERVAL study does not have data for health-related 239 

outcomes, we could not assess the effects of different disease outcomes and health phenotypes on 240 

the metabolomic age. Second, as the INTERVAL study used here was cross sectional, we could not 241 

examine the model overtime or examine the ability of metabolomic age to predict disease outcomes 242 

or mortality in a future time point.  243 

External Validation for Metabolomic Age and Future Applications 244 

Prediction models may suffer from overfitting due to selection bias, small sample size, methodology 245 

limitations, and lack of internal validation and calibration during development. However, another 246 

common issue regarding prediction modelling, such as the case with metabolomic age, is the challenge 247 

to externally validate them. This a common issue with prediction models in general. Indeed, few 248 

studies perform external validation of prediction models (19, 37). The reasons for the lack of external 249 

validation include the difficulty of applying and reproducing the prediction model method, lack of the 250 

full prediction variables to develop the model in the new dataset, or a lack of an appropriate sample 251 
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size for external validation. Without external validation, the quality of the models cannot be properly 252 

assessed, and a model could still be overfitted despite presenting good results during internal 253 

validation(20, 21, 38). We took advantage of the sample size and wide age range to use a stringent 254 

ridge regression and internal validation method to develop the metabolomic age model. The resulting 255 

model demonstrated a high R2 for the metabolomic age. The high R2 from our models is unlikely to be 256 

due be overfitting as we considered and calculated the power and sensitivity of the model based on 257 

the sample size and number predictors (33), in addition to the rigorous prediction modelling 258 

methodology. The metabolomic age was able to predict chronological age well but not perfectly. The 259 

missing 0.2 from R2  is likely a reflection the biological aging process captured by the metabolomic age. 260 

However, future robust external validation, using weak and moderate calibrations in other 261 

populations (38) would be valuable for the metabolomic age models presented in this paper.  262 

Several age prediction models have been developed that utilize different biological measurements 263 

such as targeted metabolomics (7, 14), proteomics (7), and epigenetics (DNA methylation)(6). These 264 

studies have reported that the metabolites were a strong predictor of body mass index, metabolic 265 

syndrome, cancer (7), type 2 diabetes, and cardiovascular disease (14). Furthermore, other biological 266 

clocks using proteomics and epigenetics were reported to be associated with depression and other 267 

outcomes (7). Therefore, it will be valuable to apply the prediction models presented in this paper in 268 

large longitudinal cohorts and examine the metabolomic age in relation to calendar age with the 269 

aforementioned phenotypes and other health related outcomes. Assessing the association between 270 

the residual between the chronological and metabolomic age with disease and health phenotypes 271 

overtime will provide clinically relevant prediction. The prediction strength will indicate the 272 

robustness of our model and provide the means to for external validation and re-calibration of the 273 

model.  274 

In addition to our aim of addressing primary issues of the development of metabolomic age models, 275 

the Metabolon platform is expanded on the range of metabolites that can potentially be a better 276 

predictor of age. For example, previous metabolomic age studies have not measured or included 277 

xenobiotic metabolites. In our study, we were able to include this additional group of metabolites in 278 

model A. Furthermore, Model A may also be used in tandem with metabolomic age from targeted 279 

platforms, and biological clocks of different biological molecules measurements, similar to the work 280 

by Jansen et al. (7), to possibly improve or compare their predictive performance and their ability of 281 

capturing the effects of health-related phenotypes.  282 

Conclusions 283 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 18, 2023. ; https://doi.org/10.1101/2023.06.03.23290933doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.03.23290933
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

We developed metabolomic age prediction models in a large relatively healthy population using a 284 

wide array of endogenous and xenobiotic metabolites. In model A with the endogenous and 285 

xenobiotic metabolites and in model B with endogenous metabolites only, the R2 of the linear fit was 286 

0.82 and 0.83, respectively. We provided the full list of metabolites and their coefficients for both 287 

models. This data can enable other researchers to replicate our metabolomic age prediction model, 288 

externally validate it in their own studies with different disease outcomes and combine them with 289 

other age prediction models.  290 
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