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Abstract 

 

Sexually transmitted diseases are detrimental to the health and economic well-being of society. 

Consequently, predicting impending outbreaks and identifying effective disease interventions 

through the use of epidemiological tools, such as compartmental models, is of the utmost 

importance. Unfortunately, traditional compartmental models, specifically the differential 

equation models attributed to the work of Kermack and McKendrick, require either a duration of 

infection that follows the exponential or Erlang distribution, despite the biological invalidity of 

such assumptions. As these assumptions negatively impact the quality of model predictions, 

alternative approaches are required that capture the variability in the duration of infection, along 

with its associated effects on the trajectory of disease, and in the evaluation of disease 

interventions. So, we apply an entirely new family of differential equation compartmental models 

based on the quantity, “person-days of infection,” to predict the trajectory of a disease. 

Importantly, this new family of models can alternative duration of infection distributions. As proof 

of concept, we calibrate our model to recent trends of chlamydia incidence in the United States 

and utilize a general statistical distribution that features periodic hazard rates. We then evaluate 

how increasing sexually transmitted disease screening rates alter predictions of incidence and 

saves disability adjusted life-years over a 5-year horizon. Our findings illustrate that increasing the 

annual screening rate of chlamydia from 35% to 40%-70% would annually avert 6.1-40.3 

incidence and 1.68-11.14 disability adjusted life-years per 1000 people. This suggests increasing 

the screening rate of sexually transmitted diseases in the United States would greatly aid in ongoing 

public health efforts to curtail the rising trends in preventable sexually transmitted diseases.  

 

 

Keywords: Chlamydia trachomatis, mean residual waiting-time, hazard rate, disability adjusted 

life-years, differential equations, compartmental model. 

 

 

Abbreviations 

 

ODE – Ordinary Differential Equation 

STD – Sexually transmitted disease 

STI – Sexually transmitted infection 

PID – Pelvic inflammatory disease 

HIV – Human immunodeficiency virus 

DALY – Disability adjusted life-years 

AIC – Akaike information criterion 

RSS – Residual Sum of Squares 
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1. Introduction 

 

Sexually transmitted infections (STIs) have seen sharp climbs in incidence, with a ~30% increase 

in the U.S. [1] between 2015 and 2019. This trend will likely be further exacerbated due to the 

COVID-19 pandemic, as evidence mounts on the social effects of lockdowns, the reduction in STI 

testing over the pandemic [2], and the diversion of health resources to more pressing matters [3]. 

While all STIs are of concern, chlamydia, in particular, represents a substantial health risk for the 

U.S., as it reigns as the most common STI, at a staggering 1.8 million incidences [4]. In part, the 

reason for the high incidence is the ease in which it spreads, as transmission commonly occurs 

through vaginal, anal, or oral intercourse, and possible mother-to-child transmission during 

childbirth [5]. Chlamydia is also associated with myriad negative health outcomes, including 

infertility [6], lymphogranuloma venereum [7], conjunctivitis [8], an increased risk of acquiring 

HIV [9], and social stigma [10], among numerous others. Consequently, action is required to stop 

the rising incidence of chlamydia, particularly through the effective deployment of health 

interventions.  

 

To mitigate the spread of chlamydia, health authorities recommend several health policies. The 

simplest is recommending abstinence from sexual intercourse to younger demographics [5], in 

addition to practicing safe sex for all sexually active individuals. Health authorities also 

recommend that at-risk groups, namely women, gay, and bisexual men younger than 25 years  [5], 

annually screen for chlamydia, especially for those with multiple sexual partners [5]. To 

communicate these recommendations, awareness campaigns on STIs are periodically launched 

targeting these demographics to illustrate the impact of STIs on life, reduce STI-related stigma, 

and to ensure people acquire the tools and knowledge to prevent and test for infection [11]. 

Fortunately, even if these health interventions fail and chlamydia infection occurs, effective 

antibiotics treatments are available, such as the use of azithromycin [12] or doxycycline [13,14]. 

Unfortunately, due to the delays in the appearance of symptoms and seeking of treatment, an 

infection can negatively affect reproductive health in both men and women. Pregnant women in 

particular face severe risk, as chlamydia infection may cause a fatal ectopic pregnancy, or even 

permanent damage to their reproductive systems through pelvic inflammatory disease (PID) [5].  

 

The recent uptick of chlamydia incidence in the U.S. calls to light an urgent need to evaluate 

strategies that may curtail the trend. To inform on such strategies, we evaluate the role that 

screening may have in reducing chlamydia incidence, through their associated effect on 

symptomatic and asymptomatic durations of infection. Specifically, we developed a mathematical 

model that predicts chlamydia infection among the sexually active population in the U.S. The 

model is based on describing the trajectory of person-days of infection, rather than incidence or 

prevalence, due to its capacity to account for a broader variety of duration of infection 

distributions, while maintaining a formulation as a system of ordinary differential equations. We 

use this model to measure how changes in the shape of the duration of infection distribution, 

attributed to enhanced screening practices, affect predictions on incidence averted and disability 

adjusted life-years (DALYs) saved over a 5-year horizon. 
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2. Materials and methods 

 

In what follows, we detail our mathematical model of chlamydia transmission, as characterized by 

a system of ordinary differential equations (ODEs). The model describes the evolution of the 

quantity of “person-days of infection” [15,16], which is based on the multiplication of incidence 

and a time-varying average duration of infection. So, we also provide details on the formulation 

of the time-varying average durations of infection, i.e., the mean residual waiting-times of 

infection, in addition to model parameters, goodness of model fit to data, the calculation of 

incidence averted, and DALYs averted for each intervention scenario.  

 

2.1 Mathematical model. We developed a compartmental model to predict the spread of 

chlamydial infection across the population of the U.S. The model considers five main 

compartments. Each compartment has two components, the number of people and the duration. 

Thus, we have the person-days susceptible to infection, 𝑆𝑚, person-days latently infected, 𝐸𝑚, 

person-days asymptotically infectious, 𝐼𝐴𝑚𝐴, person-days symptomatically infectious, 𝐼𝑆𝑚𝑆, and 

person-days removed from infection, 𝑅𝑚, where 𝑚 is the average duration of chlamydia infection, 

𝑚𝑆 is the mean residual waiting-time of symptomatic chlamydia infection at time 𝑡, and 𝑚𝐴 is the 

mean residual waiting-time of asymptomatic chlamydia infection at time 𝑡. The rates of transition 

between each compartment are given by,  

𝑑(𝑆𝑚)

𝑑𝑡
 =  

−𝛽𝑆𝑚(𝐼𝐴 + 𝐼𝑆)

𝑁
+ 𝑏𝑁𝑚 + 𝑁𝑚′ −  𝑏𝑆𝑚 +  𝜅𝑅𝑚, 

𝑑(𝐸𝑚)

𝑑𝑡
 =  

𝛽𝑆𝑚(𝐼𝐴 + 𝐼𝑆)

𝑁
− 𝜇𝐸𝑚 −  𝑏𝐸𝑚, 

𝑑(𝐼𝐴𝑚𝐴)

𝑑𝑡
 = 𝜑𝜇𝐸𝑚 −

(𝑚′𝐴 + 1)

𝑚𝐴
𝐼𝐴𝑚𝐴  − 𝑏𝐼𝐴𝑚𝐴,  

𝑑(𝐼𝑆𝑚𝑆)

𝑑𝑡
 =  (1 − 𝜑)𝜇𝐸𝑚 −

(𝑚′𝑆 + 1)

𝑚𝑆
𝐼𝑆𝑚𝑆  − 𝑏𝐼𝑆𝑚𝑆, 

𝑑(𝑅𝑚)

𝑑𝑡 
 =  

(𝑚′𝐴 + 1)

𝑚𝐴
𝐼𝐴𝑚𝐴  +

(𝑚′𝑆 + 1)

𝑚𝑆
𝐼𝑆𝑚𝑆  − 𝑏𝑅𝑚 − 𝜅𝑅𝑚. 

 

 

 

 

(1) 

Here, 𝑏 is the per capita birth rate, 𝛽 is the transmission rate, 𝑁 is the sexually active population 

of the U.S., 1/𝜇 is the incubation period of chlamydial infection, and 1/𝜅 represents the average 

duration of immunity to chlamydial infection. Additionally, the time-varying average duration of 

infection is calculated by 

 

𝑚 = (1 − 𝜑)𝑚𝑆 + 𝜑𝑚𝐴. 
 

where 𝜑 is the proportion of asymptomatic incidence.  

 

For our model, we consider different functional forms of mean residual waiting-times. First, we 

assume the classical scenario when the duration of infection is exponentially distributed, which 

results in a constant mean residual waiting-time. Next, we consider a generalization of a family of 

distributions with periodic hazard rates [17] (Supplementary Materials).  
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Figure 1. Compartmental diagram. The flow of susceptible person-days (𝑆𝑚), to latently infected 

(𝐸𝑚), and either asymptomatically infectious person-days (𝐼𝐴𝑚𝐴), or symptomatically infectious 

person-days (𝐼𝑆𝑚𝑆), and recovered person days (𝑅𝑚). Compartments are composed of individuals 

multiplied by the time-varying average duration of infection, 𝑚, the time-varying duration of 

asymptomatic infection, 𝑚𝐴, or the time-varying duration of symptomatic infection, 𝑚𝑆. For ease 

of presentation, birth and mortality rates are not included (see equation 1 for details).  

 

2.2 Parameter estimation and the durations of infection. For our model, we estimate parameters 

through the literature (Table 1) and published data on chlamydia incidence [18]. We estimate the 

average duration of asymptomatic infection with chlamydia using synthesis of data on the duration 

of asymptomatic chlamydia trachomatis infection [19,20] (Table 1). Additional model parameters 

are estimated using a nonlinear least squares procedure, in conjunction with Matlab’s ode45 and 

fmincon algorithms, which fit the SEAIR and gSEAIR models to weekly chlamydia incidence 

(Figure 2). Additional parameter details, including those for the calculation of DALYs, are 

available in Table 1 and the Supplementary Materials.  

 

Traditionally, the duration of infection is assumed to be Exponentially distributed. Under such 

assumptions 

 
𝑑

𝑑𝑡
𝑃𝑗(𝑡, 𝑥) = −𝜇𝑗𝑃(𝑡, 𝑥) = −𝜇𝑗𝑒−𝜇𝑗(𝑡−𝑥) 

 

where 𝑃𝑗 is a survival function, 𝜇𝑗  is the mean, and the subscript 𝑗 is used to denote either 

asymptomatic (A) infection or symptomatic (S) infection [21]. 

 

Given this definition of the duration of infection distributions, the mean residual waiting-time is  

𝑚𝑗(𝑡) =  
1

𝑃𝑗(𝑡,𝑥)
∫ 𝑃𝑗(𝑡, 𝑥)𝑑𝑥

∞

𝑡
= 𝜇𝑗. 

Note, because 𝑚𝑗(𝑡) is constant it follows that system (1) reduces exactly to the traditional SEAIR 

model.  
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To evaluate the potential periodicity of the trajectory of chlamydia, we assume both the 

asymptomatic and symptomatic durations of infection follow a family of distributions with 

periodic hazard rates. This family of distribution is based on generalizing the simplest probability 

density function, 𝑝(𝑡), with a periodic hazard rate [17], namely 

 

𝑝(𝑡) = 𝐶(1 − 𝛼 cos(𝑤𝑡))𝑒−𝜌𝑡, 
 

where 𝐶 is a normalizing constant, 𝜌 > 0, 𝛼 ∈ (−1,1) and 𝑤 ∈ [0,2𝜋], to that of a Fourier cosine 

series, 

 

𝑝(𝑡) = 𝐶 (1 − ∑ 𝛼𝑖 cos(𝑤𝑖𝑡)

𝑛

𝑖=1

) 𝑒−𝜌𝑡, 

 

where 𝜌 > 0, 𝑎𝑖 ∈ (−1,1),  ∑ |𝑎𝑖|
𝑛
𝑖=1 < 1 and 𝑤𝑖 ∈ [0,2𝜋]. 

 

Recalling that 
𝑑

𝑑𝑡
𝑃𝑗(𝑡, 𝑥) = −𝜂𝑗(𝑡)𝑃𝑗(𝑡, 𝑥), the hazard rate is given by (Supplementary Materials) 

 

 𝜂𝑗(𝑡) =
𝜌𝑗(1 − ∑ 𝑎𝑗𝑖 cos(𝑤𝑗𝑖𝑡)𝐾

𝑖=1 )

1 − 𝜌𝑗 ∑
𝑎𝑗𝑖(𝜌𝑗 cos(𝑤𝑗𝑖𝑡) − 𝑤𝑗𝑖 sin(𝑤𝑗𝑖𝑡))

𝜌𝑗
2 + 𝑤𝑗𝑖

2
𝐾
𝑖=1

, 

 

with 𝜌𝑗 > 0, 𝑎𝑗𝑖 ∈ (−1,1), and ∑ |𝑎𝑗𝑖| < 1𝐾
𝑖=1 . Here 𝜌𝑗  represents the average duration of infection 

in the absence of periodic effects, 𝑎𝑗𝑖 is the amplitude of variation in recovery with frequency 

2𝜋/𝑤𝑗𝑖, where the subscript 𝑗 is used to denote either asymptomatic (A) infection or symptomatic 

(S) infection [21]. 

 

Given the hazard rate and its relation to the mean residual waiting-time, 𝜂𝑗 = (𝑚𝑗′ + 1)/𝑚𝑗 with 

𝑚𝑗(0) = 𝜇𝑗, we have that 

  

𝑚𝑗(𝑡) =

1 − 𝜌𝑗
2 ∑ 𝑎𝑗𝑖

(𝜌𝑗
2 − 𝑤𝑗𝑖

2) cos(𝑤𝑗𝑖𝑡) − 2𝜌𝑗𝑤𝑗𝑖 sin(𝑤𝑗𝑖𝑡)

(𝜌𝑗
2 + 𝑤𝑗𝑖

2)
2

𝐾
𝑖=1

𝜌𝑗 − 𝜌𝑗
2 ∑

𝑎𝑗𝑖(𝜌𝑗 cos(𝑤𝑗𝑖𝑡) − 𝑤𝑗𝑖 sin(𝑤𝑗𝑖𝑡))

𝜌𝑗
2 + 𝑤𝑗𝑖

2
𝐾
𝑖=1

. 

 

2.4 Intervention scenarios and health metrics. To inform on the benefit of awareness campaigns 

for mitigating chlamydia transmission, we consider the effects of increasing STI screening rates.  

 

We assume that the proportion of people that get screened within one year [22] follows the 

distribution 

𝐹(𝑥) = 1 − 𝑒−𝑥. 
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Figure 2. Trajectories of new chlamydia incidence and cumulative square error. a) The trajectory 

of chlamydial infection in the United States over 175 weeks, and b) the square error of model 

predictions relative to reported data. Reported incidence (black curve), a classical SEAIR model 

fit (𝐾 = 0, grey curve), and the gSEAIR models with hazard rates that feature one to nine cosine 

terms (𝐾 = 1 to 𝐾 = 9). 

 

 

Thus, the average time a person has between screenings is 1/𝑥 years, which yields the screening 

rate [22], 

𝑐 =
7𝑥

365
 per week. 

 

Imposing a baseline annual screening rate of 35% [23] of the population, it follows that 𝑐𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 =
0.0083 per week. Alternatively, if we consider intervention scenarios that increase the annual 

proportion of the population screened to 40%, 50% and 70%, we have that 𝑐40 =
0.0098 per week, 𝑐50 = 0.0133 per week, and 𝑐70 = 0.0231 per week respectively. 

 

For these screening rate scenarios, we evaluate our model over 5 years. We estimate incidence 

under each mean residual waiting-time by subtracting predictions from 40%, 50%, and 70% 

screening rates from the baseline. The same approach was also taken to estimate annual DALYs 

saved, which were discounted at the standard rate of 5% per year (see Supplementary Materials 

for further details).   

 

2.5 Goodness of fit. To evaluate the quality of model fit to incidence data, we calculate the Akaike 

information criterion (AIC) [24].  

 

For ease of presentation, we define the list of variables as 𝑋: = (𝑆, 𝐸, 𝐴, 𝐼, 𝑅, 𝑚𝐴, 𝑚𝑆)𝑇 , and the list 

of parameters as 

𝛩𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙: = (𝛽, 𝑁, 𝜅, 𝜇, 𝜙, 𝜇𝐴, 𝜇𝑆)𝑇  

when the duration of infection is exponentially distributed, and 
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𝛩𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐: = (𝛽, 𝑁, 𝜅, 𝜇, 𝜙, 𝜌𝐴, 𝑎𝐴1, . . . , 𝑎𝐴𝐾, 𝑤𝐴1, . . . , 𝑤𝐴𝐾, 𝜌𝑆, 𝑎𝑆1, . . . , 𝑎𝑆𝐾 , 𝑤𝑆1, . . . , 𝑤𝑆𝐾)𝑇 

 

when the duration of infection follows the distribution with a periodic hazard rate.  

 

Thus, defining 𝛹 = (𝑠0, 𝑒0, 𝑎0, 𝑖0, 𝑟0, 𝑚𝐴(0), 𝑚𝑠(0))𝑇, we can represent the ODE system as  
𝑑𝑋

𝑑𝑡
: = 𝑓(𝑡, 𝑋(𝑡; 𝛹); 𝛩). 

The new symptomatic infections are defined by 

𝑔(𝑡, 𝑋(𝑡; 𝛹); 𝛩) = (1 − 𝜙)𝜇𝑋2. 
For these models the Residual Sum of Squares (RSS) is 

𝑅𝑆𝑆 = ∑(𝑦𝑖 − 𝑔(𝑡𝑖, 𝑋(𝑡𝑖; 𝛹); 𝛩))2

𝑀

𝑖=1

 

where 𝑦𝑖 is the observed incidence on the 𝑖𝑡ℎ week [14,25] and 𝑀 = 175 is the number of data 

points. Optimal parameters sets, �̂�𝑗, and initial conditions �̂� for the 𝑗𝑡ℎ distribution types were then 

determined by minimizing RSS (Figure 4) through a combination of Matlab’s ode45 and fmincon 

algorithms.  

 

Thus, given the optimal parameters, it follows that  

𝐴𝐼𝐶 = 𝑀 ln (
𝑅𝑆𝑆

𝑀
) + 2𝐾, 

where 𝐾 represents the number of model parameters to be estimated from observed data. The 

model with minimum 𝐴𝐼𝐶 is deemed the best fit. 

 

From the AIC, we approximate the probability that model 𝑖𝑡ℎ is the best candidate among all 

models (in the sense of combining accurate predictions while limiting the possible number of 

parameters[26]) by calculating AIC weights. First defining Δ𝐴𝐼𝐶𝑗 = 𝐴𝐼𝐶𝑗 − min(𝐴𝐼𝐶), the 

Akaike weights [27] for each scenario are 

𝑊𝑖 =
𝑒−

1
2

Δ𝐴𝐼𝐶𝑖

∑ 𝑒−
1
2

Δ𝐴𝐼𝐶𝑗9
𝑗=0  

. 

3. Results 

 

We assessed the effectiveness of the gSEAIR model by estimating the health burden of chlamydia 

in the US and informing on the potential health benefits of increasing STI screening rates from the 

current annual coverage of 35% to 40%, 50%, and 70%, respectively. For these scenarios, we 

estimated the annual incidence averted and DALYs averted per year relative to the baseline for 

both the traditional SEAIR and gSEAIR models. The particular gSEAIR models considered feature 

mean residual waiting-times for the duration of asymptomatic and symptomatic infection with up 

to 9 cosine terms (𝐾 = 1 to 𝐾 = 9). To identify the most appropriate SEAIR and gSEAIR models, 

we used AIC, in addition to AIC weights, to both identify the optimal model and estimate the 

probability it was optimal among all considered scenarios. 

 

Our results show that increasing the number of cosine terms in gSEAIR decreases the square error 

of model predictions relative to the data (Figure 3). Additionally, the gSEAIR model based on a 
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hazard rate with 6 cosine terms is optimal compared to the other candidate models (Figure 3), as 

it had the lowest AIC score (Table 3). Conversely, the SEAIR model (i.e., the gSEAIR model with 

𝐾 = 0) had the highest AIC score, with a ΔAIC of 300.6 (Table 3), which indicates it is the least 

effective of the modeling scenarios considered. This result is supported by the AIC weights, which 

indicate that the 𝐾 = 6 scenario of the gSEAIR model is optimal with a probability of 0.54 (Table 

3), where most other scenarios had ΔAIC scores of at least 4.5 and AIC weights below 0.05. The 

exception to this is 𝐾 = 7, where the ΔAIC was 0.81 and the AIC weight was 0.36 (Table 3), 

suggesting this scenario is a viable alternative to the 𝐾 = 6. 

 

 
Figure 3. Akaike information criterion score and square error. The AIC score (solid blue curve, 

left axis) and square error (dotted orange curve, right axes) for SEAIR (𝐾 = 0) and gSEAIR (𝐾 =
1 to 𝐾 = 9) models relative to incidence data.  

 

At a baseline screening rate of 35%, the SEAIR and gSEAIR models predicted 55.5-56.1 annual 

incidences of chlamydia per 1000 people. Increasing the screening rate to 40%, 50%, or 70% 

averted 6.1-8.3, 17.5-22.3, and 35.2-40.3 annual incidences per 1000 people, respectively, 

depending on the number of cosine terms included in the mean residual waiting-times (Table 3). 

Of these findings, the gSEAIR model generally predicted a greater benefit when increasing the 

screening rate to 40%-70%, with an additional 1.8-4.2 annual incidence averted per 1000 people 

when compared to the gSEAIR model (𝐾 = 6) to the SEAIR model. 

 

With regard to the health burden of chlamydia, we predict increasing the screening rate to 

screening rate 40%, 50%, or 70% will annually avert 1.68-2.29, 4.83-6.19, and 9.74-11.14 DALYs 

per 1000 people (Table 3), respectively. Typically, the gSEAIR models predicted a greater quantity 

of DALYs averted relative to the SEAIR model, except for the 𝐾 = 1 case (Table 3). When 

comparing the optimal gSEAIR model (𝐾 = 6) to the SEAIR model, predictions illustrate an 

additional annual 0.51 DALYs averted per 1000 people (Table 3). Averaging across all scenarios, 

annual DALYs averted per 1000 people were 2.06, 5.7, and 10.6 for screening rates of 40%, 50%, 

and 70%, respectively (Table 3).  
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Averaging all gSEAIR modeling scenarios illustrates the duration of asymptomatic infection 

peaked at 32.2 weeks around the 85th week of the outbreak. The symptomatic infection peaked 

much earlier, specifically around week 22, with an average duration of 1.9 weeks (Figure 4). 

Interestingly, the only mean residual waiting-time (with 𝑡 > 0) that was strictly greater than the 

constant average duration of asymptomatic infection for the SEAIR model was the gSEAIR with 

𝐾 = 1. In contrast, mean residual waiting-times were typically less than the average duration of 

symptomatic infection for the SEAIR model, although several cases briefly surpass this value near 

the end of the outbreak (Figure 4). Towards this regard, when 𝐾 = 5, the mean residual waiting-

time for symptomatic infection was at a minimum (Figure 4), although this may be a result of the 

associated probability density function decay rate (Figure 5). For asymptomatic infection, there is 

not a clear scenario where one of the mean residual waiting-times is consistently the minimum, as 

the majority of scenarios appear to converge to a common probability density function (Figure 4, 

Figure 5).  

 

For the optimal gSEAIR model (𝐾 = 6) the cosine terms of the mean residual waiting-times that 

are most influential correspond to a period of 82.4 days with an amplitude of 0.22 for symptomatic 

infection, and 817 days with an amplitude of 0.45 for asymptomatic infection (Table 2). For 

symptomatic infection, there were other cosine terms nearly as influential, specifically all 

amplitudes from 𝛼𝑆1 to 𝛼𝑆4where close to 0.2. For asymptomatic infection, the 𝛼𝐴1term was 

dominant, with amplitudes 𝛼𝐴2, 𝛼𝐴4, and 𝛼𝐴6 all about one-third of its value (Table 2). 

 

a)              b) 

 

Figure 4. Mean residual waiting-times of the duration of infection of chlamydia. The average 

duration of infection over 175 weeks given a) symptomatic infection and b) asymptomatic 

infection. The value of 𝐾 corresponds to the number of cosine terms in the Fourier cosine series 

in the probability density function, with 𝐾 = 0 corresponding to an exponential density function. 
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a)              b) 

Figure 5. Probability density functions. The log of probability density functions for hazard rates 

with 𝐾 = 0 to 𝐾 = 9 cosine terms for a) the duration of symptomatic infection and b) the duration 

of asymptomatic infection. 

 

 

4. Discussion 

 

The analysis of our gSEAIR model illustrates it I,s an effective approach for evaluating the health 

burden of chlamydia in the U.S. and in assessing the potential benefits of increasing STI screening 

rates. The optimal gSEAIR model, according to measures such as AIC and AIC weights, was the 

𝐾 = 6 scenario. This scenario predicted a greater reduction in chlamydia incidence and DALYs 

when increasing the annual screening rate from 35% to 40%, 50%, or 70%, at least in comparison 

to the traditional SEAIR model. Also, our gSEAIR models illustrated that the inclusion of time-

varying average durations of infection (i.e. the mean residual waiting-times) into model dynamics 

typically correlated to a greater predicted health benefit from these interventions, at least in 

comparison to the classical SEAIR model.  

 

As expected, the scale-up of STI screening causes a reduction in incidence and DALYs. Our 

findings illustrate that this reduction is comparable with other STI interventions [28], with the free 

distribution of condoms and diaphragms serving as a notable example [29,30]. Our predictions on 

this reduction are most likely conservative, as we only account for the effects of STI screening, 

and do not account for complementary interventions that would be deployed by health authorities, 

including contact tracing, partner notification [31], and the administration of suppressive therapy 

[32].  

 

A particular area where the work presented here could be informative is in the rollout of Periodic 

Presumptive Treatment [33,34]. To elaborate, the basis of Periodic Presumptive Treatment is the 

systematic treatment of at-risk groups with a combination of drugs targeting prevalent (and 

curable) STIs, the results of which can cause reductions in STI prevalence up to 50% [34]. Thus, 
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since our gSEAIR model provides details on multiple periods associated with transmission (i.e., 

the periods of the cosine terms in the mean residual waiting-times), it could help to inform on how 

frequent Periodic Presumptive Treatment should be deployed to maximize the health benefit of the 

intervention.   

 

Although our model focuses on chlamydia transmission in the U.S., it could easily be adapted to 

study other STD outbreaks such as syphilis, gonorrhea, and trichomoniasis in other population 

demographics. Further potential generalizations and refinements include the addition of disease 

states, such as super-spreaders and individuals receiving treatment, the subdivision of 

compartments to reflect levels of at-risk behavior or age demographics, and even the generalization 

of the transmission rate to a pair formulation [35]. 

 

As with the majority of compartmental models, our work has several limitations. First, our model 

assumes a well-mixed (homogenous) population, which thereby disregards the potential impact 

that heterogeneity may have on the transmission cycle and intervention. Naturally, it follows that 

incorporating more realistic individual-level characteristics and mixing patterns would enhance 

the accuracy of the predictions provided. Second, the calibration of our model relies on reported 

chlamydia incidence from health authorities and estimates on the proportion of asymptomatic 

cases. Implicit in this requirement are potential biases that may arise due to myriad treatment-

seeking behaviors among population groups, such as those that mistrust medical personnel, or age 

demographics who experience greater social stigma from disease. Finally, the model formulation 

imposed a parametric form of the duration of infection distribution. While the proposed 

distribution is flexible, as it essentially can represent any function whose Fourier cosine series 

converges, further empirical work is needed truly to determine the shape of the distribution.  

 

In summary, our study provides a comprehensive evaluation of a novel form of compartmental 

model of chlamydia transmission. Through this model, we can better reflect recent trends in 

chlamydia incidence in the U.S., at least relative to traditional compartmental models, while also 

projecting a greater health benefit from the upscaling of STI screening interventions. By 

integrating the capacity to evaluate disease interventions and inform on the time periods critical to 

the durations of chlamydia infection, our model uniquely contributes to the wealth of knowledge 

needed by health officials to make informed decisions, and thereby may aid in reversing the 

increasing rates of STIs in the U.S.  
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Table 1. Parameters, values, and sources. 

Symbol Parameter Base value Source 

𝑁 Sexually active population 15.5 million Fit from data 

𝑏 Birth rate/death rate 0.024/year [36]  

𝛽 Transmission rate 0.050 − 0.062/year Table S.1. 

1/κ Avg. duration of immunity 90 days [22]  

1/𝜇 Incubation period 14 days [22]  

𝜑 Proportion of asymptomatic infections 0.77 [37]  

𝜇𝐴 Avg. duration of asymptomatic infection 190 days [19] 

𝜇𝑆 Avg. duration of symptomatic infection 10 days [38]  

𝜔𝐼 Disability weight of symptomatic infection 0.006 [39]  

𝜔𝐴 Disability weight of asymptomatic infection 0 [39] 

𝜔𝑀 Disability weight of moderate pelvic inflammatory 

disease 
0.114 [39] 

𝜔𝐷 Disability weight of severe pelvic inflammatory 

disease 
0.324 [39] 

𝜔𝐸 Disability weight of epididymo-orchitis 0.128 [39] 

𝜌𝐼 Proportion of symptomatic incidence with no 

complications 
0.23 [37] 

𝜌𝐴 Proportion of asymptomatic incidence with no 

complications 
0.60 [37] 

𝜌𝑀 Proportion of incidence leading to PID 0.09 [38] 

𝜌𝐸 Proportion of incidence with epididymo-orchitis  0.0415 [40]  

𝜌𝐷 Proportion of PID cases classified as severe 0.175 Supplementary 

Materials 

𝜌𝐷𝑒𝑎𝑡ℎ Proportion of PID cases resulting in death   2.9 × 10−6 [39] 

𝜆𝐼 Avg. duration of uncomplicated symptomatic 

infection 
0.027 years [38] 

𝜆𝐴 Avg. duration of uncomplicated asymptomatic 

infection 
0.521 years [19] 

𝜆𝑀 Avg. duration of moderate PID due to infection 21.01 years Supplementary 

Materials 

𝜆𝐷 Avg. duration of severe PID due to infection 21.01 years Supplementary 

Materials 

𝜆𝐸 Average duration of epididymo-orchitis and its 

complications due to infection 
25.38 years Supplementary 

Materials 

𝜆𝐷𝑒𝑎𝑡ℎ Avg. duration of life lost from death due to PID  36.5 years Supplementary 

Materials 

𝛾𝑅𝐶𝐹 Avg. time period of reproductive capability in women 39 years Supplementary 
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Materials 

𝛾𝑅𝐶𝑀 Avg. time period of optimal reproductive capability in 

men 
41.6 years Supplementary 

Materials 

    𝜚𝐹 Avg. time period females are able to reproduce before 

contracting chlamydial infection 
8.5 years Supplementary 

Materials 

𝜚𝑀 Avg. time period males are able to reproduce before 

contracting chlamydial infection 
8.6 years Supplementary 

Materials 

𝜗𝐹𝑃 Years lost in reproductive capability in women due to 

PID 
9.49 years Supplementary 

Materials 

𝜗𝑀𝐸 Years lost in optimal reproductive capability in men 

due to epididymo-orchitis 
7.62 years Supplementary 

Materials 

𝜏 Proportion of chlamydial infections held by women 0.6624 [41]  

𝜔𝐼 Disability weight of symptomatic chlamydia with no 

complications 
0.006 [39] 

𝜔𝐴 Disability weight of asymptomatic chlamydia with no 

complications 
0.0 [39] 

𝜔𝑀 Disability weight of incidence leading to PID 0.114 [39] 

𝜔𝐸 Disability weight of incidence with epididymo-

orchitis  
0.128 [39] 

𝜔𝐷 Disability weight of PID cases classified as severe 0.324 [39] 

 

 

 

 

Table 2. Duration of infection distribution parameters with periodic hazard rate (𝐾 = 6). 

Symptomatic parameters Asymptomatic parameters 

Amplitude Period (days) Amplitude Period (days) 

𝑎𝑆1 0.19 2𝜋/𝑤𝑆1 198.7 𝑎𝐴1 0.45 2𝜋/𝑤𝐴1 817.0 

𝑎𝑆2 0.22 2𝜋/𝑤𝑆2 82.4 𝑎𝐴2 0.18 2𝜋/𝑤𝐴2 97.0 

𝑎𝑆3 0.19 2𝜋/𝑤𝑆3 57.3 𝑎𝐴3 -0.04 2𝜋/𝑤𝐴3 56.1 

𝑎𝑆4 0.21 2𝜋/𝑤𝑆4 44.0 𝑎𝐴4 0.15 2𝜋/𝑤𝐴4 45.0 

𝑎𝑆5 0.02 2𝜋/𝑤𝑆5 36.4 𝑎𝐴5 0.01 2𝜋/𝑤𝐴5 36.5 

𝑎𝑆6 0.10 2𝜋/𝑤𝑆6 30.2 𝑎𝐴6 0.17 2𝜋/𝑤𝐴6 30.5 
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Table 3. Chlamydia incidence averted and DALYS saved for screening rates that achieve 35%, 

40%, 50%, and 70% coverage of the population per year. 

  𝐾 

  0 1 2 3 4 5 6 7 8 9 

AIC Score 

(1000s) 

3.333 3.319 3.318 3.157 3.131 3.124 3.033 3.034 3.037 3.03 

           

ΔAIC Score 300.6 285.7 154.6 123.9 98.0 91.0 0 0.8 4.6 4.8 

           

AIC weights 0 0 0 0 0 0 0.54 0.36 0.05 0.05 

            

Annual incidence/1000 ppl         

 Baseline (𝑐30) 55.5 55.9 56.0 55.9 55.6 55.9 55.9 55.9 55.9 56.1 

 

Annual incidence averted (1000 ppl) 

       

 40% screened 

(𝑐40) 

6.3 6.1 7.2 6.8 7.9 7.9 8.1 8.2 8.3 8.2 

 50% screened 

(𝑐50) 

17.9 17.5 19.8 19.1 21.8 21.5 22.1 22.3 22.5 22.4 

 70% screened 

(𝑐70) 

35.8 35.2 37.6 36.8 39.4 39.3 39.8 40.1 40.2 40.3 

 

DALYs saved per year (1000 ppl) 

       

 40% screened 

(𝑐40) 1.73 1.68 1.97 1.89 2.17 2.18 2.24 2.24 2.29 2.24 

 50% screened 

(𝑐50) 4.94 4.83 5.46 5.28 6.01 5.93 6.07 6.15 6.19 6.18 
 70% screened 

(𝑐70) 9.89 9.74 10.40 10.18 10.90 10.86 11.01 11.09 11.10 11.14 
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