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Abstract (250 words) 37 

Background: Predic�ve performance of polygenic risk scores (PRS) varies across popula�ons. To facilitate 38 
equitable clinical use, we developed PRS for coronary heart disease (PRSCHD) for 5 gene�c ancestry 39 
groups. 40 

Methods: We derived ancestry-specific and mul�-ancestry PRSCHD based on pruning and thresholding 41 
(PRSP+T) and con�nuous shrinkage priors (PRSCSx) applied on summary sta�s�cs from the largest mul�-42 
ancestry genome-wide meta-analysis for CHD to date, including 1.1 million par�cipants from 5 43 
con�nental popula�ons. Following training and op�miza�on of PRSCHD in the Million Veteran Program, 44 
we evaluated predic�ve performance of the best performing PRSCHD in 176,988 individuals across 9 45 
cohorts of diverse gene�c ancestry.  46 

Results: Mul�-ancestry PRSP+T outperformed ancestry specific PRSP+T across a range of tuning values. In 47 
training stage, for all ancestry groups, PRSCSx performed beter than PRSP+T and mul�-ancestry PRS 48 
outperformed ancestry-specific PRS. In independent valida�on cohorts, the selected mul�-ancestry 49 
PRSP+T demonstrated the strongest associa�on with CHD in individuals of South Asian (SAS) and 50 
European (EUR) ancestry (OR per 1SD[95% CI]; 2.75[2.41-3.14], 1.65[1.59-1.72]), followed by East Asian 51 
(EAS) (1.56[1.50-1.61]), Hispanic/La�no (HIS) (1.38[1.24-1.54]), and weakest in African (AFR) ancestry 52 
(1.16[1.11-1.21]). The selected mul�-ancestry PRSCSx showed stronger associa�on with CHD in 53 
comparison within each ancestry group where the associa�on was strongest in SAS (2.67[2.38-3.00]) and 54 
EUR (1.65[1.59-1.71]), progressively decreasing in EAS (1.59[1.54-1.64]), HIS (1.51[1.35-1.69]), and 55 
lowest in AFR (1.20[1.15-1.26]).      56 

Conclusions: U�lizing diverse summary sta�s�cs from a large mul�-ancestry genome-wide meta-analysis 57 
led to improved performance of PRSCHD in most ancestry groups compared to single-ancestry methods. 58 
Improvement of predic�ve performance was limited, specifically in AFR and HIS, despite use of one of 59 
the largest and most diverse set of training and valida�on cohorts to date. This highlights the need for 60 
larger GWAS datasets of AFR and HIS individuals to enhance performance of PRSCHD.  61 
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Introduc�on 62 

Coronary heart disease (CHD) is a leading cause of death in the United States (U.S.) and 63 
worldwide 1. CHD has an es�mated heritability of 40-60% and the majority of the heritable risk is  64 
atributable to a polygenic component, i.e., the aggrega�on of modest effects across many gene�c 65 
variants 2. Polygenic risk scores (PRS) capture a propor�on of that heritability and are typically 66 
constructed by summing the products of the effect-size and the number of risk alleles at associated loci 67 
3,4. PRS for CHD have evolved over the last decade as progressively larger genome wide associa�on 68 
studies (GWAS) have been reported 5-8. These PRS have been evaluated in several studies and are 69 
associated with incident CHD independent of conven�onal risk factors such as hypertension, 70 
hypercholesterolemia, diabetes, and smoking as well as family history of CHD 8-10. 71 

Most PRS for CHD have been developed, op�mized, and validated in cohorts consis�ng largely of 72 
individuals of European (EUR) ancestry (here and throughout the manuscript ‘ancestry’ refers to gene�c 73 
ancestry) 11-14. Furthermore, the portability of these PRS to non-EUR groups is impacted by differences in 74 
allele frequencies (AF), effect sizes, and linkage disequilibrium (LD) paterns across ancestry groups, 75 
typically resul�ng in reduced predic�ve performance as studied popula�ons diverge in these factors; an 76 
observa�on most notable between EUR and African (AFR) ancestry popula�ons 6,11,15. We previously 77 
observed significantly lower performance of several EUR-derived PRS for CHD in AFR ancestry individuals 78 
16,17. To prevent exacerba�on of health dispari�es in the context of genomic medicine, there is a need to 79 
improve performance of PRS for CHD for non-EUR popula�ons.       80 

In this study, we leveraged a large scale, ancestrally diverse genome-wide meta-analysis for CHD 81 
to construct PRS for CHD op�mized for EUR, AFR, Hispanic/La�no (HIS), East Asian (EAS), and South Asian 82 
(SAS) ancestries. To this end, we u�lized two PRS deriva�on methods, pruning and thresholding (P+T) 83 
and the con�nuous shrinkage prior based PRS-CSx 8,18. We assessed the performance of the mul�-84 
ancestry PRS in individuals with diverse ancestry belonging to 8 independent valida�on cohorts. Finally, a 85 
PRS was selected for clinical implementa�on in the electronic Medical Records and Genomics (eMERGE) 86 
network phase IV study in which PRS-informed risk profiles for several common condi�ons are being 87 
returned to par�cipants 19. 88 

                              89 

Methods 90 

GWAS Summary Sta�s�cs for PRS Development 91 

We developed PRS using both ancestry-specific and mul�-ancestry meta-analysis summary 92 
sta�s�cs from a large-scale mul�-ancestry GWAS for CHD including 1.1 million diverse par�cipants with 93 
243,392 CHD cases 17. This diverse meta-analysis included 17,202 AFR, 6,378 HIS, 29,319 EAS, and 94 
190,776 EUR individuals with CHD belonging to four cohorts including the Million Veteran Program 95 
(MVP), the UK Biobank (UKBB), CARDIoGRAMplusC4D Consor�um (2015 release), and Biobank Japan 96 
(BBJ) (Figure 1) 17,20-22.   97 

We used two dis�nct methods to construct PRS, namely, pruning and thresholding (P+T) and the 98 
con�nuous shrinkage prior based PRS-CSx 8,18. Ancestry-specific PRS were defined from ancestry-specific 99 
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GWAS summary sta�s�cs (i.e., EUR specific summary sta�s�cs were used to develop a EUR specific PRS), 100 
and mul�-ancestry PRS were defined as PRS derived from mul�-ancestry summary sta�s�cs. These PRS 101 
were then trained and op�mized in a separate set of individuals from the MVP and externally validated 102 
in several diverse cohorts including the Atherosclerosis Risk in Communi�es (ARIC) 23, Mul�-Ethnic Study 103 
of Atherosclerosis (MESA) 24, Cardiovascular Health Study (CHS) 25, Women’s Health Ini�a�ve (WHI) 26, 104 
eMERGE Phases I-III genotyped cohort 27, Biobank Japan (BBJ) 28, Osaka Acute Coronary Insufficiency 105 
(OACIS) study 29, the TAICHI Consor�um 30, and individuals of SAS ancestry from the UKBB 31 (Table S1; 106 
Supplemental File 1).  107 

Pruning and Thresholding (P+T) 108 

We derived two independent sets of PRS (ancestry-specific and mul�-ancestry PRS) in two sequen�al 109 
steps: First, we excluded from the base GWAS summary sta�s�cs, correlated single nucleo�de variants 110 
(SNVs) by LD pruning, applying 4 different 𝑅𝑅2 thresholding values (0.2, 0.5, 0.8, and 0.9) and 2 different 111 
window distances (250kb and 500kb) within which these 𝑅𝑅2 were applied. LD pruning for ancestry-112 
specific PRS was performed based on reference panels comprised of 4,000 par�cipants from each 113 
respec�ve ancestry (EUR, AFR, HIS, and ASN), selected among MVP par�cipants included in the large-114 
scale GWAS for CHD. The LD pruning for the mul�-ancestry PRS was performed on the full subset of 115 
16,000 individuals from EUR, AFR, HIS, and ASN as the reference panel. This step generated 8 ancestry-116 
specific summary sta�s�cs and 8 mul�-ancestry summary sta�s�cs for PRS development. Second, for 117 
each newly generated summary sta�s�c from step 1, we applied 16 different p-value thresholds (5×10-08, 118 
1×10-04, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1) (Figure S1; Supplemental 119 
File 1). These led to 128 summary sta�s�cs within each ancestry, which were used to train the ancestry-120 
specific PRS. Similarly, we obtained 128 mul�-ancestry-based summary sta�s�cs to train the mul�-121 
ancestry PRS (PRSP+T).   122 

Con�nuous shrinkage (PRS-CSx)  123 

We applied a con�nuous shrinkage method, PRS-CSx (PRSCSx), on the effect sizes of a subset of 1.4 million 124 
well curated HapMap SNVs on each ancestry-specific summary sta�s�c. To iden�fy the op�mal shrinkage 125 
parameter, we applied 4 different global shrinkage phi parameters (1, 1𝑒𝑒−02, 1𝑒𝑒−04, and 1𝑒𝑒−06). LD 126 
reference panels used were EUR, AFR, AMR and EAS from the 1000 Genomes project. The mul�-ancestry 127 
PRS were constructed from the meta-analysis of ancestry-specific summary sta�s�cs obtained a�er 128 
applying the global shrinkage phi. For each ancestry, 4 ancestry-specific newly derived summary sta�s�cs 129 
were obtained to train ancestry-specific PRS and 4 newly derived mul�-ancestry summary sta�s�cs were 130 
obtained for train the mul�-ancestry PRS (Figure S2; Supplemental File 1). A total of 12 ancestry-specific 131 
PRS (one for each global shrinkage parameter value used for each ancestry group and 4 mul�-ancestry 132 
PRS) were chosen for further development (Figure S3; Supplemental File 1). 133 

PRS Training 134 

Following the construc�on of the ancestry-specific and mul�-ancestry PRSP+T and PRSCSx across a range of 135 
training specifica�ons, we proceeded to assess their performance in an independent set of prevalent 136 
cases and controls from the MVP (Figure 1B, PRS Training) using mul�variable logis�c regression with 137 
adjustment for age at CHD event for cases and age at the last visit in the electronic health record (EHR) 138 
for controls, year of birth, sex, and the first 5 principal components (PCs). We compared parameter 139 
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training on the mul�-ancestry reference panel set versus popula�on-specific reference panel. Ancestry-140 
specific PRS were evaluated in the corresponding ancestry, whereas the mul�-ancestry PRS were 141 
evaluated in each ancestry. PRS with the highest observed odds ra�o (OR) for CHD per 1 standard 142 
devia�on (SD) increase were deemed to have the op�mal training parameter values across ancestry 143 
popula�ons and subsequently advanced for valida�on. 144 

PRS Valida�on in the Million Veteran Program and Addi�onal External Cohorts   145 
Ancestry-specific and mul�-ancestry PRSP+T and PRSCSx trained for each gene�c ancestry group were 146 
validated in an independent cohort from the MVP and several addi�onal diverse cohorts (Figure 1C, 147 
Diverse Cohorts for PRS Valida�on). The MVP valida�on cohort was restricted to incident cases of CHD 148 
occurring a�er enrollment, and random controls, in a ra�o of 1:10 (Figure 1C) as previously described 149 
17.  Four prospec�ve cohorts, namely ARIC, MESA, CHS, WHI, a subset of the UKBB comprised of 150 
individuals of SAS ancestry, and addi�onally eMERGE Phases I-III, contributed CHD incident cases and 151 
controls of EUR, AFR, HIS, and SAS ancestry for PRS valida�on. Valida�on for EAS ancestry included 152 
individuals from mul�ple case-control studies, namely Han Chinese par�cipants from Taiwan as a part of 153 
the TAICHI consor�um, as well as Japanese par�cipants from the BBJ and OACIS studies who were not 154 
part of the mul�-ancestry discovery GWAS 30.  155 

Within MVP, we used diagnosis and procedure codes to iden�fy individuals with any clinical 156 
manifesta�on of CHD as previously described (Supplemental File 1) 17. This defini�on included both 157 
‘hard’ (e.g., myocardial infarc�on, revasculariza�on) and ‘so�’ outcomes (e.g., angina, non-invasive study 158 
posi�ve for ischemia). In the 4 external valida�on NHLBI cohorts and the eMERGE cohort, cases were 159 
restricted to myocardial infarc�on and revasculariza�on. Prevalent cases were defined as all other cases 160 
mee�ng diagnosis/procedure code criteria at the �me of enrollment. Addi�onal study details are 161 
included in Supplemental File 1.  162 

We calculated OR per 1-SD increase in PRS using mul�variable logis�c regression across all 163 
valida�on cohorts. The dbGaP, eMERGE, and UKBB cohorts were adjusted for gene�c ancestry using a 164 
con�nuous correc�on further defined in the Supplemental File 1 (Figure S4). The two EAS case-control 165 
studies were meta-analyzed using a fixed effect inverse-variance weighted model 32. For all external 166 
valida�on cohorts, we addi�onally es�mated OR for CHD for par�cipants in the top 5% of PRS 167 
distribu�on compared to the rest, as well as area under the curve (AUC) discrimina�on sta�s�c. 168 
Calibra�on was also assessed using the calibra�on func�on in the rms package in R to assess portability 169 
to cohorts that were not available for meta-analysis (i.e., the non-EAS cohorts) (Figure S5, Supplemental 170 
File 2) 33,34. 171 

Results 172 

PRS Training  173 

Pruning and Thresholding (P+T)  174 

Performance of the ancestry-specific and mul�-ancestry PRSP+T in each popula�on is shown in Figure 2. 175 
The mul�-ancestry PRSP+T systema�cally outperformed ancestry-specific PRSP+T with no�ceably higher OR 176 
per SD except for the HIS ancestry group where the performance was similar (Figure 2, Supplemental 177 
Figure S2). The mul�-ancestry PRSP+T, performed best in HIS popula�on, followed by the ASN popula�on 178 
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(1.78 and 1.73 OR per SD, respec�vely) (Supplemental File 2). Predic�on performance of the PRSP+T for 179 
each ancestry was op�mal at different p-value thresholds (Figure 2, Supplemental Figure S2). The mul�-180 
ancestry PRSP+T performed best at 𝑅𝑅2 ≤ 0.8 with LD blocks of 250 kb, p-value threshold of 0.01 for AFR, 181 
0.03 for EUR, and 0.30 for HIS. However, the differences between these PRS and the PRS op�mized at 182 
𝑅𝑅2 ≤ 0.8  and a p-value = 0.01 were marginal, and the mul�-ancestry PRS with a p-value threshold of 183 
0.01 was chosen for valida�on in addi�onal external cohorts.  184 

Con�nuous shrinkage (PRS-CSx) 185 

The performances of the 12 ancestry-specific PRSCSx and 3 mul�-ancestry PRSCSx built using EUR, AFR, 186 
HIS, and EAS summary sta�s�cs at various global shrinkage phi values for tuning (1𝑒𝑒−02, 1𝑒𝑒−04, and 187 
1𝑒𝑒−06) are shown in Figure 2. For all ancestry groups, 𝑝𝑝ℎ𝑖𝑖 = 1𝑒𝑒−02 resulted in the best predic�ve 188 
performance for PRSCSx and the mul�-ancestry PRS outperformed ancestry-specific PRS at this phi value. 189 
For the EUR popula�on, both the EUR-derived PRS and the mul�-ancestry PRS performed similarly, but 190 
ASN and HIS popula�ons performed best with the EUR-derived PRS, while the AFR popula�on performed 191 
best with the mul�-ancestry PRS (Figure 2, Supplemental File 2). Overall, the mul�-ancestry PRSCSx for the 192 
ASN popula�on resulted in the highest OR per/SD increase followed by EUR and HIS popula�ons where 193 
the strength of associa�on was similar, and lowest in the AFR ancestry.  194 

 195 

PRS Valida�on  196 

Million Veteran Program 197 

Ancestry specific PRSP+T predic�ve performance (OR per 1 -SD increase) for EUR (1.52), AFR (1.19), and 198 
HIS (1.81) was compared to the ancestry-specific PRSCSx performance for EUR (1.66), AFR (1.15), HIS 199 
(1.42), and ASN (1.32) (Figure 2; Supplemental File 2). This was also compared to the mul�-ancestry-200 
based methods using the same PRS training, i.e., the mul�-ancestry PRSP+T for EUR (1.57), AFR (1.22), HIS 201 
(1.78), and ASN (1.73), as well as PRSCSx for EUR (1.98), AFR (1.23), HIS (1.94), and ASN (2.06) (Figure 2; 202 
Supplemental File 2). Of all the methods assessed at this step, the best performing methods tended to 203 
be the mul�-ancestry PRSCSx and mul�-ancestry PRSP+T. However, there were overlapping confidence 204 
intervals (CIs) with some single ancestry methods and the single-ancestry PRSCSx for EUR performed well 205 
in other ancestries, so we decided to further assess the three methods (Figure 2). 206 

We advanced the ancestry op�mized PRSP+T and PRSCSx, for valida�on in an independent set of 207 
incident cases and matching controls in ancestry groups of EUR, AFR, HIS, EAS, and SAS individuals. 208 
Predic�ve performances of the mul�-ancestry PRS were assessed within each ancestry group in 209 
reference to a previously reported genome-wide PRS (i.e., PRSmetaGRS 10) constructed using a cohort of 210 
predominantly of EUR ancestry (Figure 3) 17. In this independent valida�on cohort, the mul�-ancestry 211 
PRSP+T and PRSCSx had a higher predic�ve performance compared to metaGRS (Figure 3). The mul�-212 
ancestry PRSCSx had a rela�ve increase in the es�mated OR per 1-SD of 12% and 23% in reference to 213 
PRSP+T and PRSmetaGRS, respec�vely, averaged across all three gene�c ancestries. 214 

 215 

Addi�onal External Valida�on Cohorts 216 
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The best performing PRSP+T were further validated in several addi�onal cohort and case-control studies 217 
of CHD including EUR, AFR, HIS, EAS, and SAS par�cipants (Table 1). ORs for ancestry-specific and mul�-218 
ancestry PRSP+T ranged from 1.16 in AFR to 2.75 in SAS and were comparable to published reports, 219 
despite inclusion of the diverse meta-analysis of GWAS (Supplemental File 2) 6,17,35,36. All popula�ons had 220 
OR es�mates for the top 5% vs the rest of the popula�on ≥ 2.16 for PRSP+T except for AFR (1.68). 221 

 The two best performing PRSCSx in the training dataset, a EUR-tuned PRS and a mul�-ancestry 222 
PRS, both with a tuning global phi value of 1𝑒𝑒−02, demonstrated similar performances in our valida�on 223 
cohorts (Table 1, Table S2; Supplemental File 1) as the mul�-ancestry PRS marginally outperformed the 224 
EUR-tuned PRS in all but the AFR and HIS cohorts. Point es�mates of the OR for subjects in the top 5th 225 
percen�le of scores compared to the remaining par�cipants shi�ed trend compared to those observed 226 
for the ORs per 1-SD for AFR, HIS, and SAS popula�ons, but these differences were in the context of 227 
mostly overlapping 95% confidence intervals. When comparing the mul�-ancestry PRSP+T to PRSCSx, the 228 
point es�mates of ORs were similar but higher for the mul�-ancestry PRSCSx for EUR, AFR, HIS, and EAS 229 
popula�ons. The OR per 1-SD was lower for the mul�-ancestry PRSCSx for the SAS popula�on (Table 1).  230 

 231 

Discussion 232 

Using summary sta�s�cs from the largest mul�-ancestry GWAS meta-analysis for CHD to date and 9 233 
independent valida�ons cohorts, cumula�vely comprised of 1.1 million diverse par�cipants including 234 
nearly a quarter of a million CHD cases of EUR, AFR, HIS, EAS, and SAS descent 17, we developed, trained, 235 
and validated mul�-ancestry and ancestry-specific PRS models to address the gap in predic�ve 236 
performance that currently exists between EUR and non-EUR ancestries.  237 

We observed that the use of summary sta�s�cs from a mul�-ancestry GWAS meta-analysis, in 238 
comparison to the use of ancestry-specific summary sta�s�cs, improved PRS performance in majority of 239 
the ancestry groups. PRS that leveraged shared informa�on between ancestries to es�mate SNV weights 240 
(i.e., PRSCSx) modestly outperformed the P+T method (i.e., PRSP+T). Based on the mul�-ancestry informed 241 
PRSCSx, individuals in the high-gene�c risk group (i.e., top 5% of the PRS distribu�on) compared to the 242 
remaining par�cipants in the respec�ve ancestry group (EUR, AFR, HIS, EAS, and SAS), had 2.5-fold, 1.7-243 
fold, 2.5-fold, 2.3-fold, and 5-fold increased risk of CHD, respec�vely. These results collec�vely highlight 244 
complementary effects of integra�ng summary sta�s�cs from mul�ple ancestries and the use of PRS 245 
deriva�on methods that leverage shared informa�on and LD diversity between ancestry groups to 246 
improve polygenic risk predic�on for CHD.  247 

Although remarkable progress has been achieved to date in both genomic discovery and 248 
polygenic risk predic�on among EUR cohorts 5,7-10,37-39, similar progress has not occurred among non-EUR 249 
popula�ons due to their underrepresenta�on in genomic studies 11-14. In recent years, the number of 250 
large-scale mul�-ancestry GWAS and polygenic risk predic�on studies have increased with the 251 
establishment of ancestrally diverse biobanks and collabora�ons efforts 17,18,30,40-43. Several mul�-252 
ancestry genomic studies, including for glycemic, hematologic and lipid traits as well as disease 253 
phenotypes such as type 2 diabetes and CHD, have increased the number of discovered loci, and 254 
improved fine-mapping and cross-popula�on polygenic risk predic�on with inclusion of non-EUR 255 
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par�cipants 17,40-42,44. Our findings are consistent with these results in that integra�on of summary 256 
sta�s�cs from several dis�nct ancestry groups improved predic�ve performance of PRS for all ancestries, 257 
including EUR descent. One possible explana�on for these observa�ons is iden�fica�on of poten�al 258 
causal variants that are more likely to be shared between ancestries but are obscured by popula�on-259 
specific LD paterns 14,45. Another likely contribu�ng factor to improved PRS performance is reduced 260 
noise in SNV effect size es�mates resul�ng from both weighted average of popula�on-level es�mates 261 
and increased total sample size 46,47. 262 

Despite the use of the largest ancestrally diverse cohort available to date, the improvement in 263 
the predic�ve performance of PRSCHD was limited in individuals of AFR ancestry compared to other 264 
ancestry groups. Prior reports inves�ga�ng portability of PRS between popula�ons noted that predic�on 265 
performance across a range of traits and phenotypes 6,11,15,16,48,49 decayed with increasing gene�c 266 
distance between study cohorts. Among the con�nental ancestry groups included in this study, AFR is 267 
the most gene�cally distant popula�on from EUR and hence the modest increase in predic�on 268 
performance with a mul�-ancestry PRSCHD compared to the ancestry-specific counterpart. A recent 269 
report showed similar heritability for CHD in the major con�nental ancestry groups but absence of two 270 
common haplotypes at the 9p21 locus in AFR individuals, which corresponds to the largest effect locus in 271 
EUR ancestry individuals 17. These findings suggest poten�ally a larger role of ancestry-specific causal 272 
variants in individuals of African origin with regards to heritability for CHD.   273 

Although the strength of associa�on of PRS with CHD varied between ancestry groups, it is 274 
important to consider epidemiological differences in CHD risk across these popula�ons. In clinical 275 
prac�ce, primary preven�on guidelines for CHD use absolute risk es�mates for clinical decision making, 276 
such as 10-year or life�me risk of a CHD event 50. Individuals are typically classified into different risk 277 
groups (e.g., low, borderline, intermediate, high risk) with a correla�ng intensity of pursued preven�ve 278 
measures. In the United States, African American and South Asian popula�ons have substan�ally higher 279 
atherosclero�c cardiovascular disease (ASCVD) related mortality rates compared to non-Hispanic whites 280 
1,51. Therefore, in a future risk model for ASCVD similar to the pooled cohort equa�on 52, incorpora�on of 281 
a PRS for CHD with a narrower risk gradient in African Americans, compared to a much wider gradient in 282 
non-Hispanic whites, could have more impact on re-classifica�on into a higher risk group as we have 283 
previously shown 6.   284 

Implementa�on of PRS in the clinical se�ng has begun for CHD, including at Mayo Clinic, where 285 
a PRS for CHD is available in the clinical se�ng, based on the results of the MIGENES clinical trial 53. The 286 
eMERGE Network, in its phase IV study is returning risk assessments to par�cipants for 11 common 287 
condi�ons, including CHD 19. The mul�-ancestry PRSP+T for CHD validated in this study 19 will be returned 288 
to eMERGE par�cipants. One of the major challenges in the clinical use of PRS include variable 289 
performance between gene�c ancestry popula�ons 11,15. Developing robust PRS for diverse ancestry 290 
groups is crucial to avoid worsening exis�ng health dispari�es 11 and a Na�onal Ins�tute of Health (NIH) 291 
funded ini�a�ve is addressing this as a priority 54. The ac�ve recruitment and inclusion of diverse 292 
par�cipants and con�nued development of novel PRS methods that target improvement of cross-293 
popula�on predic�on using a variety of approaches (e.g., incorpora�on of local ancestry 55, weigh�ng by 294 
trans-ancestry gene�c correla�on 56, and informing by fine-mapping and func�onal annota�on 57,58) will 295 
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be necessary for equitable implementa�on of PRS. Consequently, we an�cipate that PRS for CHD will 296 
con�nue to evolve and improve over �me. 297 

 298 

Study Limita�ons  299 
Despite the large and diverse composi�on of our study, the external valida�on for the SAS ancestry was 300 
limited to a single cohort with a modest number of cases, reducing the precision of the associated risk 301 
es�mates. We were not able to include smoking status or family history in the models as the data was 302 
not available for all cohorts, and this may have affected the strength of the associa�on of PRS with CHD 303 
in our analyses. 304 
 305 

Conclusions   306 

We demonstrated that incorpora�on of summary sta�s�cs from diverse gene�c ancestry groups, as 307 
opposed to individual ancestry groups alone, and leveraging shared informa�on between these 308 
popula�ons, led to improved performance of PRSCHD in majority of the ancestry groups. Despite 309 
u�liza�on of one of the largest and most ancestrally diverse set of training and valida�on cohorts to 310 
date, the gain in predic�ve performance for AFR was limited. Ongoing work is needed to narrow the 311 
persistent performance gap for AFR ancestry individuals. Increasing AFR representa�on at each stage of 312 
PRS development is necessary to lessen performance dispari�es, and such efforts should be a priority for 313 
the community of genomics researchers.  314 
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Table 1. Odds Ratios for incident CHD for multi-ancestry PRSP+T and PRSCSx in diverse ancestry cohorts. 519 
Ancestry Age a 

(mean±SDb) 
Cases/Controls Method AUCc ORd (95% CIe) 

per 1 SD 
P-value OR (95% CI) Top 

5% vs Rest 
P-value 

EUR 52.4 ± 15.5 4,970/47,732 
PRSP+T 0.773 1.65 

(1.59-1.72) 3.00E-159 2.30 
(2.07-2.56) 5.71E-55 

PRSCSx 0.774 1.65 
(1.59-1.71) 5.19E-171 2.48 

(2.23-2.77) 5.88E-61 

AFR 53.4 ± 14.7 1,359/15,649 
PRSP+T 0.735 1.16 

(1.11-1.21) 2.86E-12 1.68 
(1.39-2.03) 5.51E-08 

PRSCSx 0.736 1.20 
(1.15-1.26) 7.46E-14 1.74 

(1.41-2.15) 3.03E-07 

HIS 54.8 ± 14.3 314/5,824 
PRSP+T 0.699 1.38 

(1.24-1.54) 5.89E-09 2.16 
(1.47-3.19) 1.02E-04 

PRSCSx 0.706 1.51 
(1.35-1.69) 7.48E-13 2.57 

(1.77-3.73) 7.98E-07 

EAS 65.4 ± 12.9 6,321/16,430 
PRSP+T 0.748 1.56 

(1.50-1.61) 2.97E-146 2.47 
(2.10-2.90) 1.24E-39 

PRSCSx 0.762 1.59 
(1.54-1.64) 2.41E-160 2.34 

(2.06-2.66) 1.78E-28 

SAS 53.2 ± 8.4 517/8,661 
PRSP+T 0.786 2.75 

(2.41-3.14) 9.44E-52 3.95 
(3.03-5.15) 3.07E-24 

PRSCSx 0.803 2.67 
(2.38-3.00) 1.48E-63 4.92 

(3.81-6.35) 3.90E-34 
a Age- Age at enrollment 520 
b SD- Standard Devia�on 521 
c AUC-Area under the Curve 522 
d OR- Odds Ra�o 523 
e CI- Confidence Interval524 
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Figures 525 

 526 

Figure 1. Polygenic Risk Score development using independent MVP cohorts of diverse ancestry. 527 
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 528 

 529 

Figure 2. Performance of PRS-CSx (solid bars) or P+T (dashed bars) across gene�c ancestry groups when u�lizing the diverse MVP training cohort. The colors 530 
represent the GWAS summary sta�s�cs used to construct the PRS (green for AFR, purple for EAS, orange for EUR, and grey for the mul�-ancestry meta-531 
analysis). The Odds Ra�os (ORs) per 1 standard devia�on (SD) increase with confidence intervals (CIs) in the PRS are represented on the Y-axis and the 532 
popula�ons on which the PRS is trained are on the X-axis.533 
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 534 

Figure 3. Comparison of a prior PRS (metaGRS) and two new PRS using mul�-ancestry summary sta�s�cs for the predic�on of coronary heart 535 
disease (CHD) using the ancestrally diverse training cohort of the MVP. Odds Ra�os (ORs) per standard devia�on (SD) with confidence intervals 536 
(CIs) are shown for each gene�c ancestry group as determined in the methods as a result of metaGRS, P+T, and PRS-CSx PRS methods being 537 
performed on the MVP training cohort.    538 
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