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Abstract
Achilles tendon injuries are treated with progressive weight bearing to promote tendon healing and
restore function. Patient rehabilitation progression are typically studied in controlled, lab settings and do
not represent the long-term loading experienced during daily living. The purpose of this study is to
develop a wearable paradigm to accurately monitor Achilles tendon loading and walking speed using
low-cost sensors that reduce subject burden. Ten healthy adults walked in an immobilizing boot under
various heel wedge conditions (30°, 5°, 0°) and walking speeds. Three-dimensional motion capture,
ground reaction force, and 6-axis inertial measurement unit (IMU) signals were collected per trial. We
used Least Absolute Shrinkage and Selection Operator (LASSO) regression to predict peak Achilles
tendon load and walking speed. The effects of using only accelerometer data, different sampling
frequency, and multiple sensors to train the model were also explored. Walking speed models
outperformed (mean absolute percentage error (MAPE): 8.41 ± 4.08%) tendon load models (MAPE:
33.93 ± 23.9%). Models trained with subject-specific data performed significantly better than
generalized models. For example, our personalized model that was trained with only subject-specific
data predicted tendon load with a 11.5 ± 4.41% MAPE and walking speed with a 4.50 ± 0.91% MAPE.
Removing gyroscope channels, decreasing sampling frequency, and using combinations of sensors
had inconsequential effects on models performance (changes in MAPE < 6.09%). We developed
a simple monitoring paradigm that uses LASSO regression and wearable sensors to accurately predict
Achilles tendon loading and walking speed while ambulating in an immobilizing boot. This paradigm
provides a clinically implementable strategy to longitudinally monitor patient loading and activity while
recovering from Achilles tendon injuries.

Introduction
Tendon loading during rehabilitation following musculoskeletal injuries and/or surgical treatment

impacts healing outcomes. Recent advances in orthopaedic mechanobiology directly link tissue loading
with tissue healing outcomes.1–3 However, our limited capacity to quantify tissue loading in the real
world restricts our ability to improve rehabilitation strategies aimed at promoting tissue healing. Achilles
injuries demonstrate the link between tissue loading, injury, and healing outcomes. The loading
mechanisms of these injuries vary from repetitive sub-maximal loads which result in tendinopathies to
single supra-maximal loads which result in ruptures.4,5 While overloading and underloading can
detrimentally affect the tendon, mechanical loading is also used as a clinical intervention. Safely
introducing loading after an Achilles tendon injury promotes healing and leads to improved outcomes
compared to prolonged non-weightbearing and/or immobilization.6 The current rehabilitation standard
for surgical Achilles tendon interventions such as an Achilles repair and debridement is progressive
tendon loading in an immobilizing boot. We know these boots reduce Achilles tendon loading,7,8 but
strategies to optimize loading that maximize functional outcomes remains unclear. Continuously
monitoring tendon loading while patients wear an immobilizing boot is necessary to improve
rehabilitation guidelines.

Monitoring tendon loading during early rehabilitation stages is currently done using a lab-grade
instrumented insole. Our group developed a physics-based algorithm that accurately quantifies Achilles
tendon loading while ambulating in immobilizing boots (8). However, this technique is impractical for
monitoring large patient populations because it relies on expensive, complex sensors that require daily
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patient involvement to charge and log the data. Instead, we propose developing a new paradigm to
estimate tendon loading in immobilizing boots that is less burdensome but maintains similar accuracy.

Inertial measurement units (IMUs) are ideal because they are easy to use, low maintenance,
low-cost, and ubiquitous in personal smart devices. IMUs do not directly measure interaction loads
needed to estimate tendon loading but have other advantages that make them worth exploring as a
scalable option for monitoring patient recovery. These advantages include resistance to dust and water
(some IMUs have excellent dust and water resistance with ratings of IP68), long battery life (some
IMUs can record weeks of data on a single charge), and minimal handling needs (some IMUs log data
with no additional buttons for subjects to press). These IMU attributes are in many commercially
available sensors and align with efforts to minimize burden to both users and providers. We expect that
the minimized burden of these sensors will increase data capture rates, an essential component to
monitoring. While IMU measurements are difficult to interpret, machine learning approaches have been
used to transform linear accelerations and angular velocities into physiologically meaningful metrics.9–11
Recent studies have shown good machine learning performances when IMUs are used to predict
musculoskeletal outcomes and biomechanical measurements like joint kinematics,12–14 but none, to our
knowledge, have used only IMUs to predict Achilles tendon loading.

The purpose of our study is to develop an IMU-based monitoring paradigm that accurately
estimates Achilles tendon loading and walking speed when ambulating in an immobilizing boot. This is
a necessary step towards effectively monitoring real-world Achilles tendon loading in patients
recovering from injuries and surgeries. We measured lower leg linear accelerations and rotational
velocities using an IMU secured to the lateral aspect of an immobilizing boot. We then used these
measurements to train and validate generalized models to predict peak Achilles tendon loading and
walking speed during gait. We trained hybridized and personalized models which include subject-
specific data in the training set. We also tested the effects of different data streams, sampling
frequencies, and IMU placements to determine strategies that minimize burden while maximizing model
accuracy. We hypothesize that our tendon load and walking speed models will have acceptable
predictions, which we defined as under 20% mean absolute percentage error (MAPE). We expect that
these findings will guide researchers and clinicians on how to implement wearable sensors in clinical
populations.

Methods
Data Collection

We recruited ten subjects (3 females, age: 25 ± 2.4 yrs, BMI: 23.9 ± 6.56) to walk in our lab in
an immobilizing boot across a range of walking speeds, stride patterns, and immobilization angles. We
recruited healthy young adults who could comfortably walk 10.5 meters spans for 1 hour. Subjects had
no previous or current Achilles injury or pain that would affect their gait and provided written informed
consent in this study which was approved by our university’s Institutional Review Board.

Subjects wore laboratory clothing and an immobilizing boot (Formfit® Walker Air CAM, Ossur,
Reykjavík, Iceland), commonly worn by patients recovering from Achilles tendon injuries, on their right
side (Figure 1). Each subject wore a commercially available IMU (Opal, APDM, Portland, OR) attached
to the lateral shank of the immobilizing boot. They wore additional IMUs on their left wrist, left lateral
shank, and left foot. We acquired accelerometer data with a measurement range of ± 16 g at 100 Hz
and gyroscope data with a measurement range of ± 2000 deg/s at 100 Hz. We specifically used the
Opal IMUs to synchronously collect IMU data with other laboratory equipment. We measured Achilles
tendon loading and walking speed using validated techniques to generate target values necessary to
train and validate our predictive models. We measured plantar loads at a 100 Hz using a 3-part
instrumented insole (Loadsol, Novel, St. Paul, MN) placed in the immobilizing boot. We measured
walking speed by tracking the pelvis using an 8-camera markerless motion capture system (OptiTrack,
Corvallis, OR). We synchronously collected IMU, instrumented insole, and motion capture data while
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subjects walked at 4 different walking speeds and 3
ankle immobilization angles. Subjects were
instructed to walk 8 meters in the lab at 4 self-
selected speeds: pathological, slow, medium, and
fast. Pathological gait was prompted to the
participant as “If there was pain in your right foot,
how might you walk?”. Slow was explained as “a
slower than average walking speed”. Medium was
described as their “average, everyday walking pace.”
Fast was instructed as a “If you were in a hurry, but
still walking”. We tested each of these walking
speeds across 3 boot configurations that are
clinically used to progressively increase tendon
loading: a 2.5” heel wedge to approximate 30º, a 0.5”
heel wedge to approximate 5º, and no heel wedge to
approximate 0º or neutral ankle position. We
acquired data during 8-16 walking trials for every test
condition, which generated 6,300 total strides in our
entire experiment.

Data Processing

We analyzed our experimental data using scientific computing software and custom scripts
(python v3.9.12). We manually confirmed data integrity and rejected trials that were not time
synchronized. We parsed data to isolate each gait cycle from heel strike to heel strike that we
determined from the insole force data by setting a threshold of 50 N and then finding the local minima.
For every gait cycle, the maximum, minimum, and impulse values of the IMU data in the corresponding
period were calculated for all six channels (the superior-inferior, anterior-posterior, and lateral-medial
directions for accelerometer and gyroscope). We estimated Achilles tendon loading using our validated
instrumented insole paradigm7,15 and normalized these estimates to body weight (BW). Maximum
tendon load was calculated and values under 0.5 BW were not included in the model given that surgical
repair strength exceeds this threshold.16 Stance and swing times were also calculated through the force
sensor. We tracked the body center of mass using markerless motion capture (Theia, Kingston,
Ontario, Canada) and found the average walking speed by calculating the net forward progression of
the center of mass divided by the time it took to traverse the space on a per trial basis. We confirmed
that subjects walked at a constant speed throughout the trial with strong correlations (R2>.98) between
center of mass displacement and time.

Machine Learning Model

We selected Least Absolute Shrinkage and Selection Operator (LASSO) Regression to develop
a predictive model for walking speed and peak Achilles tendon load. LASSO is a linear regression with
an L1 regularization parameter and was implemented with the scikit-learn package (see Supplemental
Material). We selected LASSO because it has been shown to successfully predict biomechanical
proxies including joint kinematics and tibial loading.12,17 It has also outperformed other models including
convoluted neural network and Gaussian Process Regressions.11 LASSO also is recommended to
reduce feature dimensionality and minimize multicollinearity effects.18,19

We used maximum, minimum, absolute impulse, impulse of swing phase, and impulse of the
stance phase of all IMU channels, along with stance and swing time for each heel strike to heel strike
step as features and scaled them appropriately. Maximum Achilles tendon load and walking speed
were used as prediction targets. We selected peak tendon loading as one of our models’ target
measures because it is the most relevant biomechanical measure for Achilles tendon injuries and

Figure 1. Flowchart of Methods. IMU, tendon load,
and walking speed data were collected and serve as
inputs (blue). The inputs are cleaned (green) and
then pre-processed (purple). We then trained and
tested our machine learning models (orange).
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therefore, the desired metric for long-term monitoring. We also predicted walking speed because
walking speed is a clinically advisable metric and is more likely to be better predicted by IMU data. We
also expect walking speed and Achilles tendon load to be positively correlated where faster walking
speeds lead to higher tendon load. Thus, recommending patients to adjust their walking speed may
allow clinicians to prescribe a specific tendon load during rehabilitation.

We developed separate models for each immobilizing boot condition (30º, 5º and 0º) because
progressively removing heel wedges is a key element in the protocol that clinicians prescribe and
results in fundamentally different tendon loads. Each model was trained through a k-fold cross
validation method where the IMU data was split into 10 partitions, 1 for every subject. One partition (a
test subject) was excluded to test the model while the remaining 9 were used to train a model. Because
the training data of this model did not incorporate any of the test subject’s data, we considered this
model to be made with a generalized strategy. We used the MAPE as the evaluation metric and set an
a priori ‘excellent’ agreement threshold of 10% MAPE and ‘acceptable’ agreement threshold of 20%
MAPE. Each subject partition was excluded once and the average of the MAPEs were reported to
assess the robustness of the model.

We then explored incorporating subject-specific data into the model to improve performance.
Unlike many other machine learning settings, we can produce new subject data during lab or clinic
visits using our instrumented insole paradigm or simple walking speed measurements. These data
could be incorporated into the model to make tailored predictions unique for that individual. We tested
two different methodologies aimed at improving model performance. In the hybridized strategy, we
incorporated 50% of one subject’s data to the other 9 subjects’ data to form the training dataset and
tested the model on the remaining 50% of data. In the personalized strategy, we solely trained a model
on 50% of one subject’s data and tested the model’s performance on the remaining 50% of that one
subject’s data. These 50% of a subject’s data equated to roughly 82 steps, which is a small fraction of
the steps taken during daily living and is feasible to collect during lab or clinical visits.

We performed additional analyses to test how excluding the gyroscope data stream, different
sampling frequencies, and multiple sensors impact model performance. These are important
considerations because we want to decrease user burden by maximizing battery life while minimizing
the number of wearable sensors. By recording only accelerometer, the battery life of some IMU-based
wearables can double. Thus, we also trained models without the gyroscope to assess their
performance of predicting tendon load and walking speed against models trained with both
accelerometer and gyroscope data. Decreasing the sensor’s sampling frequency further extends IMU
battery, so we assessed the performance of models trained on data that was resampled to simulate 50
Hz and 25 Hz data. Eliminating the gyroscope data and decreasing the sampling frequency are
expected to impact model performance negatively, so we tested the impact of training models with
multiple sensors, which we expect would increase model performance. We did this by assessing the
effects of including data from IMUs on the contralateral limb, including the contralateral wrist,
contralateral shank, and contralateral foot (Figure 1).
Results

Walking speed predictions were consistently better than the Achilles tendon load predictions.
When predicting tendon load using the IMU data, the MAPE values were highest in the 5º condition at
44.0% and lowest in 0º at 25.8%. In the walking speed models, the highest MAPE was in the 30º
condition at 10.6% and lowest in the 0º at 6.20% (Tables 1 and 2). The most important features in the
Achilles tendon load model were the gyroscope in the lateral-medial direction, the time of stance and
swing, and the stance phase impulse of the accelerometer in the superior-inferior direction. For the
walking speed models, similar features played an important role including the impulse of the
accelerometer in the superior-inferior direction and the stance and swing time.
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Table 1. MAPE values of Tendon Load and Walking Speed by Model Paradigm Type (2 columns)

Tendon Load MAPE (%) Walking Speed MAPE (%)

Boot Condition
(deg) Generalized Hybridized Personalized Generalized Hybridized Personalized

30 31.9 ±19.9 22.7 ±9.34 10.7 ±2.94 10.6 ±4.83 8.26 ±3.14 5.35 ±0.999

5 44.0 ±31.0 26.4 ±19.7 12.6 ±5.07 8.42 ±4.48 5.16 ±1.60 3.69 ±0.882

0 25.8 ±20.8 19.6 ±13.0 8.35 ±2.90 6.20 ±2.92 4.51 ±1.38 3.38±0.816

Reported as MAPE ±STD
Table 2. MAPE values of Tendon Load and Walking Speed predicted using Generalized Models with Adjusted Parameters (2
columns)

IMU Channels Sampling
Frequency (Hz) Location Boot Condition

(deg)
Tendon Load
MAPE (%)

Walking Speed
MAPE (%)

accelerometer +
gyroscope 100 Boot

30 31.9 ±19.9 10.6 ±4.83

5 44.0 ±31.0 8.42 ±4.48

0 25.8 ±20.8 6.20 ±2.92

accelerometer 100 Boot

30 49.3±24.5 9.94±3.41

5 42.0±36.6 8.09± 3.28

0 28.8±22.6 9.20±4.09

accelerometer +
gyroscope 50 Boot

30 34.6±21.8 11.5±5.27

5 34.3±22.9 9.62±4.65

0 24.4±21.3 7.15±3.27

accelerometer +
gyroscope 25 Boot

30 36.5±21.4 12.0±5.49

5 35.9±25.6 10.1±5.05

0 28.2±24.8 9.84±4.91

accelerometer +
gyroscope 100 Boot + Left

Foot

30 36.6±25.1 8.66±3.95

5 42.1±35.5 5.13±1.68

0 32.4±20.9 5.37±2.39

Reported as MAPE ±STD

We found using subject-specific data to train the model resulted in better predictions with
decreased MAPE scores. When incorporating 50% of the subject’s data to train hybridized models, we
found that MAPEs decreased on average by 11.0% for the tendon load models and 2.43% for walking
speed models. When training personalized models using subject-specific data, we observed larger
improvements in MAPEs. The average decrease in MAPEs when compared to the generalized models
are 23.4% for Achilles tendon load and 4.27% for walking speed. The MAPEs of the personalized
models were the lowest for both (Table 1) tendon load (Figure 2) and walking speed predictions
(Figure 3).
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Training the tendon load and walking speed models without gyroscope data had varying effects
on model performance. When predicting Achilles tendon load, excluding gyroscope data had minimal
effects on model performance decreasing the 5º condition MAPEs by 2.06% and increasing 00º
condition MAPEs by 2.99%. However, the 30º tendon load model experienced a drastic increase in
MAPE by 17.34%. We observed small changes in the walking speed models when excluding
gyroscope data which resulted in <1% decreases for the 30º and 5º boot condition and a 3.01%
increase in the 0º boot condition. Despite the varying effects on model performance, excluding
gyroscope data did not ultimately change the overall usability of these models. All tendon load models
continued to not meet ‘acceptable’ threshold (MAPE <20%) and all walking speed models met the
‘excellent’ MAPE threshold (MAPEs <10%) (Table 2).

New models for tendon load and walking speed trained with 50 Hz and 25 Hz data did not
materially impact model performance. For the tendon load models, all MAPEs remained above 20%.
However, based on the sampling frequency and condition, tendon load MAPEs either increased or

Figure 2. Tendon loading predictions improved when subject-specific data were added to the models. The generalized
models (left column) were least accurate and tended to spread subject data (each subject data is represented by different
colored circles) away from the reference line (black line), which represents 0 MAPE. We built hybridized models (center
column) by adding subject-specific data to the generalized models that improved performance. However, personalized
models (right column) were the most accurate at predicting tendon loading across all boot conditions and all fell in the
‘acceptable’ to ‘excellent’ category. Out of the three boot conditions, the 5º condition had the widest spread.
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decreased when compared to models trained on 100 Hz data. For example, the 0º condition, tendon
load model’s MAPE decreased to 24.7% when using 50 Hz data but increased to 27.7% when using 25
Hz data. However, both changes are marginal. While the changes between 100 Hz, 50 Hz, and 25 Hz
did not consistently increase or decrease, the models trained with the 25 Hz data were consistently
worse with increased MAPEs when compared to the 50 Hz data. Unlike the tendon load models,
walking speed MAPEs for all conditions for 50 Hz data increased the average MAPE by .541% and 25
Hz increased the average MAPE by 1.87% when compared to the MAPEs of models trained on 100 Hz
data. Similar to the tendon load models, the walking speeds produced higher MAPEs when trained on
50 Hz data than when predicting with 25 Hz data (Table 2).

Lastly, combining data from a sensor on the boot with data from sensors on the contralateral
extremities had minimal effects on model performance. For the models that predict tendon load, no
combination of sensor helped improve the predictive power across the 30º, 5º, and 0º immobilizing boot
conditions. When looking at average of sensor combination effects across the three different boot

Figure 3. All walking speed predictions were within the ‘acceptable’ to ‘excellent’ threshold. When subject specific data
was added to the generalized model (left column), the hybridized model (center column) were ‘excellent’ in prediction. The
personalized models (right column) further improved in accuracy as evidenced by the close clustering of all subject data
(each subject data is represented by different colored circles) towards the reference line (black line). The walking speed
predictions consistently improved with progressive loading with 30º (top row) having the widest spread away from the
reference line compared to 0º (bottom row).
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conditions, all MAPEs increased when compared to only using the sensor on the lateral boot. For
walking speed, the most favorable sensor combination was training the model with data from the boot
and the contralateral foot, which had MAPEs of 8.66% for the 30º, 5.13% for 5º, and 5.37% for 0º
condition (Table 2). All other MAPE values for their respective boot sensor combination are reported as
a supplement (see Supplementary Material).
Discussion

We developed a robust LASSO regression model that uses data from a commercially available
IMU secured to an immobilizing boot to predict peak Achilles tendon loads and walking speeds with
high levels of confidence. The predictions of the generalized and hybridized models did not fall within
the ‘acceptable’ range for Achilles tendon loading. However, the personalized tendon load models were
all considered ‘acceptable’ with the 0º tendon load model even being ‘excellent’. For walking speed
predictions using the generalized models, the 5º and 0º hit our ‘excellent’ threshold. However, the 30º
condition model fell shortly out of the <10% range with a 10.6% MAPE. The hybridized and
personalized walking speed models performed even better, all having ‘excellent’ predictive power.
Removing the gyroscope data stream, reducing sampling frequency, and the altering IMU placement all
had varying effects on the model. None altered the implementation potential for long-term monitoring
contexts, ultimately making their effects unremarkable. Therefore, the models’ performance can be
tuned by adjusting parameters including incorporating multiple sensors and battery life optimization
(remove gyroscope and reduce sampling frequency) without altering MAPE values in a meaningful way.
We recommend that researchers and clinicians adjust these parameters by carefully considering the
tradeoffs between model performance and user burden.

Since the personalized Achilles tendon load models and generalized walking speed models
both predict their target metrics with ‘acceptable’ to ‘excellent’ performance, an important clinical
decision of which monitoring paradigm to deploy arises. One monitoring paradigm accurately predicts
walking speed without collecting subject specific data using the generalized model, which eliminates
the need for an in-lab visit before monitoring. The other monitoring paradigm to consider is accurately
predicting Achilles tendon load using a personalized model, which would require an in-lab visit to collect
approximately 82 steps. However, we do not expect these steps to be difficult to obtain. Some possible
ways to collect the data is a 5-minute lab visit, walking around the clinic with the sensors for 5 minutes,
or requesting that the patient self-monitors with the sensors for one day.

The first consideration to choose the
appropriate monitoring paradigm is to consider
whether it is possible and worthwhile to obtain
subject-specific training data. To collect training
data, one must have the time (approx. 5 minutes),
space (lab space or a long hallway to collect
continuous walking data), and materials
(instrumented insole) to conduct a brief data
collection session. These data will later be used to
create the personalized model to predict tendon
load. The next consideration to choose the
appropriate monitoring paradigm to implement is
whether the preferred biomechanical metric is
walking speed or tendon load. Walking speed is
clinically useful because it is a metric that is easy to
understand and modify through coaching. For
example, people can more easily alter their walking
speed than the amount of load going through their
Achilles tendon. However, Achilles tendon load is a

Figure 4. Decision tree to select appropriate
monitoring paradigm to deploy based on
clinician/researcher needs. Users should consider
whether tendon loading predictions are necessary for
the research question or clinical feedback and
whether tendon loading data can be obtained to train
patient specific models.
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more direct measurement, which may be a better indicator when trying to optimize functional outcomes.
Thus, researchers and clinicians should consider what metric would best accomplish their goals
(Figure 4). Another factor to consider is what MAPE value can be tolerated. Our generalized walking
speed model (Figure 3) is better suited for situations where error values must be minimized because it
performed better than the tendon loading models – even models developed using personalized data
(Figure 2).

In addition to selecting an appropriate monitoring paradigm, minimizing user burden is also an
important factor to consider when designing longitudinal studies that monitor subject activity or loading
patterns. One way to decrease burden is to increase sensor battery life, which can be accomplished by
using only accelerometry functionality on the IMU or collecting data at a lower sampling frequency. For
example, collecting only accelerometer data and decreasing the sampling frequency to 50 Hz can
quadruple the battery life, allowing some IMUS to record for 34 days on a single charge.20 Maximizing
battery life allows us to continuously collect patient data between clinical checkups following Achilles
tendon rupture with minimal patient burden. Our results confirm that training the model using 50 Hz
data and no gyroscope data to maximize battery life decreases the MAPE of the generalized tendon
load model by 5.87% on average but increases the MAPE of the generalized walking speed model by
1.00% on average. For personalized models the effect of decreasing sampling frequency and
removing gyroscope is smaller. Training on data without gyroscope and at 50 Hz increased the average
MAPE of personalized tendon load predictions by 1.33% and of personalized walking speed predictions
by .783%. Given the minimal increases in MAPE in both the generalized models and the personalized
models when removing the gyroscope and sampling at 50 Hz, we consider this increased MAPE a
worthwhile tradeoff to quadruple the battery life.

We identified two promising monitoring paradigms that balance the tradeoffs between model
performance and user burden (Figure 5). The first optimal paradigm is to train a personalized model
that predicts tendon load using a single sensor on the immobilizing boot that samples at 50 Hz without
gyroscope. Under this configuration, the 30º (MAPE = 12.0%) and the 5º condition (MAPE = 14.6%)
were ‘acceptable’ (MAPE<20%). The model to predict tendon force in the 0º condition had ‘excellent’
predictive strength (<10%) with a MAPE of 9.22%. The second optimal paradigm is to train a
generalized model that predicts walking speed using a single sensor on the immobilizing boot that
samples at 50 Hz without gyroscope. The 0º (MAPE = 9.63%) and the 5º (MAPE = 8.18%) predictions
were both ‘excellent’ (MAPE <10%) while the 30º (MAPE = 10.4%) prediction was ‘acceptable’.
Therefore, both monitoring paradigms guarantee adequate predictions of a clinically relevant
biomechanical metric while minimizing the burden placed on the user, making them ideal to implement
for long-term monitoring contexts.
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Commercially available IMUs are quickly becoming ubiquitous, but it is often difficult to identify
an optimal sensor to deploy in the field. We identified 4 IMU criteria that we believe will maximize
subject retention: 1) the battery life must exceed 1 week, 2) the sensor does not require daily
interaction, 3) the sensor is resistant to dust and water experienced in the real-world, and 4) the sensor
does not require additional components to use like a smartphone. We found a commercially available
IMU (ax6, Axivity) that met our criteria. The accelerometer-only version of this IMU was used to
continuously capture 1-week physical activity from 100,000 participants in the UK Biobank (22).21
During this study, we used APDM Opal IMUs to time synchronize IMU data with our laboratory
equipment to measure Achilles tendon loading with our instrumented insoles and walking speed with
motion capture. However, Axivity’s AX6 IMUs are better to deploy in-field. To ensure that Opal IMUs

Figure 5. The model performance of two promising monitoring paradigms were all ‘acceptable’ or ‘excellent’. The left
column depicts the model performance of estimating tendon load using a personalized model with data at 50 Hz with only
accelerometer data. The right column shows the model performance of estimating walking speed using a generalized
model with data at 50 Hz with only accelerometer data. The accurate predictions of both these monitoring paradigms allow
us to monitor Achilles tendon health for long periods of time with minimal subject burden.
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and Axivity IMUs would perform similarly, we
performed a validation. In this validation
experiment we secured both sensors to a rigid
bar and tested the effects of gravity on the 3
accelerometer axes and swung the bar to
approximate a range of boot motions. As
expected, we found that the accelerations caused
by gravity and the angular velocities while
swinging between the 2 sensor types were
strongly correlated with an average cross
correlation score of 98.7% (Figure 6). This
demonstrates that laboratory grade IMUs, like the
Opal, can be used to develop training data sets
for field ready IMUs, like the AX6, that are better
suited for measuring activity patterns in the real-
world. We want to stress that at the time of this
study, we found that this specific IMU met our
criteria. But we anticipate that other IMU solutions
will quickly emerge as the wearable space in
healthcare continues to improve.

There are various adjustments and
improvements that can be made to optimize our
models’ performance when predicting both
tendon load and walking speed. Collecting data
from more subjects will increase the models’ robustness by capturing more gait variations, but these
gains are quickly diminishing. We calculated a learning curve from our data and found the validation
curve to level off with more data. The average difference in MAPE between the validation curve when a
model is trained on 80% and 90% of the dataset was 1.73%. The stability of the learning curve as more
data was added and the small difference of MAPEs observed with larger training sizes suggests that
collecting more data would not significantly alter MAPEs if more data were to be collected. We expect
that walking speed was more consistently predictable between different people since it is governed by
segment kinematics, and the model parameters, like stride pace and peak accelerations, were directly
captured in accelerometry data. Therefore, once generalized walking speed models are well-trained,
we expect these models to accurately predict new subject data. Conversely, muscle-tendon loads that
drive motion are more variable between individuals and this will be compounded by physical constraints
– like wearing an immobilizing boot – or injury and pain – like patients recovering from tendon injury.
The changes induced by the different physical constraints will have various manifestations in
accelerometer and gyroscope data and do not affect each person in the same manner. Therefore,
specific-subject data are needed to train personalized models that accurately reflect each subject’s
unique tendon loading. Future work should focus on including other biomechanical signals to improve
tendon load predictions like plantar loading or plantar flexor muscle activity. Recent work by Matĳevich
et al. demonstrated that machine learning algorithms predict musculoskeletal loading better when
loading measures are included in the model (18). This is an important consideration before moving
away from personalized models to predict tendon loading. However, the same tradeoff calculation we
made between model performance and user burden need to be made when introducing new sensor
types that come with their own limitations.

Our monitoring paradigm has several limitations that should be considered before implementing
wearables in clinical research. We studied healthy controls with no relevant history of an Achilles injury.
The LASSO models trained from their data do not capture the gait cycle abnormalities typically seen in
subjects who are injured or recovering from surgery. We instructed our subjects to walk with a

Figure 6. Axivity (blue) and Opal (red) IMU data show
strong agreement. While these findings are expected,
they confirm that IMU sensors can be selected based on
selection criteria that satisfy the research or clinical
need rather than IMU measurement fidelity.
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‘pathologic’ gait, but we could not confirm that this gait was equivalent to patient gait. While the results
from this study were a good estimate of the accuracies and errors that we may expect if we run the
same models on patient training data, we admit that these models do not necessarily transfer to
patients. Our study demonstrates proof-of-concept, but large patient data sets are needed to train
LASSO models specific to Achilles injury patient populations.

We successfully developed two monitoring paradigms that make long-term monitoring of
subjects feasible. One monitoring paradigm consists of creating unique, personalized models to predict
tendon load, while the other paradigm consists of creating a generalized model to predict walking
speed. Both models lead to highly accurate predictions of tendon load and walking speed. Each model
should be further tuned based on the researcher’s or clinician’s needs by using different combinations
of IMUs or choosing different settings. These monitoring paradigms allow for a cost-effective, long-term
monitoring solution with minimal burden to the subject. This new capability to longitudinally monitor
patients is a necessary tool that will allow us and other rehabilitation researchers to develop evidence-
based rehabilitative loading strategies that optimize patient healing outcomes. By doing so, we will
develop new evidence-based clinical recommendations that promote Achilles tendon healing.
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data
- dataset.pkl – python pickle file that contains all experimental data

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2023. ; https://doi.org/10.1101/2023.06.03.23290612doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.03.23290612
http://creativecommons.org/licenses/by/4.0/

