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Abstract 

Adverse drug event (ADE) is a significant challenge in clinical practice. Many ADEs have not 

been identified timely after the approval of the corresponding drugs. Despite the use of drug 

similarity network demonstrates early success on improving ADE detection, false discovery rate 

(FDR) control remains unclear in its application. Additionally, performance of early ADE 

detection has not been explicitly investigated under the time-to-event framework. In this 

manuscript, we propose to use the drug similarity based posterior probability of null hypothesis 

for early ADE detection. The proposed approach is also able to control FDR for monitoring a large 

number of ADEs of multiple drugs. The proposed approach outperforms existing approaches on 

mining labeled ADEs in the US FDA’s Adverse Event Reporting System (FAERS) data, especially 

in the first few years after the drug initial reporting time. Additionally, the proposed approach is 

able to identify more labeled ADEs and has significantly lower time to ADE detection. In 

simulation study, the proposed approach demonstrates proper FDR control, as well as has better 

true positive rate and an excellent true negative rate. In our exemplified FAERS analysis, the 

proposed approach detects new ADE signals and identifies ADE signals in a timelier fashion than 

existing approach. In conclusion, the proposed approach is able to both reduce the time and 

improve the FDR control for ADE detection.  
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1. Introduction 

Adverse drug event (ADE) is defined as any drug exposure related harmful patient experience.1 

ADE is considered as a significant challenge in current clinical practice.2-5 For instance, it is 

estimated that ADEs cause as many as 4.5 million ambulatory encounters, 1.3 million emergency 

department visits, 350,000 hospitalizations, and 106,000 deaths, in the United States (US) each 

year.6-8 Many ADEs have been identified years after the corresponding drugs’ approval dates. For 

instance, in the US, the periods from approval to withdrawal due to safety concerns were 3.4 years 

for valdecoxib, 4.7 years for tegaserod, and 5.4 years for efalizumab.9 These facts necessitate post-

marketing pharmacovigilance for drug safety.10 

To promote pharmacovigilance, many regulatory agencies maintain spontaneous reporting 

systems (SRSs) to collect ADE reports. For instance, the US Food and Drug Administration’s 

(FDA’s) Adverse Event Reporting System (FAERS) is a large-scale SRS database including over 

24 million ADE reports.11 Signal detection algorithms (SDAs) have been developed to identify 

ADE signals from SRS databases. Frequentist SDAs include proportional reporting ration (PRR),12 

reporting odds ratio (ROR),13 and likelihood ratio test (LRT).14 The gamma Poisson Shrinker (GPS) 

and the Bayesian confidence propagation neural network (BCPNN) are empirical Bayes SDA and 

Bayesian SDA, respectively.15,16 For a particular drug-ADE pair, SDAs summarize all ADE 

reports into a 2-by-2 contingency table according to the presence of the drug (yes/no) and the ADE 

(yes/no). Subsequently, an ADE signal is measured by variants of the observed frequency to 

expected frequency ratio, where the expected frequency is computed under the assumption of no 

drug-ADE association. Comparing to frequentist SDAs, GPS and BCPNN are able to penalize 

false ADE signals generated by drugs with a low report frequency; and they have been routinely 

used by the FDA and the World Health Organization (WHO).17 Additionally, Ahmed et al. used 
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posterior probability of null hypothesis under the GPS model to control false discovery rate (FDR) 

for high-throughput ADE mining (e.g. simultaneously mining over a million of drug-ADE pairs).18 

Tatonetti et al. used multiple logistic regression to generate confounder-adjusted ADE signals.19 

The ADE signals identified by SDAs had their own validations, and many promising discoveries 

were successfully validated.20,21 Despite the successes of SDAs, signal detection shall be expand 

to identify ADE signals both in a timelier fashion and at a low FDR.22 Recent studies utilized drug 

similarity network to enhance existing SDAs.23-25 For instance, Liu and Zhang used drug similarity 

network to enhance signals generated from PRR, ROR, GPS and BCPNN.24 Ji et al. enhanced 

signals from BCPNN by leveraging drug similarity network derived prior ADE risk distribution.23 

While enhanced ADE signals demonstrated improved performance, FDR control remains unclear 

on prioritizing these signals. Additionally, the performance of early ADE detection has not been 

explicitly investigated under a time-to-event setting (e.g., time from first report to time of ADE 

detection).  

In this manuscript, we propose an early ADE detection approach. Specifically, under the proposed 

approach, prior ADE risk distribution of a new drug can be derived from ADE risks of existing 

drugs with ample ADE reports and similar chemical structures to the new drug. Subsequently, the 

drug similarity based posterior probability of null hypothesis for testing the new drug’s ADE risk 

can be computed from the new drug’s observed data and prior ADE distribution. The drug 

similarity based posterior probability is able to both facilitate early ADE detection and provide 

much desired FDR control for monitoring a large number of ADEs of multiple new drugs. The rest 

of the manuscript is organized as following. Section 2 describes the datasets and approaches. 

Section 3 includes performance evaluation analysis, simulation study and an exemplified FAERS 

analysis. Section 4 presents our conclusion and discussion. 
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2 Method 

2.1 Data Preparation 

2.1.1 Drug Similarity Network 

We used 881 chemical substructures defined in Pubchem to construct the drug similarity 

network.26 We assigned an 881-component vector to each drug, where a component equals to 1 or 

0 corresponding to the presence or absence the substructure. Let 𝐴𝐴��⃗  and 𝐵𝐵��⃗  denote vectors of two 

drugs, respectively. We used the Jaccard Score to calculate the chemical similarity of the drug-

drug pair:  

Similarity�𝐴𝐴,𝐵𝐵�⃗ � = ��⃗�𝐴∩𝐵𝐵�⃗ �
��⃗�𝐴∪𝐵𝐵�⃗ �

. (1) 

We computed the similarity scores for all drug-drug pairs. The 75% percentile of pairwise drug 

similarities was 0.44 for all pairs. The 75% percentile of pairwise drug similarities was 0.62 for 

pairs sharing a level 3 class of the Anatomical Therapeutic Chemical (ATC) Classification (e.g., 

drugs acting on similar systems).27  

 

2.1.2 FAERS Data 

We followed the protocol described in Banda et al. to process the FAERS data (years: 2004-

2018).28 Specifically, we removed duplicate records, normalized drug names to ingredient names 

according to RxNorm and DrugBank ID,29,30 and mapped ADE names to Medical Dictionary for 

Regulatory Activities (MedDRA) terms.31 We excluded ADE reports with more than ten ingredient 

names. Our final dataset included 8.68 million reports, 2,453 ingredient names with chemical 

similarity data, and 10,711 MedDRA PT/LLT terms with report frequencies ≥100.  
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2.1.3 Drug Label Data 

We used two ADE datasets curated from drug labels for performance evaluation (e.g., Demner-

Fushman et al. and SIDER).32,33 MedDRA terms were available in both Demner-Fushman et al. 

and SIDER.32,33 For both ADE datasets, we included drugs had: 1) reporting frequency =0 on 

2004Q1 (e.g., “new drugs” on 2004Q1); and 2) ≥20 drugs with similarity scores ≥0.6 and reporting 

frequencies ≥2,000 when the “new drugs” were firstly reported. The rationale of using “new drugs” 

is to facilitate the evaluation of early ADE detection. We identified 46 new drugs and 2,711 labeled 

drug-ADE pairs from Demner-Fushman et al.33 We identified 53 new drugs and 4,582 labeled 

drug-ADE pairs from SIDER.32 

 

2.2 Adverse Drug Event Detection 

2.2.1 Notations 

For a new drug and an ADE, let 𝑁𝑁 and 𝑋𝑋 be the number of reports involving the drug and the drug-

ADE pair, respectively. Let 𝜃𝜃  be the ADE reporting rate of the drug. Let Bin(𝑋𝑋,𝑁𝑁;𝜃𝜃) =

�𝑁𝑁𝑋𝑋�𝜃𝜃
𝑋𝑋(1 − 𝜃𝜃)𝑁𝑁−𝑋𝑋  denote the probability mass function (PMF) of binomial distribution (𝑋𝑋 =

0, … ,𝑁𝑁  and 0 < 𝜃𝜃 < 1) . Let Beta(𝜃𝜃;𝛼𝛼,𝛽𝛽) = Γ(𝛼𝛼+𝛽𝛽)
Γ(𝛼𝛼)Γ(𝛽𝛽)𝜃𝜃

𝛼𝛼−1(1 − 𝜃𝜃)𝛽𝛽−1  denote the probability 

density function (PDF) of the beta distribution (0 < 𝜃𝜃 < 1, 𝛼𝛼 > 0 and 𝛽𝛽 > 0). Let IB(𝜃𝜃∗;𝛼𝛼,𝛽𝛽) =

∫ Beta(𝜃𝜃;𝛼𝛼,𝛽𝛽)𝑑𝑑𝜃𝜃𝜃𝜃∗

0  denote the incomplete beta distribution. Additionally, let subscript 𝑖𝑖 indicate 

the 𝑖𝑖th drug (𝑖𝑖 = 1, … , 𝐼𝐼), let subscript 𝑗𝑗 indicate the 𝑗𝑗th ADE (𝑗𝑗 = 1, … , 𝐽𝐽), and let subscript (𝑘𝑘) 

indicate the 𝑘𝑘th time point (𝑘𝑘 ≥ 1). 
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2.2.2 Methods to Detect ADE 

The following test can be used to detect the 𝑗𝑗th ADE of the 𝑖𝑖th new drug: 

H0:𝜃𝜃𝑖𝑖𝑗𝑗 ≤ 𝜃𝜃𝑗𝑗∗ vs. H1:𝜃𝜃𝑖𝑖𝑗𝑗 > 𝜃𝜃𝑗𝑗∗. (2) 

In equation (2), 𝜃𝜃𝑗𝑗∗  is a predetermined value. For instance, 𝜃𝜃𝑗𝑗∗  can be selected as the marginal 

reporting rate of the 𝑗𝑗th ADE. We assume 𝑋𝑋𝑖𝑖𝑗𝑗~Bin�𝑋𝑋𝑖𝑖𝑗𝑗,𝑁𝑁𝑖𝑖𝑗𝑗;𝜃𝜃𝑖𝑖𝑗𝑗� and 𝜃𝜃𝑖𝑖𝑗𝑗~Beta �𝜃𝜃𝑖𝑖𝑗𝑗;𝛼𝛼𝑖𝑖𝑗𝑗,𝛽𝛽𝑖𝑖𝑗𝑗� under 

the Bayesian framework. In FAERS analysis, 𝛼𝛼𝑖𝑖𝑗𝑗 and 𝛽𝛽𝑖𝑖𝑗𝑗 in Beta�𝜃𝜃𝑖𝑖𝑖𝑖;𝛼𝛼𝑖𝑖𝑖𝑖 ,𝛽𝛽𝑖𝑖𝑖𝑖� can be estimated 

from ADE reports of existing drugs that have high chemical similarities with the new drug. The 

posterior probability of null hypothesis (2) given 𝑋𝑋𝑖𝑖𝑗𝑗 and 𝑁𝑁𝑖𝑖𝑗𝑗 can be expressed as 

P�𝜃𝜃𝑖𝑖𝑗𝑗 ≤ 𝜃𝜃𝑗𝑗∗|𝑋𝑋𝑖𝑖𝑗𝑗,𝑁𝑁𝑖𝑖𝑗𝑗� = 𝑞𝑞𝑖𝑖𝑗𝑗 = IB �𝜃𝜃𝑗𝑗∗;𝛼𝛼𝑖𝑖𝑗𝑗 + 𝑋𝑋𝑖𝑖𝑗𝑗,𝛽𝛽𝑖𝑖𝑗𝑗 +𝑁𝑁𝑖𝑖𝑗𝑗 − 𝑋𝑋𝑖𝑖𝑗𝑗�. (3) 

Let 𝑐𝑐 denote the threshold of 𝑞𝑞𝑖𝑖𝑗𝑗 . The decision rule for using the posterior probability of null 

hypothesis to detect ADE is 

to reject H0:𝜃𝜃𝑖𝑖𝑗𝑗 ≤ 𝜃𝜃𝑗𝑗∗, if 𝑞𝑞𝑖𝑖𝑗𝑗 < 𝑐𝑐. (4) 

Naturally,  𝑞𝑞𝑖𝑖𝑗𝑗 measures the false discovery portion (FDP) if 𝑞𝑞𝑖𝑖𝑗𝑗 < 𝑐𝑐.18 

The decision rule (4) can be used to control the FDR for high-throughput ADE mining. As 

described in Ahmed et al.,18 The FDR of mining 𝐼𝐼 × 𝐽𝐽 drug-ADE pairs given a selected threshold 

𝑐𝑐 can be expressed as:  

FDR=
∑ ∑ �𝑞𝑞𝑖𝑖𝑖𝑖×1�𝑞𝑞𝑖𝑖𝑖𝑖<𝑐𝑐��𝑖𝑖𝑖𝑖

∑ ∑ 1�𝑞𝑞𝑖𝑖𝑖𝑖<𝑐𝑐�𝑖𝑖𝑖𝑖
.  (5) 

Thus, 𝑐𝑐 controls FDR naturally, as FDR < 𝑐𝑐 for any given 𝑐𝑐. 

The decision rule (4) can be generalized to sequentially monitoring a large number of ADEs of 

multiple new drugs. A fixed threshold 𝑐𝑐 of the posterior probabilities (3) can be selected for the 

sequential monitoring approach.34 In FAERS analysis, ADE can be monitored at each fiscal quarter. 

The decision rule for the sequential monitoring approach is 
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to reject H0:𝜃𝜃𝑖𝑖𝑗𝑗 ≤ 𝜃𝜃∗, if 𝑞𝑞𝑖𝑖𝑗𝑗(𝑘𝑘) < 𝑐𝑐. (6) 

As posterior probabilities are not affected by the data collection process, the decision rule (6) is 

able to control FDR at 𝑐𝑐 for sequentially monitoring all potential ADEs of multiple new drugs. 

 

2.3 Methods Used in Performance Evaluation Analysis 

FDR control for high-throughput ADE mining was firstly defined in Ahmed et al. under the GPS 

model.18 For the 𝑖𝑖th drug and 𝑗𝑗th ADE, let 𝑋𝑋𝑖𝑖𝑗𝑗 be its observed frequency and 𝐸𝐸𝑖𝑖𝑗𝑗 be its expected 

frequency by assuming no drug-ADE association (e.g., 𝐸𝐸𝑖𝑖𝑗𝑗 = 𝑋𝑋𝑖𝑖+𝑋𝑋+𝑗𝑗 𝑋𝑋++⁄ , where 𝑋𝑋𝑖𝑖+, 𝑋𝑋+𝑗𝑗 and 

𝑋𝑋++ are the marginal drug reporting frequency, the marginal ADE reporting frequency and the 

overall reporting frequency, respectively). Under the GPS model, the underlining relative risk (i.e., 

𝜆𝜆𝑖𝑖𝑗𝑗) of the drug-ADE pair follows a mixture of gamma distribution given 𝑋𝑋𝑖𝑖𝑗𝑗 and 𝐸𝐸𝑖𝑖𝑗𝑗: 

𝑓𝑓�𝜆𝜆𝑖𝑖𝑖𝑖|𝑋𝑋𝑖𝑖𝑖𝑖,𝐸𝐸𝑖𝑖𝑖𝑖� = 𝜋𝜋 × Γ�𝜆𝜆𝑖𝑖𝑖𝑖;𝛼𝛼1 + 𝑋𝑋𝑖𝑖𝑖𝑖,𝛽𝛽1 + 𝐸𝐸𝑖𝑖𝑖𝑖� + (1 − 𝜋𝜋) × Γ�𝜆𝜆𝑖𝑖𝑖𝑖;𝛼𝛼2 + 𝑋𝑋𝑖𝑖𝑖𝑖,𝛽𝛽2 + 𝐸𝐸𝑖𝑖𝑖𝑖�. (7) 

From (7), the posterior probability of null hypothesis under the GPS model can be expressed as: 

P�𝜆𝜆𝑖𝑖𝑖𝑖 < 1|𝑋𝑋𝑖𝑖𝑖𝑖,𝐸𝐸𝑖𝑖𝑖𝑖� = ∫ 𝑓𝑓�𝜆𝜆𝑖𝑖𝑖𝑖|𝑋𝑋𝑖𝑖𝑖𝑖,𝐸𝐸𝑖𝑖𝑖𝑖�𝑑𝑑𝜆𝜆𝑖𝑖𝑖𝑖
1

0 . (8) 

Under the BCPNN model, the report frequencies of the 𝑖𝑖 th drug, the 𝑗𝑗 th ADE and the 

corresponding drug-ADE pair are assumed to follow binomial distributions. The probabilities in 

the binomial distributions are further assumed to follow uniform or beta distributions: 

𝑁𝑁𝑖𝑖~𝐵𝐵𝑖𝑖𝐵𝐵�𝑁𝑁Total,𝑝𝑝𝑖𝑖� and 𝑝𝑝𝑖𝑖~U(0,1); 𝑁𝑁𝑗𝑗~𝐵𝐵𝑖𝑖𝐵𝐵�𝑁𝑁Total,𝑝𝑝𝑗𝑗� and 𝑝𝑝𝑗𝑗~U(0,1); and 

𝑁𝑁𝑖𝑖𝑗𝑗~𝐵𝐵𝑖𝑖𝐵𝐵�𝑁𝑁Total,𝑝𝑝𝑖𝑖𝑗𝑗� and 𝑝𝑝𝑖𝑖𝑗𝑗~Beta�1, 1
𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗

� 
(9) 

Under the BCPNN model, drug-ADE pair can be ranked by the expectation of the information 

component (IC).15 
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E�IC𝑖𝑖𝑖𝑖� = E �log2
𝑝𝑝𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖

� = log2
�𝑁𝑁𝑖𝑖𝑖𝑖+1�(𝑁𝑁+++2)2

(𝑁𝑁+++2)2+𝑁𝑁Total(𝑁𝑁𝑖𝑖++1)�𝑁𝑁+𝑖𝑖+1�
,  (10) 

where 𝑋𝑋𝑖𝑖+, 𝑋𝑋+𝑗𝑗 and 𝑋𝑋++ are the marginal drug reporting frequency, the marginal ADE reporting 

frequency, and the overall reporting frequency, respectively. Posterior probability and/or FDP 

estimation is not analytically available for the BCPNN model.18 

 

3 Results 

3.1 Performance Evaluation Analysis Using Drug Label Data 

We compared the proposed drug similarity based posterior probability of null hypothesis to: 1) the 

posterior probability of null hypothesis under the GPS model; and 2) the expectation of the 

information component (IC) under the BCPNN model. We analyzed the FAERS data with respect 

to 46 and 53 “new drugs” in Demner-Fushman et al. and SIDER (please see section 2.1.3),32,33 

respectively. Under the proposed approach, each “new drug’s prior ADE risk distribution was 

derived from the top-20 similar drugs that had report frequency ≥2000 at the time that the 

corresponding “new drug” was firstly reported (i.e., first report year/quarter). We monitored all 

ADEs with marginal report frequencies ≥100 in the FAERS data for the “new drugs”. For each 

drug-ADE pair, we computed: 1) the proposed drug similarity based posterior probability of null 

hypothesis (e.g., PP_sim); and 2) the posterior probability of null hypothesis under the GPS model 

(e.g., PP_GPS); and the expectation of IC under the BCPNN model (e.g., BCPNN). 

First, we compared the area under the receiver operating characteristic curve (AUC) values for all 

approaches. Specifically, we used labeled drug-ADE pairs as condition positives and unlabeled 

drug-ADE pairs as condition negatives. Subsequently, we computed AUC values for PP_sim, 

PP_GPS, and BCPNN at each quarter after the first reporting time for each of the “new drugs”. 

Figure 1A and Figure 1B illustrate the AUC values up to 7 years after the first reporting time. 
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Specifically, in Figure 1A and Figure 1B, the lines represent median AUC values for all “new 

drugs” at each year/quarter, and the boxes represents the average of the 5%, 25%, 50%, 75%, and 

95% quantiles of the AUC values for all “new drugs” at each year. Using ADEs in Demner-

Fushman et al.;33 we observed the proposed PP_sim had higher AUC values compared with 

PP_GPS, and BCPNN within 2 years after the new drugs were firstly reported (median AUC values 

at year 2: PP_sim =0.66, PP_GPS =0.61, and BCPNN =0.60); while all approaches had 

comparable AUC values at 4 years after the new drugs were firstly reported (median AUC values 

at yea 4r: PP_sim =0.72,  PP_GPS =0.69, and BCPNN =0.71). Using ADEs in SIDER,32 we 

observed the proposed PP_sim had higher median AUC values compared with PP_GPS, and 

BCPNN within 2 years after the new drugs were firstly reported (median AUC values at year 2: 

PP_sim =0.62, PP_GPS =0.55, and BCPNN =0.54); and at 4 years after the new drugs were firstly 

reported (AUC values at year 4: PP_sim =0.64,  PP_GPS =0.61, and BCPNN =0.61).  

Second, we examined the time to detection of labeled ADEs under the time-to-event setting. As 

FDR control was unavailable under the BCPNN model, we examined PP_sim and PP_GPS by 

using 0.05 as the threshold of the posterior probabilities, which was equivalent to control FDR at 

0.05. Figure 1C and Figure 1D illustrate the cumulative incidence of detection. We observed the 

proposed PP_sim was able to detect ADE earlier than PP_GPS (P-values ≤0.002 under log-rank 

test; [Figure 1C and Figure 1D]). Additionally, PP_sim was able to detect more labeled ADEs than 

PP_GPS (Figure 1E). As Figure 1E shown, the proposed PP_sim had odds ratios (ORs) ≥6.5 (Ps 

<0.01 under the McNemar’s test) comparing to PP_GPS for identifying labeled ADEs.  

Last, we investigated the prior ADE risk distributions. The median of the minimal similarity value 

between a new drug and its similar drugs was 0.64 (interquartile range [IQR]: 0.63 - 0.66). We 
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observed the labeled ADEs had significant smaller prior probabilities of the null hypothesis 

compared with the unlabeled ADEs (P-values <0.001 under the Mann–Whitney U test [Figure S1]). 

 

3.2 Simulation Study 

We conducted simulation study to investigate the performance metrics of the proposed PP_sim 

and the PP_GPS, as both approaches focused on FDR control for mining a large number of ADEs. 

We simulated ADE report data of a new drug according to the characters of the FAERS data. 

Specifically, we assumed the “new drug” was firstly reported on 2009Q1. We assumed the new 

drug had high similarities with 23 drugs (tolterodine, diphenhydramine, duloxetine, paroxetine, 

fluoxetine, venlafaxine, levothyroxine, amiodarone, verapamil, gemfibrozil, tramadol, propranolol, 

atenolol, bisoprolol, metoprolol, salbutamol, salmeterol, citalopram, escitalopram, tamoxifen, 

tamsulosin, ramelteon, and lopinavir). All of these 23 selected drugs had report frequencies ≥

2,000 on 2009Q1. The minimal pairwise similarity between these 23 drugs was 0.65. 

The simulation procedure included the following steps. First, we derived the new drug’s prior ADE 

reporting rate distributions for all ADEs by using the ADE reporting data of the aforementioned 

23 drugs on 2009Q1. We simulated the new drug’s underlying ADE reporting rates from the prior 

distributions. We compared the underlying ADE reporting rates of the new drug to the 

corresponding marginal ADE reporting rates in FAERS. We defined true positives (i.e., underlying 

rate > marginal rate) and true negatives (i.e., underlying rate ≤  marginal rate). Second, we 

assessed the quarterly reporting rates (e.g. accumulation rate of reports) after initial reporting for 

all drugs that were firstly reported on or after 2009Q1. We computed the median quarterly 

reporting frequencies for those drugs. We assumed the report frequencies of the simulated “new 

drug” to follow Poisson distribution with mean equaled to the aforementioned median 
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accumulation rates in FAERS. We assumed the ADE frequencies to follow binomial distributions 

with the underlying ADE reporting rates of the simulated “new drug”. We simulated ADE reports 

of the new drugs up to 20 quarters (e.g., 5 years) after 2009Q1. We conducted 100,000 simulations. 

In each simulation, we computed PP_sim and PP_GPS. Further, we computed the empirical FDR, 

empirical true positive rate (TPR), empirical true negative rate (TNR) Based on 100,000 

simulations.  

Figure 2A shows the empirical FDRs. We observed both PP_sim and PP_GPS were able to control 

the FDR at desired level. Both PP_sim and PP_GPS had FDRs closed to 0 immediately after first 

reporting time. The empirical FDRs were peaked at year 1 after first reporting time (empirical 

FDRs at year 1: PP_sim =0.015 and PP_GPS =0.011). PP_GPS had conservative empirical FDR 

values than PP_sim.   

Figure 2B shows the empirical TPRs. Both approaches had empirical TPRs increase as time 

increase, while PP_sim had better empirical TPRs than PP_GPS (empirical TPRs at year 5: PP_sim 

=0.49 and PP_GPS =0.44). Both approaches had excellent empirical TNRs (empirical TNRs >0.99 

in years 1 - 5 [Figure S2]).  

 

3.3 FAERS Data Analysis 

We analyzed 205 “new drugs” that were firstly reported on or after 2012Q1. We computed PP_sim 

and PP_GPS for 1.33 million drug-ADE pairs. By controlling FDR at 0.05, PP_sim and PP_GPS 

identified 10,650 ADE signals and 7,298 ADE signals, respectively. Of the 7,298 ADE signals 

identified by PP_GPS, 7,240 were also identified by PP_sim. In another word, 99.2% of the ADE 

signals identified by PP_GPS were also identified by PP_sim. Alternatively, PP_sim uniquely 

identified 3,410 ADE signals that had not been identified by PP_GPS. 
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Figure 3A shows the percentages of the ADE signals of PP_sim that were also identified by 

PP_GPS. The frequencies were stratified by drug reporting frequency and the marginal ADE 

reporting rate. As Figure 3A shown, PP_sim uniquely identified more ADEs signals with lower 

drug reporting frequencies and/or a smaller marginal ADE reporting rates. Further, for the 7,240 

ADE signals identified by both approaches, we observed PP_sim had significant shorter time to 

detection than PP_GPS (Figure 3B). 

We used two examples to illustrate the use of PP_sim to sequentially monitor an ADE of a “new 

drug” (Figure 3C and 3D). First, Figure 3C shows PP_sim and PP_GPS for ponatinib and 

hepatotoxicity after ponatinib was firstly reported. Please noting that hepatotoxicity is labeled as 

black box warning for ponatinib.35 In this example, PP_sim reached the 0.05 threshold on the 10th 

quarter after the drug’s first reporting quarter, while PP_GPS reached the 0.05 threshold on the 

18th quarter. In another word, PP_sim was able to identify the signal of ponatinib induced 

hepatotoxicity 2 years prior to PP_GPS. Second, Figure 3D shows PP_sim and PP_GPS for 

cabozantinib and haemoptysis after cabozantinib was firstly reported. Please noting that 

haemoptysis is also labeled as black box warning for cabozantinib.35 In this example, PP_sim 

reached the 0.05 threshold on the 6th quarter after the drug’s first reporting quarter, while PP_GPS 

reached the 0.05 threshold on the 13th quarter. In another word, PP_sim was able to identify the 

signal of cabozantinib induced haemoptysis almost 2 years prior to PP_GPS. 

 

4 Conclusion and Discussion 

In this manuscript, we introduce the use of drug similarity based posterior probability of null 

hypothesis for the early detection of adverse drug event (ADE) signals. The proposed approach 

has better performance metrics than existing approaches in drug-label based performance 

evaluation analysis, especially in the first few years after a drug has been initially reported. 
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Additionally, the proposed approach is able to identify labeled ADEs in a timelier fashion. In 

simulation study, the proposed approach is able to properly control FDR, as well as has better true 

positive rate (TPR) and excellent empirical true negative rate (TNR). Last, we illustrate the 

application of the proposed approach by analyzing “new drugs” that were firstly reported on or 

after 2012Q1 in the FAERS data. In the exemplified analysis, the proposed approach is able to 

identify new ADE signals with a lower drug reporting frequency and/or a smaller ADE reporting 

rate compared with existing approach. We also highlights two examples that the proposed 

approach is able to identify boxed warnings almost 2 years prior to existing approach. 

Our performance evaluation analysis shows that the proposed approach has better AUC values in 

the first few years after a new drug has been reported comparing to existing approaches (Figure 

2A and 2B). In another word, the proposed approach outperforms existing approaches at a lower 

drug reporting frequency. As the time increases, the advantage of the proposed approach over 

existing approaches decreases (Figure 2A and 2B). In another word, as the drug report frequency 

increases, all approaches have similar performance. The proposed approach has better performance 

metrics at a lower drug reporting frequency, as it leverages drug similarity based prior risk 

distributions. In fact, labeled drug-ADE pairs have smaller prior probabilities of null hypothesis 

compared with unlabeled drug-ADE pairs (Figure S1). Such a fact demonstrates that drug 

similarity based prior risk distributions contribute relevant ADE risk information to ADE detection. 

Our findings agree with existing literatures.23,24 Compared with fiscal year based evaluation 

analysis in existing literatures,23,24 our time-to-event based evaluation analysis provides more 

comprehensive longitudinal relationship between time after first report and performance of ADE 

detection. Additionally, we explicitly demonstrated that the proposed approach is able to identify 
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labeled ADE in a timelier fashion by investigating the cumulative incidence of detection (Figure 

2C and 2D).  

Our simulation study demonstrates that the proposed approach is able to properly control FDR. In 

fact, using 0.05 as a threshold of the proposed drug similarity based posterior probability of the 

null hypothesis yields a conservative FDR (Figure 3A). Additionally, the proposed approach has 

better true positive rates (Figure 3B) and excellent true negative rates (Figure S2). These 

performance metrics reassure the use of the proposed approach to control FDR for monitoring a 

large number of ADEs of multiple new drugs. 

Our exemplified analysis of “new drugs” in FAERS demonstrated that the proposed approach is 

able to both identify new ADE signals and detect ADEs in a timelier fashion compared with 

existing approach (Figure 4A and 4B). The new ADE signals identified by the proposed approach 

are drug-ADE pairs with a lower drug reporting frequency and/or a smaller marginal ADE 

reporting frequency. This observation and results from our performance evaluation analysis and 

simulation study suggest that the proposed approach has better sensitivity on early ADE detection, 

while controlling FDR. We further show that the proposed approach is able to identify two black 

box warnings almost 2 years earlier than existing approach (Figure 4C and 4D). These specific 

cases further confirm that the proposed approach is able to detect ADE in a timelier fashion.  

The scope of the current work is to provide an approach for early ADE detection, while controlling 

FDR. We want to end with one limitation that the proposed approach does not incorporate the 

strength of the drug (e.g. dosage level) which is important for ADE, as dosage data are not well 

captured in FAERS. This limitation can be addressed by implement the proposed approach to 

electronic health record (EHR) data. Currently, data in many EHR systems are almost real-

time.36,37 Thus, to extent the proposed approach to EHR data is an important future direction, as 
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doing so shall facilitate both real-time early ADE detection and precision ADE detection. However, 

doing so may require the implementation of rigorous epidemiology designs and ADE phenotyping 

algrothim.38  
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Figure Legends 

Figure 1. Performance evaluation analysis using FAERS data and label adverse drug events 
(ADEs); A. Area under the receiver operating characteristic curve (AUC) values after first drug 
reporting time for ADEs in Demner-Fushman et al. (2018); B. AUC values after first drug 
reporting time for ADEs in SIDER; C. Cumulative incidence from first reporting time to detection 
for ADEs in Demner-Fushman et al. (2018); D. Cumulative incidence from first reporting time to 
detection for ADEs in SIDER; E. Comparison of detected ADEs in Demner-Fushman et al. (2018) 
and SIDER. 

Figure 2. Simulation results; A. False discovery rate (FDR); B. True positive rate (TPR). 

Figure 3. FAERS data analysis; A. Patterns of adverse drug events (ADE) detection stratified by 
reporting frequency; B. Cumulative incidence of ADE detection; C. Case study of ponatinib and 
hepatotoxicity; D. Case study of ponatinib and hepatotoxicity. 
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Figure 1. Performance evaluation analysis using FAERS data and label adverse drug events 
(ADEs); A. Area under the receiver operating characteristic curve (AUC) values after first drug 
reporting time for ADEs in Demner-Fushman et al. (2018); B. AUC values after first drug 
reporting time for ADEs in SIDER; C. Cumulative incidence from first reporting time to 
detection for ADEs in Demner-Fushman et al. (2018); D. Cumulative incidence from first 
reporting time to detection for ADEs in SIDER; E. Comparison of detected ADEs in Demner-
Fushman et al. (2018) and SIDER. 
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Figure 2. Simulation results; A. False discovery rate (FDR); B. True positive rate (TPR). 
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Figure 3. FAERS data analysis; A. Patterns of adverse drug events (ADE) detection stratified 
by reporting frequency; B. Cumulative incidence of ADE detection; C. Case study of ponatinib 
and hepatotoxicity; D. Case study of ponatinib and hepatotoxicity. 
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