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Abstract 20 

Malaria causes significant morbidity and mortality worldwide, disproportionately impacting 21 
sub-Saharan Africa. Disease phenotypes associated with malarial infection can vary widely, 22 
from asymptomatic to life-threatening. To date, prevention efforts, particularly those related 23 
to vaccine development, have been hindered by an incomplete understanding of which 24 
factors impact host immune responses resulting in these divergent outcomes. Here, we 25 
conducted a field study in 224 malaria positive individuals (rapid diagnostic test - RDT) from 26 
a high transmission area in Ghana, to determine immunological factors associated with 27 
uncomplicated malaria “patients” compared to healthy individuals in the community 28 
“controls”. Generally, the patients had higher parasite density levels although it had a 29 
negative correlation with age, suggesting that, is a key indicator of disease pathogenesis.  30 
We applied single-cell RNA-sequencing to compare the immunological phenotypes of 18,176 31 
peripheral blood mononuclear cells (PBMCs) isolated from a subset of the patients and 32 
controls (n=11/224), matched on location, age, sex, and parasite density. On average, 33 
patients were characterized by a higher fractional abundance of monocytes and an 34 
upregulation of innate immune responses, including those to type I and type II interferons 35 
and tumor necrosis factor-alpha (TNF-α) signaling via NFκB. Further, in the patients, we 36 
identified more putative interactions between antigen-presenting cells and proliferating CD4 37 
T cells and naïve CD8 T cells driven by MHC-I and MHC-II signaling pathways, respectively. 38 
Together, these findings highlight transcriptional differences between immune cell subsets 39 
associated with malaria that may help guide the development of improved vaccines and new 40 
therapeutic interventions for individuals residing in endemic areas.  41 
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 44 

 45 

Background 46 

In 2022, global estimates of malaria cases and deaths have increased to 249 million cases 47 
and 608 000 deaths  1. However, the development of an effective vaccine to address this 48 
global health threat remains challenging due to an incomplete understanding of the parasite’s 49 
biology and limited knowledge of which host factors influence clinical responses to infection.  50 

In malaria endemic communities, individuals may harbour malaria infections with mild to no 51 
symptoms warranting treatment, here referred to as healthy community controls. Such 52 
infections may be cleared naturally or progress to a uncomplicated malaria, where symptoms 53 
become profound enough to necessitate medical intervention. Instructive factors include 54 
environmental exposures, transmission intensity, host and parasite genetics, host-pathogen 55 
interactions, and host immune responses 2–5. Illustratively, upregulation of interferon 56 
responses and p53 gene expression can attenuate inflammation and protect children from 57 
fever 6; and, when comparing children with asymptomatic and severe malaria, the genes 58 
most upregulated in severe cases are related to immunoglobin production and interferon 59 
signaling 7. As reviewed previously, studies have postulated that interferons can orchestrate 60 
immune regulatory networks to dampen inflammatory responses and restrict humoral 61 
immunity, thus playing a critical role as a wedge that determines protection versus 62 
permissiveness to malaria infection 8,9.  63 

Similarly, it has been shown that the number and phenotype of cells responding to infection 64 
can vary with exposure to Plasmodium 10. For example, Africans, who tend to have higher 65 
levels of exposure, have been shown to exhibit metabolic and platelet activation during 66 
malaria infection as compared to typically infection-naïve Europeans 10. Similarly, children 67 
who experience high cumulative malaria episodes show upregulation of interferon-inducible 68 
genes and immunoregulatory cytokines, suggesting an immune modification to prevent 69 
immunopathology and severe outcomes during new infections 11. Beyond differences in 70 
exposure and infection history, the strain responsible for each infection can also alter 71 
immune response dynamics and disease pathogenesis 12,13.   72 

Since so many factors can influence host response dynamics to infection (e.g., exposure, the 73 
timing of infection), some studies have implemented tightly regulated models of malarial 74 
infection, such as controlled human�malaria infections (CHMI). CHMI studies have identified 75 
several pathways, including toll-like receptor signaling 14, platelet activation 10, interferon 76 
signaling 10,15,16, and B-cell receptor signaling, that are involved in immunological modulation 77 
of Plasmodium falciparum infections 6. Although CHMI enable more controlled examinations 78 
of host-pathogen dynamics post-malaria infection, clinically relevant differences can arise 79 
between responses seen in CHMI and natural exposure due to unresolved 80 
immunopathological mechanisms elicited during P. falciparum infection 10. Thus, studies 81 
involving natural cohorts provide a better avenue to understand vaiability in immune 82 
responses developed through repeated exposure and how they influence disease 83 
phenotypes. Besides, immunity to malaria develops very slowly through repeated infections, 84 
and can wane quickly if individuals leave a malaria endemic areas, suggesting that 85 
continuous natural exposure to malaria antigens is important for development of long term 86 
immunity 11. Collectively, these studies demonstrate the importance of obtaining a more 87 
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comprehensive understanding of the host and pathogen factors that influence immune 88 
responses to inform the development of new therapeutic approaches and improved vaccines.  89 

To date, most genomic analyses of immunological responses to malarial infection have been 90 
performed in heterogeneous cell populations of blood, brain, liver, or spleen tissues 17. The 91 
majority of these studies have been conducted in children and the studies show that 92 
symptomatic infections, as mentioned above, are characterized by upregulated expression of 93 
genes involved in interferon signaling, antigen presentation, neutrophil-associated 94 
signatures, and B cell modules relative to healthy controls 17. Adults, meanwhile, present 95 
slightly varying responses: symptomatic Malian adults, compared to naïve individuals, had 96 
upregulated B cell receptor signaling but more modest upregulation of interferon responses, 97 
while symptomatic Cameroonian adults showed marked induction of genes related to 98 
interleukins and apoptosis compared to presymptomatic individuals 18,19. These 99 
inconsistencies may be related to patient history/exposure or differences in cellular 100 
composition influencing clinical course through a combination of direct and indirect 101 
responses. The emergence of single-cell transcriptomics provides a unique opportunity to 102 
examine the sources of this variability 20 by profiling abundance and transcriptomic variation 103 
across immune cell populations in individuals with high malaria exposure but divergent 104 
clinical phenotypes. Moreover, by examining the expression of ligands, receptors, and genes 105 
involved in intercellular signaling, we can identify the critical mediators of immune responses 106 
and the pathogenesis of malaria for subsequent validation 21. 107 

Here, we present a comparative analysis of peripheral blood mononuclear cells (PBMCs) 108 
phenotypes in children from two related surveys conducted in 2019. An active case detection 109 
of P. falciparum infections at the community level (controls) and passive case detection at 110 
the health facility level for patients with uncomplicated malaria (patients) in an endemic area 111 
in northern Ghana. Our data describe in unprecedented detail, cell subsets and signaling 112 
pathways associated with disease severity to provide new insights into the immune response 113 
mechanisms that influence the course of P. falciparum infections in young children.   114 
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Results 115 

Clinical characteristics of study participants 116 

In this study, we defined  “controls” as healthy individuals who tested Plasmodium positive by 117 
RDT in the community. We defined “patients” as individuals with uncomplicated malaria who 118 
visited the hospital/health center from the same community and tested Plasmodium positive 119 
by RDT and were treated on outpatient basis. All samples were collected from the same 120 
region, Upper East region of Ghana which is a high transmission area. Overall, 224 121 
individuals were surveyed, including 40% (90/224) of the participants who were community 122 
healthy controls and 60% (134/224) of the participants who were patients with uncomplicated 123 
malaria (Figure 1a, Supplementary Table 1).  Although most participants were children 124 
between 1-15 years, there was no significant difference between the median age of patients 125 
compared to the controls (Wilcoxon rank-sum test, P=0.74) (Supplementary Table 1). But, 126 
there was a significant difference in the median parasite density of patients compared to the 127 
controls (Wilcoxon rank-sum test, P<0.001) (Supplementary Table 1). Further, the study 128 
sought to determine if the patients had higher parasite densities than the controls regardless 129 
of age. In general, there was negative correlation between parasite density and age 130 
regardless of phenotype up to age 25 years (Figure 1b). Under 3 years, the patients tended 131 
to have lower parasite densities, but these were still higher than their controls counterparts. 132 
After about age 10 parasite densities fell gradually and plateaued around age 25 but with 133 
high variability between the groups (Figure 1b). The correlation between parasite density 134 
and malaria patients was statistically significant (R2 = -0.38, P<0.001), but the correlation 135 
between parasite density and age was not statistically significant in the control group (Figure 136 
1b).  137 

Profiling pediatric malaria immune-cell populations using single-cell analysis 138 

In order to examine global differences in cellular composition, gene expression and 139 
intercellular communication between the two groups, we matched individuals based on age 140 
(aged 4-8 years), sex, and parasite density for both patients and controls and performed 141 
single-cell RNA-seq (scRNA-seq) (Figure 1a, Supplementary Table 2). There was no 142 
significant difference in median parasite density between patients and controls in the 143 
matched individuals (Wilcoxon rank-sum test, P>0.71) (Supplementary Table 2). In total, we 144 
generated 18,176 high-quality single-cell profiles across eleven children with P. falciparum 145 
infections, allowing us to ascertain differences in expression patterns of immune response 146 
genes that might influence disease pathogenesis.  Each sample was profiled using Seq-Well 147 
S3, a portable, simple massively parallel scRNA-Seq method 22. The resulting data were 148 
filtered to remove cells based on the fractional abundance of mitochondrial genes (<30%) 149 
and transcripts expressing in <20 cells. After variable gene selection, dimensionality 150 
reduction, clustering, cluster removal, and reclustering (Methods), we retained 18,303 151 
transcripts and identified 10 distinct cell subsets in the 18,176 cells, across the two groups of 152 
children (Figure 1c; Supplementary Figure 1a).  153 

We manually annotated these 10 clusters using known RNA marker genes to identify B cells, 154 
CD4 T cells, CD8 T cells, natural killer (NK) cells, monocytes (Mono), and dendritic cells 155 
(DC) (Supplementary Figure 1b and 1c). To identify and enumerate cell subsets in our 156 
dataset at higher resolution, we opted to map our query dataset to an annotated multimodal 157 
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reference dataset of PBMCs. First, we confirmed that all the cell subsets identified using 158 
manual annotation were present in the resultant UMAP (Supplementary Figure 1d). As 159 
expected, our reference mapped dataset recapitulated all PBMC subsets, including B, CD4 T 160 
cells, CD8 T cells, NK cells, Mono, and DC (these subsets are used throughout the work; 161 
Figures 1c and 1d). We identified several subclusters, such as intermediate, memory, and 162 
naïve B cells; naïve, proliferating, effector memory and central memory CD8 and CD4 T 163 
cells; proliferating CD56+ NK cells; CD14+ and CD16+ monocytes (Mono); plasmacytoid 164 
(pDC) and conventional (cDC) dendritic cells, and other cell subsets (Figures 1e and 1f). 165 
Since the reference dataset has only annotated two Mono clusters (CD14+ and CD16+), we 166 
hypothesized that there might be additional transcriptional heterogeneity describing actively 167 
responding Mono subpopulations. Therefore, further sub-clustering was done which resolved 168 
the Mono into 3 large subpopulations (Mono 1, Mono 2, Mono 3) and 1 small cluster (Mono 169 
4) (Figures 1g, 1h and 1i) based on previously reported markers 23. Taken together, these 170 
data distinguish nearly all distinct cell subsets that were present in PBMCs of children in both 171 
the patients and controls.  172 

Differences in relative cellular composition between the groups 173 

Next, we asked whether there were significant differences in the relative proportions of cell 174 
types between the patients and control group. We found that relative cell proportions of the 175 
major cell subsets (B, CD4 T, CD8 T, NK, Mono, and DC) varied between individuals in each 176 
group (Figures 2a and 2b, Supplementary Table 3). The patients exhibited elevated levels 177 
of circulating Mono while the controls had higher proportions of circulating B cells (Dirichlet-178 
multinomial regression, P<0.01; Figure 2a, Supplementary Table 3). Further analysis of the 179 
B cell subsets showed that the abundance of naïve and intermediate B cells was significantly 180 
reduced in the patient group compared to the control group (Dirichlet-multinomial regression, 181 
P<0.05; Figure 2b, Supplementary Table 3). We also found a significant expansion of both 182 
CD14+ and CD16+ Mono subsets in patients compared to the control group (Dirichlet-183 
multinomial regression, P<0.01; Figure 2b, Supplementary Table 3). Although there is 184 
evident variation in cellular proportions of T lymphocytes among all the individuals (Figures 185 
2a and 2b), we did not observe any significant difference in proportions of either CD4 or CD8 186 
T cells between the groups (Dirichlet-multinomial regression, P>0.05; Figure 2b, 187 
Supplementary Table 3). However, the proportions of naïve and central memory CD4 T 188 
cells were significantly higher in the patients compared to the control group (Dirichlet-189 
multinomial regression, P<0.01; Figure 2b, Supplementary Table 3). NK cell frequency was 190 
also higher in patients suggesting that they may play a role in disease progression (Dirichlet-191 
multinomial regression, P>0.05; Figure 2b, Supplementary Table 3). Among NK cells, the 192 
proliferating and CD56+ subsets were higher in patients compared to controls, but these 193 
differences were not statistically significant (Dirichlet-multinomial regression, P>0.05; Figure 194 
2b, Supplementary Table 3). Overall, the minor subsets of T cells and other cell types with 195 
low frequencies did not show differences in proportions between the groups but the main cell 196 
subsets had significant differences in proportions between patients and controls.   197 

Comparative analysis of inflammatory responses in children with malaria 198 

Having identified shifts in the composition of circulating immune cells between the patients 199 
and controls, we next asked whether gene expression differed within each immune cell 200 
subset between the two groups. Comparing patients to controls, we observed the largest 201 
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transcriptional changes (measured by pairwise DE across cell types with adjusted P value < 202 
0.05 and log fold change > 2) within B cells and Mono (Figures 2c, Supplementary Table 203 
4). Apart from B cell function genes, there was a general trend towards upregulation of 204 
inflammatory genes in B and T cells in patients relative to control group, including S100A8, 205 
CXCL8, and S100A9 (Figure 2c). Significant transcriptional changes were also observed in 206 
Mono, with genes such as IFITM3, FCER1G, and CCL4 being upregulated in patients 207 
compared to the control group (Figure 2c). Patients were also associated with the 208 
upregulation of Major Histocompatibility Complex I (MHC-I) genes such as HLA-A and HLA-209 
C which are involved in antigen presentation in Mono (Figure 2c). In CD4 and CD8 T cells, 210 
there was increased expression of some inflammatory factor signalling genes such as 211 
CXCL8 and NFKBIA in patients relative to the control group, suggesting direct sensing of 212 
parasite products during clinical presentation (Figure 2c). Using gene set enrichment 213 
analyses (GSEA), we found that the patients had robust induction of several innate immune 214 
response pathways such as TNF-α signaling via NF-κB, TGF-β signaling, IL6-JAK-STAT 215 
pathway, complement, IL2-STAT5 signaling, inflammatory response, interferon-α response 216 
(IFN-α), and interferon-γ response (IFN-γ) (Figure 3a, Supplementary Table 5). We 217 
observed that although each cell type was enriched in one or more of these pathways, there 218 
was a unique molecular signature of the genes involved in each. Upregulation of IFN-γ and 219 
IFN-α response pathways in Mono were characterized by increased expression of genes 220 
such as IFITM2, IFITM3, IL10RA, and TNFAIP3, while in NK cells they were typified by 221 
genes such as NFKBIA, CD69, and ISG20 (Figure 3b & 3c, Supplementary Table 5). Mono 222 
and natural killer cells upregulated TNF-α signaling via the NF-κB pathway with the induction 223 
of genes related to this pathway such as IL1B and TNFAIP3 for Mono, and  IL7R, CD44, and 224 
NFKBIA for NK cells (Figure 3b & 3c, Supplementary Table 6). Inflammatory responses in 225 
Mono were characterized by IL10RA, IL1B, and CXCL8 while in NK cells they were driven by 226 
CD69, IL7R, CXCL8, and NFKBIA among others (Figure 3b & 3c, Supplementary Table 5). 227 
Thus, the enrichment of unique genes for each cell subset for similar pathways suggests a 228 
specific but concerted contribution of each cell subset toward the innate immune response in 229 
patients.  230 

Relative enrichment of ISGs gene modules in monocytes of patients relative to 231 
controls 232 

Since IFN genes were significantly upregulated in Mono patients relative to the control group, 233 
we next sought to determine if entire gene modules were enriched. Interferon stimulated 234 
genes (ISGs) modules scores were significantly higher in B cells, DC, CD4 T cells, and Mono 235 
in patients compared to the control group  (Wilcoxon, adjusted P < 0.01 for all 236 
comparisons, Figure 4a, 4b, 4d, and 4e); however, there were no significant differences in 237 
ISG module scores in CD8 T cells and NK cells. Further examination of intra- and inter-238 
individual variation in these module scores revealed substantial intra-individual variation in 239 
cells from the same participant and between cells of the same type from different participants 240 
(Supplementary Figure 1e). Overall, our data show that Mono play a significant role in 241 
defining malaria patients compared to control participants from the same community through 242 
induction of the ISGs gene modules. 243 
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Role of MHC-I and MHC-II signaling pathways in cell-to-cell interactions 244 

Next, we used our single-cell data to infer putative axes of cell-to-cell communication using 245 
signaling ligands, cofactors, and receptors. First, we discerned cell-to-cell interactions in the 246 
patients and found that the number of interactions (ligand-receptor) originating from primary 247 
innate immune cells such as DC and Mono were greater than those originating from non-248 
antigen presenting cells (Supplementary Table 6).  However, our data show very few 249 
inferred cellular communication networks in the control group (Supplementary Table 6). 250 
This analysis suggests a role for Mono as antigen-presenting cells in orchestrating pro-251 
inflammatory responses by interacting with proliferating CD4 T cells, intermediate B cells, 252 
effector memory T cells, and naïve CD8 T cells in the patient group (Figure 5a). 253 
Conventional DC also produced factors that interact with proliferating and effector memory 254 
CD4 T cells respectively, suggesting a concerted effort by antigen-presenting cells to activate 255 
the immune response in patients (Figure 5a). Communication probabilities indicated that 256 
MHC-I and MHC-II play a role in these interactions among other pathways. The most 257 
significant receptor-ligand pairs for HLA-A, HLA-B, HLA-C, HLA-E, HLA-G, and HLA-F 258 
ligands for MHC class I include CD8A, CD8B, LILRB2, and LILRB1 (Figure 5b). The leading 259 
intercellular ligand-receptor pairs with CD4 T cells as signal receivers were distinct HLA 260 
genes, with the highest relative contribution being driven by HLA-DRA and HLA-DRB1 261 
(Figure 5c). The other minor signaling pathways that were important in patients include MIF, 262 
RESISTIN, ANNEXIN, GALECTIN, ADGRE5, APP, CD22, CD45, SELPLG, CD99, CLEC, 263 
and TNF signaling networks.  For the TNF signaling pathway, the CD56+ NK cells showed to 264 
be interacting with Mono and also with proliferating CD4 T cells, effector memory CD4 and 265 
CD8 T cells, and cDC (Figure 5d). This cell communication network was mediated by TNF in 266 
the sender cells and TNFRSF1B in the receiver subsets (Figure 5e), and this corroborates 267 
the DE results (Figure 5g). We examined the expression levels of TNFRSF1B across all the 268 
cell subsets and found that indeed it was expressed in all the receiver cells (Figure 5f). Only 269 
the pDC and CD16 Mono showed cell-to-cell interactions with naïve and intermediate B cells 270 
and might be playing a role in B cell activation and development in the control group through 271 
MHC class II molecules (Figure 5g and 5h). Therefore, exposure of innate immune cells to 272 
parasite ligands may potentially activate intracellular signaling cascades through cell-to-cell 273 
interactions to induce rapid expression of a variety of innate immune genes.  274 

  275 
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Discussion 276 

Here, we recruited 224 participants malaria from Navrongo, a high malaria transmission area 277 
with seasonal fluctuations 24. Interestingly, most of participants indicated that they use long 278 
lasting insecticide treated mosquito nets (LLINs), which helps to explain the low frequency of 279 
infections; after screening 1,000 individuals in the community, <10% of them were positive 280 
for P. falciparum as community healthy controls, suggesting a reduction in the malaria 281 
infection reservoir. The National malaria elimination programme (NMEP) distributes LLINs as 282 
part of strategy interventions, including community-based seasonal malaria chemoprevention 283 
initiatives for children under 5 years in order to reduce the malaria burden in this area 24. The 284 
ability of insecticide treated nets (ITNs) to interrupt malaria transmission has been shown in 285 
large scale studies, which demonstrated that modern housing and ITNs could reduce malaria 286 
infections by 1% and 16%, respectively 25. Further, we investigated the relationship between 287 
age and parasite density, and found that parasite densities tended to decrease with age, but 288 
the levels were generally higher in patients compared to controls in this high transmission 289 
intensity area 5. 290 

To better understand cellular responses driving these divergent clinical phenotypes, we 291 
performed scRNA-seq on PBMCs samples from eleven of the 224 individuals among the two 292 
groups, controlling for group variability driven by age, fever and parasite density. This 293 
enabled us to identify a potential role for interferon responses and TNF-α signaling via NFκB 294 
in Mono during the clinical manifestation of pediatric malaria infection. We also found 295 
differences in the fractional abundances of PBMC cell subsets, with patients characterized by 296 
a proportional increase in Mono while controls had a higher proportion of circulating B cells. 297 
We showed cellular level variations in the expression of innate immune modules within and 298 
between individuals as well as between clinical phenotypes. Further, we identified a role for 299 
Mono and other innate immune cells through MHC-I and MHC-II molecules in driving cell-to-300 
cell interactions with CD8 and CD4 T cells respectively. Together, our work recontextualizes 301 
the function of the innate immune cells in malaria, demonstrates how variable their 302 
responses can be, and links specific acute phase response signaling pathways to clinical 303 
presentation.  304 
 305 

Differential gene expression comparing patients and controls across cell types revealed a 306 
significant upregulation of genes associated with innate immunity in different cell types. We 307 
show that CCL3 and CCL4 (also known as macrophage inflammatory protein MIP-1α and 308 
MIP-1β respectively) were upregulated in Mono of patients, suggesting their possible role in 309 
modulating clinical disease 26. CXCL8, the most potent human neutrophil attracting/activation 310 
chemokine 27 was also highly upregulated in B cells, CD4, and CD8 T cells. Other studies 311 
have shown that circulating levels of CXCL8 and CCL4 correlated with parasite density, and 312 
when found in the cerebrospinal fluid they can predict cerebral malaria mortality 13,28–30. 313 
Furthermore, the adaptive immune cell subsets (B cells and T cells) in the patient group 314 
expressed two alarmins (S100A8 and S100A9) that are known to form calprotein 315 
heterodimer, an endogenous TLR4 ligand; this could suggest a possible role to silence 316 
hyperinflammation 31. We also show significant expression of FCER1G in B cells, Mono, and 317 
DC in patients, which is induced by IFN-γ and encodes for a gamma chain of the FC receptor 318 
and it is suggested to play an important role in controlling parasitemia 6. Collectively, our data 319 
imply that both adaptive and innate immune cells cooperatively play a role during the 320 
pathogenesis of malaria in patients when compared to healthy controls. 321 
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 322 
We showed that several immune-related pathways are activated by Plasmodium infection 323 
and disease including the TNF-α signaling via NFκB pathway, IFN-α/γ responses, IL2-324 
STAT5 signaling, and inflammatory response pathway in patients. Since the parasite life 325 
cycle involves repeated red cell invasion and rupture, the release of pyrogenic cytokines that 326 
drive these pathways such as interleukins, interferons, and TNF in Mono and NK cells, can 327 
signify pathophysiological events occurring in malaria patients 13,32. These observations could 328 
also mean that children who patients were sampled quite early during the onset of the 329 
disease progression trajectory 12. Our data are consistent with those previously described by 330 
integrating whole blood transcriptomics, flow cytometry, and plasma cytokine analysis 6, and 331 
our results further identify the cell subsets in which these pathways were more enriched. We 332 
show that each of the cell subsets has a unique signature of genes enriched in these 333 
immunogenic pathways with minimal sharing. Several studies have shown similar innate 334 
immune response pathways in individuals with malaria such as whole blood transcriptomics 335 
of the Fulani of West Africa 33, children repeatedly exposed to malaria 6,11, controlled human 336 
malaria infection (CHMI) studies 16, and even mice models 31. We have now confirmed some 337 
of these observations and demonstrated that in the patient state, robust upregulation of 338 
certain genes in specific cell subsets is associated with systemic inflammatory responses. 339 
Innate immune cells, such as Mono, DC, and NK cells, appear to be most reactive in 340 
patients, probably due to continuous exposure in a high transmission area as suggested by 341 
other studies 7,31,34.  342 
 343 
By collating gene modules of interferon-stimulated genes (ISGs), we show that there is a 344 
differencial expression between patients and controls across different cell subsets.  ISGs are 345 
normally produced as a function of interferon responses (IFNs) 8, which we observe to be 346 
enriched in patients. IFNs are produced primarily by DC to activate ISGs in other cells 35, and 347 
we observed that B cells, T cells, Mono, and DC have higher ISG module scores in patients 348 
compared to controls. Notably, our data show that each cell or cell subset responds 349 
differently upon IFN activation with varying transcriptional responses of an ISG module 350 
between individuals. This variability was also observed for cytokine modules, NF-κB target 351 
modules, and HLA modules. Similarly, a previous CHMI study observed striking inter-352 
individual variation in immune cell composition and immune responses, demonstrating that 353 
an individual can have a unique immune fingerprint 10. Thus, the variations in immune 354 
responses that we observed could be attributed to the complexity of the P. falciparum life 355 
cycle with several developmental erythrocytic stages, duration of infections, intensity of 356 
infection in each individual, genetic factors, genetic variation in immune response genes 357 
among other factors 12,36.  These findings on inter-individual variability in immune responses 358 
could provide insights when considering the design and evaluation of interventions that target 359 
host immunity in the control of malaria.  360 
 361 
Our scRNA-Seq data enabled us to quantitatively infer and analyze cell-to-cell 362 
communication networks across all the innate and adaptive immune cells (Jin et al., 363 
2021).  This analysis enabled us to uncover coordinated interactions between innate and 364 
adaptive immune cells through various ligands. The cell-to-cell interactions in patients were 365 
driven by MHC class I and II signaling pathways, whereby antigen-presenting cells were 366 
shown to have more interactions with proliferating CD4 and naive CD8 T cells. The 367 
importance of HLA genes has long been demonstrated by Hill and colleagues who 368 
associated HLA-Bw53 antigen and DRB1*1302–DQB1*0501 haplotype to independently 369 
protect against severe malaria in West Africa 37. Thus, our observations on cell-cell 370 
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interaction involving HLA molecules and T cells support the importance of these molecules 371 
during P. falciparum infection and disease progression, consistent with the observed varying 372 
degrees of interactions in patients compared to control groups. We also showed that within 373 
patient group, there are contrasting interactions between various HLA I and HLA II molecules 374 
with CD8 or CD4 T cell receptors respectively, which could be related to their tight regulation 375 
and antigen-presenting ability 38,39. Activation of CD4 and CD8 T cells has been correlated 376 
with protective immunity to malaria, and they can differentiate into several functionally distinct 377 
subsets in the presence of various cytokines 40. It was not surprising that we identified 378 
different fractional abundances of CD4 and CD8 T cell subsets in patients compared to 379 
control group of children, but we demonstrate that ultimately this results in varying degrees of 380 
interactions with Mono or DC. Future work should seek to identify the mechanisms that result 381 
in these variations and their impact in orchestrating phagocytic and humoral responses as 382 
this critical knowledge gap will be important in developing T cell-based malaria vaccines.   383 

Overall, by using scRNA-seq on PBMCs obtained from patients and controls in a high 384 
transmission area, this work sheds light on the interplay between peripheral immune cells 385 
during uncomplicated malaria, uncovering the genes and immune pathways in specific cell 386 
types that might play a significant role in defining the outcomes of infection. Data presented 387 
here demonstrate that the patients with uncomplicated malaria were characterized by the 388 
presence of inflammatory response signatures in specific cell types compared to the control 389 
group. The results could also suggest that in the control group, a muted innate immune 390 
response or disease tolerance mechanism plays a role in enabling children to harbour 391 
malaria parasites in high malaria transmission areas without developing uncomplicated 392 
malaria 41. The findings are relevant for guiding the development of malaria vaccines, as well 393 
as immunotherapeutics for alleviating uncomplicated malaria disease and preventing 394 
progression to severe disease.  395 

  396 
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 397 

Methods 398 

Study design and sample collection 399 

In 2019, we conducted a cross-sectional active case detection survey in the Kassena-400 
Nankana Municipality of the Upper East Region of Ghana, to recruit children with 401 
uncomplicated malaria and controls with P. falciparum infections. About 1000 community 402 
members were screened for malaria infection using a CareStartTM PfHRP2-based malaria 403 
Rapid Diagnostic Test (RDT,  Access Bio, NY, USA). Positive cases in the community were 404 
defined as “controls”, since these  individuals hadn’t sought treatment within the past two 405 
weeks . Similarly, a passive case detection of uncomplicated malaria cases was carried out 406 
using the same mRDTs to screen individuals presenting at the Navrongo War Memorial 407 
Hospital outpatient department. Individuals who tested positive for malaria and who provided 408 
written informed consent were recruited into the study as defined as “patients”. Five milliliters 409 
of whole blood was collected for PBMC isolation and for thick and thin blood smears for 410 
parasite identification and quantification using microscopy. Linear regression models was 411 
used to determine the relatisohsip between parasite density and age in patients and controls 412 
in R (version 4.2.1).    413 

 414 

Of the 224 individuals recruited in both arms of the study, five control participants and six 415 
patients were selected for single-cell transcriptomic analysis. Due to the observed clear 416 
differences in clinical presentation between the groups driven by fever, headache and 417 
parasite density, the 11 children selected for single-cell analysis had close similarity in these 418 
factors.  PBMCs were isolated in ACD tubes and spun at 2,000 revolutions per minute (rpm) 419 
for 10 minutes, and the leukocytes layer was transferred to 15 mL. The leukocytes were 420 
mixed with phosphate-buffered saline (PBS) and layered on 3 mL of lymphoprep in a 15 mL 421 
falcon tube. The layered cells were spun for 30 minutes at 800 g without breaks and 422 
harvested carefully by taking the buffy layer into another falcon tube. The PBMCs were 423 
washed twice with PBS and stored in freezing media. During thawing, complete media 424 
(RP10) with 20% Fetal Bovine Serum (FBS) was prepared by diluting 20 mLs of FBS in 80 425 
mL of Roswellpark Memorial Institute (RPMI) media 42. PBMCs were removed from Liquid 426 
Nitrogen to the -80 °C freezer and then thawed during each experiment. Thawing was done 427 
by placing the vial in a clean water bath at 37°C until a small crystal of frozen cells was 428 
visible. The tubes were cleaned with 70% ethanol, and the contents were transferred to 10 429 
mL of RP10 gently to minimise stressing the cells. The cells were centrifuged at 500g for 10 430 
minutes and resuspended in RP10. Cell viability was estimated using Haemocytometer and 431 
PBMCs were used after 1 hr of resting in the incubator at 37 °C. 432 

Seq-Well scRNA-Seq Workflow 433 

Seq-Well scRNA-Seq S3 workflow was performed according to the published methods 22,43. 434 
In brief, 5x105 PBMCs from each patient were dispensed into a single array containing 435 
barcoded mRNA capture beads (Supplementary Figure 1). The arrays were sealed with a 436 
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Polycarbonate Track Etch (PCTE) membrane (pore size of 0.01�M), allowing cells to remain 437 
separated through the lysis and hybridization steps. mRNA transcripts were hybridized and 438 
recovered for reverse transcription using the Maxima H Minus Reverse Transcriptase in the 439 
first strand synthesis step. Exonuclease (I) was used to remove excess primers and mRNA 440 
was captured via poly-T priming of the poly-A mRNA. The captured mRNA underwent first-441 
strand synthesis to generate single-stranded cDNA while bound to the beads. Enzymes with 442 
terminal transferase were used to create 3’ overhangs and three cytosines. The overhangs 443 
are used in template switching, whereby a SMART sequence is appended to the overhang 444 
on both ends of the cDNA molecule during the first strand synthesis. Some templates fail to 445 
switch, resulting in loss of the mRNA; hence they are chemically denatured using 0.1M 446 
NaOH with random octamer with the SMART sequence in 5’ orientation, and a second strand 447 
is synthesized. Whole transcriptome amplification of the cDNA was performed using the 448 
KAPA HiFi PCR master mix (Kapa Biosystems). Libraries were pooled and purified using 449 
AgenCourt AMPure XP Beads. The quality of the library was assessed using Agilent  Tape 450 
Station with D5000 High Sensitivity tapes and reagents. Samples were barcoded as 451 
described in the Nextera XT DNA (Illumina, USA) segmentation method. Tagmentation was 452 
important because, after cDNA amplification and clean-up, there are usually very long cDNA 453 
molecules that need to be fragmented to be sequenced by Illumina. The Nextera XT DNA 454 
tagmentation method is effective and allows for the addition of adaptors and multiplex 455 
indexes at both ends of each fragment 22. Finally, the amplified library was purified using 456 
SPRI beads, pooled, and sequenced using the NextSeq500 kit (Illumina, USA). Paired-end 457 
sequencing was performed with a read structure of 20 bp read one, 50 bp read two, and 8 bp 458 
index one as recommended for Seq-Well. The targeted sequencing depth was 100 million 459 
reads for all samples.  460 

Processing sequencing reads  461 

The raw data were converted to demultiplexed FastQ files using bcl2fastq (Version 5, Terra 462 
Workspace) using the Nextera XT indices and then aligned to the hg19 human genome 463 
using STAR aligner (Version 2.7.9) within the Broad Institute DropSeq workflow (Version 11, 464 
Terra Workspace). The data was cleaned using Cell Bender (V 0.2.0) with default settings, to 465 
remove ambient RNA 44. The raw expression matrices and sample information were loaded 466 
into the open-source statistical software R (R version 4.2.1). An array with 45,691 gene 467 
features for 22,819 cells described data collected across 11 samples. The data were filtered 468 
to include only features expressed in more than 20 cells, and the resultant matrix described 469 
18,303 gene features across 22,819 cells. A Seurat (Version 4.0) object was created, and 470 
the metadata was added to it to identify the participants 45. Cell cycle scoring was performed 471 
and computation of the percentage of mitochondria genes before integration. The object from 472 
each participant was transformed individually within the object using SCTransform followed 473 
by the selection of integration features, finding the anchors, and finally combined integration. 474 
Principal component analysis was performed to reduce the dimensionality of the data in 475 
order to identify clusters of cells with similar transcriptomic profiles. Clusters and cluster 476 
resolution were determined using FindNeighbors and a customized FindClusters function 477 
that showed that the best resolution was 0.523, with an average silhouette score of: 0.2 and 478 
11 clusters. One cluster showed no cluster-specific genes and was removed as multiplets, 479 
leaving 18,176 cells. The remaining clusters were reclustered and re-embedded, resulting in 480 
10 clusters with a resolution of 0.292, and an average silhouette score of: 0.301. The 481 
average number of transcripts and expressed genes were evaluated per cluster using half 482 
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violin and boxplots. The clusters were projected to a two-dimensional space using the 483 
Uniform Manifold Approximation and Projection (UMAP) 46 algorithm in Seurat. 484 

Reference-based mapping 485 

Immune cell subsets were identified using common cell markers to identify the Mono, T cells, 486 
B cells, NK cells, DC, and other immune cell populations. Uniform Manifold Approximation 487 
and Projection for Dimensional Reduction (UMAP) was used to embed the cell populations 488 
and color code based on the expression of surface markers. The clustered PBMC dataset in 489 
this study (query) was mapped to a reference CITE-Seq dataset of 162,000 PBMCS 490 
measured with 228 antibodies 45. The query data were projected into the same dimensional 491 
space as the reference dataset, thus separating the cells into the cell types present in the 492 
reference dataset. The method first projected the reference data transformation onto the 493 
query data, followed by the application of KNN-based identification of mutual nearest 494 
neighbors (anchors) between the reference and query. On an L2-normalized dimensional 495 
space, the reference data transferred continuous data onto the query data to annotate the 496 
scRNA data based on a weighted vote classifier. For visualization, reference-based UMAP 497 
embedding was used, considering that all the immune cell populations are well represented. 498 

Analyzing differences in samples  499 

Cluster/sample composition was calculated to determine the proportion of cells per cluster 500 
and per cell type. Cell subsets that were significantly different between patient and control 501 
groups were identified by computing Dirichlet Regression using the DirichReg function in 502 
DirichletReg Package in R 47. Differentially expressed (DE) genes were computed using the 503 
FindMarkers function on Seurat (Version 4.0), which we used to determine differentially 504 
expressed genes in the patient and control groups using MAST with significance at (P<0.05) 505 
and log fold change of > 0.2. Control 4 was not included in the DE analysis due to different 506 
levels of cytokine module scores compared to the other controls participants 507 
(Supplementary Figure 1e). DE genes were visualized using volcano-like plots and 508 
heatmaps to compare all the cell types between patients and controls. The fgsea (R-509 
package) was used to analyze the pre-ranked gene set enrichment analysis (GSEA). Module 510 
scores for HLA genes, ISG, NFκB target genes, and cytokines were analyzed using the 511 
AddModuleScore function in the Seurat R package. Statistical differences in module scores 512 
between the patients and control groups for each cell subset was computed using Wilcoxon 513 
sign-rank test with Bonferroni correction. Boxplots were used to visualize the module scores 514 
for each cell, denoting the median and interquartile range.  515 

Cell-to-cell Interaction using CellChat 516 

CellChat (Version 1.1.1) was used to quantitatively infer and analyze cell-to-cell 517 
communication networks 21. Statistically significant intercellular communication between cell 518 
groups was identified using permutation tests, and interactions with a significance level of 519 
less than 0.05 were considered significant 21. Heatmaps were used to visualize each 520 
signaling pathway and their cell-cell communications, highlighting the number of interactions, 521 
the sources (ligands) of the interactions, and the receivers (receptors) of the interactions. 522 
The relative contribution of each ligand-receptor pair to the overall signaling was shown in 523 
bar plots. The relative contribution provides a measure of a particular ligand-receptor 524 
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interaction in a particular cell-cell signaling network. This measure demonstrates the 525 
importance or significance of the interaction in mediating cell communication between the 526 
cell types and potential functional relationships. It is calculated by comparing the expression 527 
levels of different cell receptor and ligand genes between the cell types while accounting for 528 
all the possible interaction pairs within a signaling network. 529 
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 680 
Figures 681 

Figure 1 | Analysis of scRNA-Seq data from uncomplicated malaria patients and 682 
community healthy controls. a) Experimental flow showing that PBMCs were collected 683 
from eleven individuals out of 224 based on the modelling and matching the patients and 684 
controls by age, sex, and parasite density. b) Regression analysis between parasite density 685 
and age for patients (grey) and controls (blue). c) Uniform manifold approximation and 686 
projection (UMAP) plot of 22,819 cells from eleven participants colored by identities of 10 cell 687 
clusters; mainly B cells, T cells, and Mono. d) Expression levels of cluster-defining marker 688 
genes organized by color intensity to show the average expression of the marker in that 689 
particular cell type and the proportion of cells with non-zero expression shown by the size of 690 
the dot. e) Markers used to annotate the  subclusters to various cell subsets showing 691 
average expression and fraction of cells expressing the marker. f) Reference mapped 692 
dataset showing the predicted subclusters of B, CD4 T, CD8 T, NK, Mono, and DC cell 693 
subsets. Reference-defined cell subsets were generated from CITE-seq reference of 694 
162,000 PBMCS measured using 228 antibodies 45. g) UMAP of re-clustered and re-695 
embedded Mono showing four subclusters of the CD14 and CD16 Mono. h) Markers used to 696 
identify monocyte subclusters. i) Mono top 10 highly expressed genes in each subcluster. 697 

Figure 2 | Profiling of immune cells from patients compared to the controls.  a). 698 
Relative cell proportions of the major cell subsets within patients and control groups. 699 
Statistical tests were conducted using the Dirichlet Multinomial Regression in the 700 
DirichletReg package in R 47. The dots represent individual proportions while the color 701 
scheme represents the patients and control groups. b) Relative proportions of minor cell 702 
subsets compared between patients and controls. Cell proportions per group and P-value are 703 
shown in Supplementary Table 1.  c) Violin-like plots showing genes that are differentially 704 
expressed between patients and controls. The x-axis shows the Log2 fold change against the 705 
cell subsets (y-axis) – i.e., B cells, Mono, CD4 T cells, CD8 T cells, other T cells, dendritic 706 
cells (DC) and natural killer (NK) cells. The color scheme is based on the upregulated (up 707 
patients) and downregulated (down patients) genes in patients and the size of the point 708 
represents the adjusted P value. The frequency shows the number of comparisons in which 709 
the gene is significantly expressed in the cell subset.  710 

Figure 3 | Pathway analysis using geneset enrichment method a) Pathway analysis 711 
using an immunologic signature geneset enrichment analysis (GSEA) and the color scheme 712 
is based on the normalized enrichment score of genes DEG in patients. b) Dot plots showing 713 
some of the leading edge genes in IFN-γ and IFN-α response, TNF-α signaling via NFκB  & 714 
inflammatory response pathways in Mono and, c) NK cells. Dot size represents the fraction 715 
of cell subsets expressing a given gene. The dot color indicates scaled average expression 716 
by gene column.  717 
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Figure 4 | Module score analysis of innate immune gene modules. a) Boxplot showing 718 
interferon-stimulated gene (ISG) module scores per cell subset compared between patients 719 
and controls in B cells, b) CD4 T cells, c) CD8 T cells, d) DC e) Mono, f) NK cells. Module 720 
scores are computed using the AddModuleScore function in the Seurat R package. 721 
Statistical significance between the patients and controls of each cell subset was computed 722 
using Wilcoxon sign-rank test with Bonferroni correction. Non significant differences are 723 
indicated by ns.   724 

Figure 5 | Primary innate immune cells dominate the cell-to-cell interactions with other 725 
cell subsets. a) Heatmap showing the number of interactions between the PBMCs cell 726 
subsets. The y-axis shows the signal senders and the x-axis shows the signal receivers. b) 727 
Relative contribution of ligand receptor pairs in patients within the MHC class I signaling 728 
pathway and (c) MHC class II signaling networks, respectively. A higher relative contribution 729 
indicates the magnitidue of contribution of the ligand-receptor and its significant role in the 730 
MHC I or II signalling networks. d) Cell communications through the TNF signaling pathway 731 
and the arrows indicate signal sender to receiver. e) Relative contribution of the TNF-732 
TNFRSF1B ligand-receptor pair towards the TNF signaling pathway. f) Violin plots showing 733 
the expression levels of the TNFRSF1B in the Seurat object for the cell subclusters. g) 734 
Heatmap comparison showing the overall signaling between all cell subclusters and the 735 
number of interactions. h) Relative contribution of MHC class II signaling pathway in the 736 
control group. 737 

Supplementary Figure 1 | Cluster identification and annotation. a) UMAP of 22,819 cells 738 
from all participants, showing 10 clusters in the dataset (following iterative Louvian 739 
clustering). b) Dot plots showing genes used to manually annotate the clusters and show the 740 
fraction of cells expressing it and the non-zero expression. Dot size represents the fraction of 741 
cell types (rows) expressing a given gene (columns). The dot color indicates scaled average 742 
expression by gene column. c) UMAP colored by various manually annotated clusters based 743 
on the cell markers d) UMAP showing cell clusters identified from a reference-mapped 744 
dataset but labeled with the manually annotated cluster identities. e) Heatmap showing 745 
overall module score for each cell, and grouped based on each participant and all the cell 746 
types, and overall study groups. The color scheme represents a scale for module scores.  747 

 748 
Supplementary Tables 749 
 750 
Supplementary Table 1: Descriptive statistics of all study participants 751 
Supplementary Table 2: Descriptive statistics of matched study participants for scRNA-Seq 752 
Supplementay Table 3: Dirichlet regression analysis of proportions of various cell types 753 

compared between the two groups 754 
Supplementary Table 4: Differentially expressed genes between patients and controls  755 
Supplementary Table 5: Pathway analysis of differentially expressed genes between 756 

patients and control group 757 
Supplementary Table 6: Leading pathways in cell-cell interaction analysis for the patient 758 

group 759 
Supplementary Table 7: Leading pathways in cell-cell interaction analysis for the control 760 

group 761 
 762 
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