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Abstract 

While Enterobacteriaceae bacteria are commonly found in healthy human gut, their colonisation of other body parts 

can potentially evolve into serious infections and health threats. We aim to design a graph-based machine learning 

model to assess risks of inpatient colonisation by multi-drug resistant (MDR) Enterobacteriaceae. The colonisation 

prediction problem was defined as a binary classification task, where the goal is to predict whether a patient is colonised 

by MDR Enterobacteriaceae in an undesirable body part during their hospital stay. To capture topological features, 

interactions among patients and healthcare workers were modelled using a graph structure, where patients are 

described by nodes and their interactions by edges. Then, a graph neural network (GNN) model was trained to learn 

colonisation patterns from the patient network enriched with clinical and spatiotemporal features. The GNN model 

predicts colonisation risk with an AUROC of 0.93 (95% CI: 0.92-0.94), 7% above a logistic regression baseline (0.86 

[0.85-0.87]). Comparing different graph topologies, the configuration that considers only in-ward edges (0.93 [0.92-

0.94]) outperforms the configurations that include only out-ward edges (0.86 [0.85-0.87]) and both edges (0.90 [0.89-

0.91]). For the top-3 most prevalent MDR Enterobacteriaceae, the AUROC varies from 0.92 (0.90-0.93) for Escherichia 

coli up to 0.95 (0.92-0.98) for Enterobacter cloacae, using the GNN – in-ward model. Topological features via graph 

modelling improves the performance of machine learning models for Enterobacteriaceae colonisation prediction. GNNs 

could be used to support infection prevention and control programmes to detect patients at risk of colonisation by MDR 

Enterobacteriaceae and other bacteria families. 

 

Introduction 

Healthcare-associated infection (HAI) is a severe health problem for patients, health professionals and 

visitors in a healthcare facility1,2. The World Health Organization estimates that one in every ten patients 

develops an HAI3 and, in US hospitals alone, the Centers for Disease Control estimate that HAIs account for 

1.7 million infections and 99’000 associated deaths each year4. Among these infections, more than one third 

are caused by Enterobacteriaceae5, a family of bacteria that includes the most prevalent human pathogenic 

species and the leading causes of nosocomial infections, such as Escherichia coli, Salmonella enterica, and 

Klebsiella pneumoniae. Given that these infections are acquired in environments under high antimicrobial 

pressure, they are often caused by antimicrobial resistant (AMR) and multidrug resistant (MDR) bacteria. 

MDR Enterobacteriaceae infections have augmented drastically over the last two decades, especially with 
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the rise of carbapenemase-producing Enterobacteriaceae6. These pathogens are able to resist not only to 

the action of all available beta-lactams (except aztreonam), but also to other available antimicrobial classes 

like fluoroquinolones and aminoglycosides, leaving physicians with few treatment options7. This leads to 

more expensive treatments, longer hospital stays, increased risks of complication, and higher risks of 

death8. 

 

The continuous rise of these pathogens in healthcare settings is multifactorial, with their ability to spread 

and persist in the environment and asymptomatically in patients and healthcare workers accounting as 

main contributors9. The risk of colonisation, subsequent infection and mortality due to Enterobacteriaceae 

increases exponentially with age, health history, and length of hospital stay10. Colonisation can be defined 

as the asymptomatic presence of a pathogen in the human body. It is not only the first step towards an overt 

disease of the colonised patient, with more or less severity, but also one of the main contributors to infection 

outbreaks in healthcare settings11. Indeed, some studies showed that between 36% and 39% of patients 

colonised by AMR Enterobacteriaceae develop a subsequent infection12,13. Asymptomatic infections, 

specially by MDR bacteria, pose also a prominent public health issue as the pathogen that the colonised 

patient carries can inadvertently be transmitted to other patients, which can become only colonised or, 

more concerningly, symptomatically infected, with increased risks of complications and even death6. 

Infection prevention and control (IPC) programs provides critical measures for preventing disease 

transmission in healthcare settings, with the potential to lower HAI rates by at least 30%, being sometimes 

the only solution to prevent and avoid these MDR colonisations and infections. 

 

Leveraging the availability of large-scale healthcare data14–16, routinely collected and stored in electronic 

health records (EHRs), machine learning models have been proposed for early detection of patients at risk 

of infection and to support IPC programs17–21. Classic machine learning methods, such as decision trees and 

random forest, have demonstrated good performance to predict patients at risk of HAI22–25. For methicillin-

resistant Staphylococcus aureus22 and Clostridioides difficile25, these algorithms were shown to provide 

warnings as early as five days before diagnosis. Machine learning methods for colonisation prediction was 

also explored in very recent studies26–28. Tree-based machine learning methods, such as decision trees, 

random forest and extreme gradient boosting, achieved sensitivity and specificity above 80% for detecting 

MDR species from different pathogenic families27, while the use of spatiotemporal features to identify 

patients colonised by vancomycin-resistant Enterococcus resulted in area under the receiver operating 

characteristic curve (AUROC) performance above 88%26. 

 

While classic machine learning models and hand-crafted features might show effective results in limited 

use cases, they often fail to generalize to large-scale and longitudinal EHR data29,30. Another limitation of 

previous approaches for Enterobacteriaceae colonisation prediction is that key interactions between 

patients and healthcare workers are neglected, hindering their application to complex care networks. To 

address these gaps, we propose a deep-learning approach based on a graph neural network (GNN) 

architecture31. This approach aims to incorporate interactions between patients and healthcare workers, 

inside and outside the wards, as well as other clinical and spatiotemporal features, to predict risks of 
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Enterobacteriaceae colonisation for inpatients. Our models were trained and evaluated using the Medical 

Information Mart for Intensive Care (MIMIC-III) dataset32 and compared with classic machine learning 

baselines. Interestingly, the GNN models provide stronger predictive performance for early detection of 

AMR and MDR Enterobacteriaceae, compared to models trained on data without the patient network 

information. Our main contributions can be summarized as follows: 

• We propose a graph-based colonisation model that considers spatiotemporal features in addition 

demographic and clinical condition. To avoid adding biases to the model due to information 

leakage, we deliberately did not use antimicrobial information. 

• We design a new machine learning architecture for colonisation prediction using a GNN 

architecture that learns transmission network patterns from spatiotemporal and patient data. 

Different network configurations and transmission paths were proposed and evaluated. 

• We evaluate our model against classic state-of-the-art machine learning baselines and show that it 

achieves superior performance, both for the original dataset and for an alternate version of the 

dataset that is free of class imbalance. We also conducted an explainability study to demonstrate 

the capacity of the model to automatically identify features associated with colonisation risk 

factors. 

• There have been many studies investigating HAI prediction. To the best of our knowledge, this is 

the first attempt to explore the problem of predicting risks of AMR and MDR Enterobacteriaceae 

colonisation for undesirable body parts using graph models and provide data-driven hypothesis 

for transmission. 

 

Methods 

Study design and data sources 

To train and evaluate our colonisation risk prediction models, we used laboratory, clinical, and 

administrative data from patients who stayed in critical care units of the Beth Israel Deaconess Medical 

Center (Massachusetts, USA). These data were recorded between 2001 and 2012 and made publicly 

available through the MIMIC-III dataset32. MIMIC-III is a freely available and deidentified healthcare dataset 

that consists of 26 tables and includes static and dynamic patient information, such as demographics, 

medical history and records, clinical measures, laboratory tests, and interventions. The database contains 

data from 46’520 unique patients aged 16 years or older and associated to 58’976 admissions. Patients can 

be admitted to the hospital more than once and moved between 50 different wards and seven care units 

during their stays. Additionally, activities from 7’567 unique healthcare workers - a nurse or a medical 

doctor - are recorded. 

 

In the MIMIC-III dataset, we observed that 17% of inpatients had a positive result for Enterobacteriaceae 

screen. In total, 14 different bacterial species of the Enterobacteriaceae family were found from a total of 

30 unique specimen types collected from inpatients. Figure 1 shows their distribution for different sample 

types (Figure 1-left) and different resistant profiles (Figure 1-right). E. coli was the most frequently found 

positive culture (50%), while Citrobacter amalonaticus or Salmonella enterica (not shown), were rarely 
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found. A bacterial isolate was considered AMR if showing resistance to at least one agent in only one or two 

antimicrobial categories, and MDR if it was resistant to at least one agent in three or more antimicrobial 

categories. Otherwise, it was classified as antimicrobial susceptible (AMS). As shown in Figure 1, C. koseri, 

E. coli, and K. pneumonia were the species with highest levels of resistance (>50%), the latter two showing 

MDR profiles in more than 25% of cases. 

 

 

Figure 1: Frequency of positive culture and resistant profile for each Enterobacteriaceae family. Only 

species with more than 5 positive cultures are shown. Bal: bronchoalveolar lavage. 

 

The training and evaluation dataset used in this study was created using the cohort selection criteria 

described in Figure 2. The Microbiology Events table from MIMIC-III was used to detect positively colonised 

patients. The table contains bacterial identification and antimicrobial testing results, and consists of 

631’726 events related to 46’520 patients. A list of Enterobacteriaceae species was selected using the 

National Center for Biotechnology Information terminology33 and used to select the microbiology events of 

patients colonised by Enterobacteriaceae. This first step resulted in 109’318 events related to 4’868 

colonised patients. Then, a list of abnormal specimens (or uncommon body parts) where these species were 

found was identified by two clinical microbiologist experts and categorized into six specimen categories: 

blood, gastric-related, respiratory, skin, tissue, and urine. This list defined the set of positive colonisation 

events that were relevant to our study, i.e., presence of Enterobacteriaceae in abnormal body parts, 

resulting in 107’313 microbiology events and 4’838 colonised patients. Finally, the Admissions table 

provided information regarding every unique hospitalization for every patient in the database. The table 

was used to define the remaining non-colonised patients. Amongst all admitted patients, the ones that were 

not found in the filtered Microbiology Events table, in addition to those with Enterobacteriaceae in regular 

specimens (i.e., stool samples), were considered non-colonised. Lastly, the table Transfers, which contains 

patient location information and their transfers between wards, was used to assign patients to wards. The 

final study dataset contained 46’520 unique patients from 58’976 admissions, and a total of 274’316 

patient-ward instances. If during a whole stay in a ward, there was no positive abnormal Enterobacteriaceae 
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culture for a patient, the patient-ward instance was labelled as non-colonised; otherwise, as colonised. This 

resulted in 7’216 positive Enterobacteriaceae colonisations (2.6%) and 267’100 negative specimens 

(97.4%). The dataset was randomly divided into train (60%), dev (20%) and test (20%) sets to train the 

machine learning model parameters, optimize the hyper parameters and evaluate the performance, 

respectively. Each set contained around 2.5-3% of colonised patients. 

 

 

Figure 2: Cohort selection criteria. Starting from the Microbiology Events table of MIMIC-III, lab results were 

filtered for the existence of bacteria belonging to the Enterobacteriaceae family in unusual body parts to 

define colonised patients. Admissions and Transfers tables were used to complement the remaining patients 

and to label all patients. 
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Feature selection and data pre-processing 

The feature selection process was performed iteratively. The MIMIC-III dataset was first analysed to pre-

identify the set of features we considered relevant to the colonisation risk prediction problem. Then, based 

on model’s performance computed on the dev set, less significant features, such as the death time and the 

discharge status of the patient, were eliminated. The final feature set can be grouped into two types: i) 

spatiotemporal features (current and previous ward, current and previous care unit, length of stay in each 

ward and in the hospital) and ii) patient features (gender and diagnosis at admission). To complement this 

set, we computed three new features from the data: the number of colonised patients, the total number of 

patients per ward, and the colonisation pressure34. The latter was calculated as the ratio of colonised and 

the total number of patients in a ward per day. Finally, the features were normalized using the robust scaler 

method of scikit-learn35, version 1.1.2. The statistics of the resulting dataset are shown in Table 1. 

 

Table 1: Statistics of the cohort used for model training and evaluation. 

 Non-colonised (n = 267’100) Colonised (n = 7’216) 

Sex  

female 116’886 (43.8%) 3’631 (50.3%) 

male 150’214 (56.2%) 3’585 (49.7%) 

Age (years) 

0-17 35’446 (13.3%) 152 (2.1%) 

18-25 6’325 (2.4%) 130 (1.8%) 

26-45 29’023 (10.9%) 754 (10.4%) 

46-65 83’912 (31.4%) 2’436 (33.7%) 

66-88 101’629 (38.0%) 3’461 (48.0%) 

≥ 89 10’765 (4.0%) 283 (4.0%) 

Reason for admission  

newborn 34’162 (12.8%) 122 (1.7%) 

pneumonia 6’736 (2.5%) 140 (1.9%) 

sepsis 4’603 (1.7%) 222 (3.1%) 

coronary artery disease 4’449 (1.7%) 52 (0.7%) 

congestive heart failure 4’236 (1.6%) 121 (1.7%) 

chest pain 3’905 (1.5%) 75 (1.0%) 

other 209’009 (78.2%) 6’484 (89.9%) 

Resistance profile 

AMS – 3288 (45.6%) 

AMR – 3928 (54.4%) 

MDR – 2099 (29.1%) 

Length of stay (days) 

0-4 57’511 (21.5%) 407 (5.6%) 

5-10 105’531 (39.5%) 1’566 (21.7%) 

11-50 93’651 (35.1%) 4’284 (59.4%) 

51-100 8’183 (3.1%) 738 (10.2%) 

≥ 100 2’224 (0.8%) 221 (3.1%) 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2023. ; https://doi.org/10.1101/2023.06.01.23290386doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.01.23290386
http://creativecommons.org/licenses/by/4.0/


7 

Specimen  

urine – 2’954 (40.9%) 

sputum – 1’944 (26.9%) 

blood – 934 (12.9%) 

swab – 483 (6.7%) 

bronchoalveolar lavage – 288 (4.1%) 

other – 613 (8.5%) 

Enterobacteriaceae species  

E. coli – 3’385 (47.0%) 

K. pneumoniae – 2’142 (29.7%) 

E. cloacae – 939 (13.0%) 

K. oxytoca – 410 (5.7%) 

C. freundii – 191 (2.6%) 

C. koseri – 107 (1.5%) 

other – 42 (0.5%) 

 

Colonisation network model 

We propose a homogeneous graph to model interactions between patients and healthcare workers. A graph 

can be defined as � =  (�, �), where � = 	
, . . . , 	|
|  denotes a set of nodes and � denotes a set of edges 

connecting pairs of nodes 	� , 	� ∈ �. In our case, a node represents a patient and edges represent potential 

connections between them, either via contact with the same healthcare worker or via a common location 

within the hospital. As shown in Figure 3a, we considered three network configurations: i) in-ward links 

(left), where two patients are linked only if they stay in the same ward at the same time, ii) out-ward links 

(middle), where two patients are connected only if they are visited by the same healthcare worker on the 

same day, and iii) all links (right), where both ward and healthcare worker links are considered. Nodes 

represent a patient in a ward and their features are created using the selected feature set described in the 

previous section. When a patient is transferred, a new node is added to the graph with its corresponding 

new edges according to the different network configurations previously described (i.e., in-ward, out-ward 

and all links). 

 

Graph neural network architecture 

An elegant deep learning architecture for modelling graph-like data structures is GNN31,36–38 and learn 

topological features, i.e., properties of the transmission network in our case. GNNs can learn complex 

relationships and interdependencies in graph-like data via optimizable transformations on attributes 

(nodes, edges, etc.) that preserve graph symmetries (i.e., permutation invariance/equivariance). Hence, in 

theory GNNs can make more informed predictions about entities in a network and their interactions, as 

compared to models that consider entities in isolation. To solve graph representation learning tasks, 

different GNN network architectures and algorithms have been proposed, such as graph convolutional 

network (GCN)31, graph attention networks39, and GraphSAGE40. These approaches use various graph 

feature aggregation and data sampling strategies to learn dense representations of graph components (i.e., 
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nodes and edges), often called embeddings, that can be later used in downstream prediction tasks, such as 

node classification.  

 

In our experiments, we used the GCN architecture, which employs convolutional aggregations to create 

graph features. GCNs are invariant to node permutations, which means that isomorphic graphs result in the 

same learned representation. In GCNs, node representations are learned based on neighbouring node 

features, which are propagated across the graph using the message passing algorithm41. At each layer of the 

GCN, every node of the graph is represented by a hidden state ℎ�
(�)

, where � indexes the node and � the GCN 

layer that encodes the node features. An aggregation function �  is used to send information from the 

immediate neighbourhood 	 ∈ �(�) to every node �. Finally, to update each node representation ℎ�
(��
)

 in 

the subsequent layer � + 1 of the network, an update function � is used, i.e., ℎ�
(��
)

= �(ℎ�
(�)

, �(ℎ�∈�(�)

(�)
). In 

our case, the aggregation function is the sum (the hidden states of neighbouring nodes are summed over 

the node dimension), and the update function is a multi-layer perceptron. 

 

A high-level view of the graph-based prediction pipeline is shown in Figure 3. Using laboratory, clinical and 

administrative data, patient features at the ward level (i.e., a node represented a patient in a ward) were 

extracted and modelled in different network colonisation models (Figure 3a). The colonisation graph was 

fed to a two-layer GCN (� = 2), with embedding size set 32, followed by a sigmoid layer for classification 

(Figure 3b). A binary cross-entropy with logits loss was used to train the models. To account for data 

imbalance, the loss coming from the non-colonised class was weighted using the ratio of non-colonised 

patient to the total number of patients during training. The decision threshold was set to 0.9, i.e., a patient 

was classified as colonised if the inferred colonisation risk was over 0.9, and otherwise classified as non-

colonised. We trained all models for 400 epochs, using the Adam optimizer. The number of layers, 

embedding size, number of epochs and decision threshold were tuned using the dev set. 
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Figure 3: (a) Colonisation models. We constructed 3 different graphs, in which links were created between 

patients only if they were in the same ward (left), only if they were visited by the same healthcare worker 

(centre) or both (right). (b) Graph-based machine learning pipeline for colonisation risk prediction. 

 

Statistical analysis 

To evaluate the performance of the colonisation risk prediction models, standard binary classification 

metrics were computed: accuracy, macro-averaged precision, recall, F1-score, and AUROC. The GNN models 

were compared to classic machine learning baselines: k-nearest neighbours (kNN)42, logistic regression43, 

random forest44 and CatBoost45. Student t-test was used to compare model performance. Results were 

deemed statistically significant for p-value smaller than 0.05. Shapley values were used to measure the 

importance of each feature to the model’s predictions. 

 

Role of funding source 

Funders were not involved in the study design, data pre-processing, data analysis, interpretation, or report 

writing. 

 

Results 

Results obtained with the different colonisation risk prediction models are presented in Table 2. In addition 

to the individual classic and graph-based models (Table 2A), we created three types of ensemble models 
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(Table 2B): i) ensemble - classic, which combines the results of classic machine learning models; ii) ensemble 

- GNN, which combines the results of GNN models; and iii) ensemble - all, which combines the results of all 

models. For each ensemble type, we applied three voting strategies: i) unanimity vote [25], where a 

prediction is considered only if all model participants vote for the same class, and rejected otherwise; ii) 

majority vote, where a prediction is considered only if it reaches the majority amongst model participants, 

and rejected if there is an equality; iii) average probability, where the predicted class probabilities are 

averaged over all models to generate a prediction. Comparing the individual models, the GNN-based models 

show strong AUROC performance, all above 86% and outperform the classic machine learning models (p-

value < 0.001) for this metric. Particularly, the GNN model that uses in-ward topology only (GNN - in-ward) 

achieves the highest AUROC (92.59% [95% confidence interval (CI): 91.67-93.51]), outperforming all 

individual classic models (p-value < 0.001). Within the graph-based models, the out-ward topology shows 

the weakest performance (86.20% [95% CI: 85.01-87.40]) followed by the all-links topology (89.58% [95% 

CI: 88.51-90.65]) (p-value < 0.001). These results suggest that network features enhance the predictive 

power of machine learning models for colonisation risk prediction, and that transmission patterns within 

the same ward are more useful features. 

 

For the metrics with a decision threshold, kNN achieves the highest accuracy, with a performance of 97.82% 

(p-value < 0.001). Apart from logistic regression (82.70%), all models achieve strong accuracy, with values 

of 96% or higher. Due to the large class imbalance, this strong performance is expected for the accuracy 

metric. It is particularly noteworthy though that the ensemble - all model, following the unanimity vote 

strategy, obtained an accuracy of 99.47% when classifying 80% of the test set (the remaining 20% were 

discarded due to the lack of convergence between the individual classifiers). For the macro-average metrics, 

random forest achieves the highest F1-score among the individual models, with a performance of 73.74% 

(p-value < 0.001), nearly 6% above the best GNN model. This is likely due to an overfitting of the decision 

threshold for GNNs (which was trained using the dev set). Ensemble models also improve significantly upon 

individual models for the macro-average metrics, with an F1-score of up to 82.75% for the ensemble - classic 

configuration following the unanimity vote strategy, while classifying 82% of the samples. Lastly, as shown 

by the macro-average metrics (precision, recall and F1-score), the ensemble models achieve a more 

balanced predictive performance between colonised and non-colonised patients, which together with a high 

accuracy may foster better practical applications (at the expense of a reduced assessment set). 

 

Table 2: Performance of the individual colonisation prediction models (A) and of the ensemble models (B), 

based on three voting strategies: i) unanimity vote (uv), ii) majority vote (mv) and iii) average probability 

(ap). Precision, recall and F1-score are macro-averaged. 

A 

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) AUROC(%) (95% CI) 

kNN 97.82 83.11 66.90 72.22 80.82 (79.48-82.16) 

Logistic regression 82.70 54.74 77.61 54.25 85.79 (84.58-86.99) 

Random forest 97.71 79.33 70.03 73.74 85.88 (84.68-87.09) 

CatBoost 97.71 81.17 65.41 70.45 84.97 (83.74-86.20) 
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GNN - out-ward 96.98 68.08 60.48 63.17 86.20 (85.01-87.40) 

GNN - in-ward 95.84 64.94 72.20 67.76 92.59 (91.67-93.51) 

GNN - all 96.45 65.52 65.12 65.32 89.58 (88.51-90.65) 

 

B 

Ensemble Accuracy (%) Precision (%) Recall (%) F1-score (%) AUROC(%) (95% CI) Support (%) 

Classic - uv 99.09 88.77 78.38 82.75 89.43 (87.88-90.99) 82 

GNN - uv 98.22 75.80 63.36 67.50 91.10 (89.87-92.32) 96 

All - uv 99.47 92.91 72.16 79.17 91.39 (89.45-93.33) 80 

Classic - mv 98.05 85.09 67.20 72.92 89.29 (88.16-90.41) 99 

GNN - mv 96.62 66.57 64.92 65.70 92.19 (91.24-93.13) 100 

All - mv 97.60 78.12 67.34 71.36 93.62 (92.76-94.48) 100 

Classic - ap 97.65 78.68 68.73 72.59 89.81 (88.75-90.87) 100 

GNN - ap 82.25 55.67 84.77 55.38 92.19 (91.24-93.13) 100 

All - ap 96.57 69.01 75.46 71.72 93.62 (92.76-94.48) 100 

 

Stratified performance analysis for the GNN model 

Figure 4 presents the AUROC performance of the best individual model - GCN - in-ward - stratified by 

species, specimen type, length of stay and resistance profile. The results show that the model provides 

consistent performance across different bacteria species, with AUROC above 89% for species that have at 

least 7 examples in the training dataset. The best performance is seen for E. cloacae (94.08% [95% CI: 91.70-

96.45]) (939 examples in the training set) while the worse is for C. amalonaticus (95% CI: 79.60% [95% CI: 

27.02-100.00]) (7 examples in the training set). Similarly, consistent performance is observed across 

specimens, with AUROC varying from 90.58% (95% CI: 87.85-93.31) for blood culture to 95.00% (95% CI: 

93.53-96.47) for sputum. The results of Figure 4c show a decreasing trend in performance as patients stay 

longer in the hospital (R2=0.8347), with performance as high as 94.14% (95% CI: 90.99-97.28) for patients 

that stay 4 days or less and as low as 85.60% (95% CI: 78.62-92.59) for patients that stay more than 100 

days. Lastly, the model achieves similar predictive performance for different resistance profiles with the 

lowest score of AUROC at 92.26% (95% CI: 90.90-93.63) for AMS Enterobacteriaceae and the highest score 

at 93.25% (95% CI: 91.58-94.92) for MDR Enterobacteriaceae. 
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Figure 4: Performance results per species, specimen type, length of stay and resistance profile. bal: 

bronchoalveolar lavage; AMS: antimicrobial susceptible; AMR: antimicrobial resistant; MDR: multi-drug 

resistant. 

 

Predictive performance for AMR and MDR resistance profiles 

The predictive performance according to AMS, AMR and MDR resistance profiles and for the three most 

frequent MDR Enterobacteriaceae species is shown in Figure 5. Similar to the overall case, the GNN – in-

ward and Ensemble – all models show robust performance across the difference resistance profiles and 

species, outperforming all the respective individual and ensemble models. For the AMR and MDR resistance 

profiles, the GNN – in-ward model achieved an AUROC of 92.89% (95% CI: 92.13-93.65) and 93.25% (95% 

CI: 92.28-94.21) respectively, which were slightly outperformed by the Ensemble – all model (93.87% [95% 

CI: 93.10-94.64] and 94.33% [95% CI: 93.32-95.34], respectively). For the top-3 most prevalent MDR 

Enterobacteriaceae, the AUROC varied from 91.74% (95% CI: 90.25-93.23) for E. coli up to 95.16% (95% 

CI: 91.92-98.41) for E. cloacae using the GNN – in-ward model, and from 92.63% (95% CI: 90.99-94.28) for 

E. coli up to 96.33% (95% CI: 95.16-97.50) for K. pneumoniae using the Ensemble – all model. Results for the 

classic models are slightly less consistent, with logistic regression (AMR, MDR, MDR E. coli and MDR E. 

cloacae), random forest (MDR K. pneumoniae) and CatBoost (AMS) claiming the best performance 

depending on the test set strata. 
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Figure 5: Model performance for antimicrobial susceptible (AMS), resistant (AMR) and multi-drug resistant 

(MDR) Enterobacteriaceae.  

 

Balanced dataset scenario 

As the distribution of colonised and non-colonised patients in our dataset is highly imbalanced, we 

evaluated the proposed models on a balanced dataset, representing an optimal-case scenario for machine 

learning methods. In our experiments, the balanced dataset was generated by under-sampling the original 

database, resulting in 8658 samples for the training set and 2887 samples for the test set, including 1473 

non-colonised (51%) and 1414 colonised (49%) examples. As shown in Table 3, the results of the balanced 

scenario followed a similar pattern as for the original dataset. Amongst individual models, the best 

performance in terms of AUROC was again achieved by the GNN models, more specifically, GNN in-ward, 

with an of AUROC 92.08% (95% CI: 91.03-93.12) (p-value < 0.001). Similar to the original data scenario, for 

the metrics with a decision threshold, the GNN - in-ward model reached the highest performance in the 

balanced setup, with an accuracy of 80.04% (p-value < 0.001) and an F1-score of 79.61% (p-value < 0.001), 

outperforming even the ensemble approach based on the average probability vote strategy. 

 

Table 3: Performance of the colonisation prediction models using a balanced dataset. Precision, recall and 

F1-score are macro-averaged. The ensemble model was built based on the average probability strategy. 

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) AUROC (%) (95% CI) 

kNN 72.73 72.72 72.72 72.72 81.57 (80.00-83.13) 
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Logistic regression 71.70 71.90 71.58 71.55 78.70 (77.03-80.36) 

Random forest 77.76 77.77 77.78 77.76 86.62 (85.27-87.97) 

CatBoost 78.38 78.42 78.42 78.38 86.06 (84.69-87.44) 

GNN - out-ward 71.14 79.73 71.68 69.22 85.76 (84.37-87.15) 

GNN - in-ward 80.04 83.67 80.38 79.61 92.08 (91.03-93.12) 

GNN - all 73.92 79.76 74.36 72.79 88.76 (87.52-90.01) 

Ensemble - classic 78.14 78.14 78.15 78.14 86.56 (85.21-87.91) 

Ensemble - GNN 65.01 79.06 65.71 60.77 91.44 (90.36-92.53) 

Ensemble - all 76.06 82.19 76.50 75.06 89.06 (87.83-90.28) 

 

Feature impact on model predictions 

To explain the importance and impact of the features used in our colonisation risk prediction models, we 

calculated their Shapley values using the SHAP method46. For simplicity, we used the results of the random 

forest model as the one with the highest F1-score in the original dataset. Figure 6a shows the importance 

of the top-11 features sorted by their predictive impact, with the most significant features on top and the 

least important ones at the bottom. Figure 6b shows the mean absolute value of every feature presented in 

Figure 6a, computed over all data samples. As expected, length of stay in the ward and in the hospital have 

the highest impact on the predictions. The Shapley analysis results showed that the longer the stay in a 

ward or hospital, the more likely it is for a patient to be classified by the model as colonised. Conversely, the 

shorter the stay in a ward or the hospital, the more likely to be classified as non-colonised. The number of 

patients in a ward also has an important impact on model predictions. The higher the number of patients in 

the ward, the more probable the model output to be positive (colonised). Despite its lower impact, female 

gender influenced the model output in the positive (colonised) direction compared to male, which has the 

opposite effect. This could be explained by the fact that that most prevalent bacteria in the dataset were E. 

coli and that urinary tract infections are more common among women than men47. Similarly, the neonatal 

intensive care unit (NICU) was less important to the model decisions than the medical intensive care unit 

(MICU) and surgical intensive care unit (SICU). A patient in SICU and MICU will more likely drive the model 

towards a positive output (colonised), while a patient in NICU will more likely drive the model towards a 

negative output (non-colonised). These findings are aligned with previous risk factor analysis studies for 

nosocomial infections in adult intensive-care units48. 
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Figure 6: Feature contribution to colonisation risk prediction. a) Shapley values for top-11 features, sorted 

by their impact on model predictions. b) Mean absolute value of every feature presented in a). 

 

Colonisation path analysis 

A major advantage of using graph models and GNNs to predict colonisation risks is that they naturally 

provide possible transmission paths via graph edges. In Figure 7, we show three examples of patients that 

were classified correctly as colonised by the GNN - all model: nodes 57627 (top left), 154208 (top right) and 

211904 (bottom). Nodes in green represent non-colonised patients and nodes in red represent positive 

culture for Enterobacteriaceae. Filled colours represent colonised patients. In the scenario of Figure 7 - top 

left, patient 57627 (focus patient hereafter), who was colonised by K. pneumoniae, stayed in the hospital for 

9 days and was directly linked to four patients: two in the same room (one non-colonised and one colonised) 

and two in different rooms (both non-colonised). Similar to the focus patient, patient 119123 was colonised 

by K. pneumoniae and had the longest hospital stay in this subnetwork (11 days). Thus, if both bacteria 

strains were genetically identical (or derived phylogenetically), a possible transmission route could have 

been from patient 119123 to the focus patient or vice-versa, or from a common source within the ward (e.g., 

door handle). In Figure 7 - top right, patient 154208 (focus patient hereafter) stayed for 24 days in the 

hospital and had an immediate link to patient 23117 (non-colonised) from a different ward via a healthcare 

worker, and a second-degree connection to patient 111558 (colonised) from another ward. The latter 

patient and the focus patient were both colonised by K. pneumoniae, like in the previous scenario. Hence, 

the path 111558-23117-154208 could be one of the possible transmission routes within the hospital. For 

the third scenario, Figure 7 - bottom, patient 211904 (focus patient hereafter), male, stayed for 10 days and 

had a direct connection to patient 36255 via the same ward, both colonised, but by different bacteria. 

Moreover, these patients had a second-degree connection to patient 158476, female, via a healthcare 

worker link, who was colonised by E. coli, as the focus patient. Since patient 158476 was hospitalised for 7 

days, she may have been colonised by the same strain as the one of the focus patient (or vice-versa), who 

may have been previously colonised. Thus, the undirected path 211904-36255-158476 could be a possible 

transmission route. Nevertheless, exact identification of transmission routes for such scenarios would 

require detailed phylogenetic analysis of bacterial samples49. 
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Figure 7: Bacteria transmission scenarios via graph paths. Green nodes: non-colonised patients; red nodes: 

colonised patients. 

 

Discussion 

This study describes a machine learning model based on graph neural networks to predict patients at risk 

of colonisation by AMR and MDR Enterobacteriaceae. We model the data as a graph to represent possible 

connections and interactions between patients and healthcare workers inside the healthcare facility. 

Different graph topologies were proposed based on geographic location and interaction with healthcare 

workers. We considered spatiotemporal features, such as length of stay and ward movement, in addition to 

clinical and laboratory information, to encode patients via node features in different graph topologies. 

Performance analyses showed that GNN models provide robust predictive performance, often above 

AUROC of 92%, outperforming all classic machine learning baselines used in our experiments. These results 

demonstrate the importance of incorporating topological features to learn patterns of patient profiles that 

are more likely to be colonised by MDR Enterobacteriaceae. 

 

Other recent studies investigated the use of machine learning to predict colonisation risk of AMR species of 

the Enterobacteriaceae27,28, Enterococcaceae26 and Staphylococcaceae18 families, achieving robust 

predictive performance with an AUROC between 88% and 89%. Our study is the first to consider the 

colonisation risk for AMR and MDR Enterobacteriaceae family, which are responsible for the highest 

incidence of nosocomial infections and HAI-related mortality50, using a transmission network approach and 

spatiotemporal information. Moreover, in contrast to previous studies, which were based on ensemble of 

tree methods such as random forest, our proposed methodology used a deep learning approach and showed 

superior predictive power for the colonisation prediction problem of Enterobacteriaceae (in our 

experiments, 86% for random forest vs. 93% for GNN). Another advantage of the graph-based modelling, 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2023. ; https://doi.org/10.1101/2023.06.01.23290386doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.01.23290386
http://creativecommons.org/licenses/by/4.0/


17 

as opposed to tabular data used in previous studies, is that possible transmission routes can be inherently 

extracted from the model, opening an avenue for data-driven transmission route hypothesis generation. 

 

Following IPC guidelines, when an AMR Enterobacteriaceae outbreak occurs in a hospital or in a long-term 

care facility, colonised patients are initially isolated. Then, the contact group, i.e., patients potentially 

colonised by the outbreak strain, is identified to determine the magnitude of the outbreak and, if required, 

additional IPC measures are applied51. Using administrative information from the EHR system, contact 

tracing information can be obtained and used to determine other patients potentially at risk, which will 

ultimately go through a screening process to duly confirm colonisation by the AMR strain. This process is 

reactive and can be uncomfortable for patients, as well as very costly and time consuming, preventing thus 

corrective actions to be taken in due time52. The predictive model proposed in this study could help improve 

IPC measures against Enterobacteriaceae, and other pathogens, in several ways. First, it could help to 

estimate the contact group with high accuracy, which in turn could lead to more effective measures to curb 

transmission and infection. Second, possible transmission paths could be automatically derived from the 

graph model, providing hypotheses for transmission routes. Lastly, and more importantly, if deployed in a 

surveillance mode, it could support early identification of potential patients at risk of AMR and MDR 

colonisation and enable outbreak forewarning, which could have an even bigger positive impact on live-

saving and financial costs. 

 

Despite the black-box nature of neural networks, explainable artificial intelligence methods, such as the 

Shapley values used to analyse our results, can provide an effective approach to interpret the model 

decisions and support identification of risk factors associated to colonisation risks. Among the features 

having the highest impact on model predictions, features such as length of stay, previous ward and gender 

have also been identified as relevant by previous epidemiological studies that investigated risk factors for 

HAI colonisation and infection. For example, Patel et al.53 showed that carbapenem-resistant K. pneumoniae 

infection was independently associated with longer length of stay before infection. McHaney-Lindstrom et 

al.54 showed that unit transfer increases the odds of contracting an infection by 7%. For the case of gender, 

the model not only identified this feature as a risk factor but also showed that being a female is associated 

with higher risk of Enterobacteriaceae colonisation. This result was found in previous risk analysis studies, 

which identified higher incidence rates of E. coli in females as compared to males55. 

 

Applying machine learning algorithms to solve the task of colonisation risk prediction is challenging due to 

the imbalanced nature of the data. Machine learning models are often biased towards the majority class 

(i.e., non-colonised in our case), and in the worst-case scenario, they will ignore the minority group entirely. 

In such cases, accuracy and other micro-average metrics are not optimal to evaluate model performance. 

Even if the model fails to predict the minority class, i.e., colonised in our case, accuracy might still be high 

due to the high percentage of non-colonised patients. To provide a more comprehensive view of our results, 

we reported macro-averaged metrics, which assign equal weights to positive (colonised) and negative (non-

colonised) classes. Moreover, we reported these same metrics in a balanced scenario, using an 

undersampling technique56. In both cases, results showed that the models learned colonisation patterns, 
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with macro F1-score well above the 50% threshold indicating that some colonisation patterns were indeed 

learned by the model. 

 

Our study has several limitations, both in terms of data and modelling. First, the model might not be able to 

generalise to other hospitals as it was only evaluated in a single hospital unit dataset. Indeed, it is known 

that the epidemiology of HAI varies within different units and geographies57. Investigations of 

generalization performance for this type of models will warrant specific future research. Second, while we 

avoided using predictors that might overlap with the dependent variable, such as antimicrobial 

consumption (e.g., trimethoprim-sulfamethoxazole antimicrobial medication could be a predictor for E. coli 

infection58), other predictors, such as diagnosis at admission, could still have caused prediction bias. 

Nevertheless, given the distribution of diagnoses in the dataset, we expect that this bias is limited, if any. 

Third, our graph topology does not include environmental transmission, while it is known that indirect 

transmission via the environment is an important part of HAI routes59. Due to the lack of fine-grained 

contact and sampling data in the MIMIC-III dataset, environment-related transmission pathways were 

ignored in our models as this scenario could not be realistically captured. Understanding the impact of 

environmental transmission on model performance could be another research direction. Lastly, due to the 

anonymisation strategy of MIMIC-III and, more specifically, to the time shift, the data used in our 

experiments could be better regarded as a synthetic data (generated from real data) rather than as real 

hospital data60,61.  

 

To conclude, this study shows that encoding topological information about patient-healthcare worker 

interactions using GNNs can improve predictive performance of AMR/MDR Enterobacteriaceae 

colonisation models and support identification of patients potentially at risk of infection. Hence, these 

models could be used to enhance IPC programmes and reduce HAI burden. Given the data-driven approach 

of our method, we expect that it could be expanded to other pathogens with similar transmission dynamics 

and to other healthcare settings. 
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