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22 Abstract

23 Model initialization techniques are vital for improving the performance and reliability of deep 

24 learning models in medical computer vision applications. While much literature exists on non-medical 

25 images, the impacts on medical images, particularly chest X-rays (CXRs) are less understood. Addressing 

26 this gap, our study explores three deep model initialization techniques: Cold-start, Warm-start, and Shrink 

27 and Perturb start, focusing on adult and pediatric populations. We specifically focus on scenarios with 

28 periodically arriving data for training, thereby embracing the real-world scenarios of ongoing data influx 

29 and the need for model updates. We evaluate these models for generalizability against external adult and 

30 pediatric CXR datasets. We also propose novel ensemble methods: F-score-weighted Sequential Least-

31 Squares Quadratic Programming (F-SLSQP) and Attention-Guided Ensembles with Learnable Fuzzy 

32 Softmax to aggregate weight parameters from multiple models to capitalize on their collective knowledge 

33 and complementary representations. We perform statistical significance tests with 95% confidence intervals 

34 and p-values to analyze model performance. Our evaluations indicate models initialized with ImageNet-

35 pretrained weights demonstrate superior generalizability over randomly-initialized counterparts, 

36 contradicting some findings for non-medical images. Notably, ImageNet-pretrained models exhibit 

37 consistent performance during internal and external testing across different training scenarios. Weight-level 

38 ensembles of these models show significantly higher recall (p<0.05) during testing compared to individual 

39 models. Thus, our study accentuates the benefits of ImageNet-pretrained weight initialization, especially 

40 when used with weight-level ensembles, for creating robust and generalizable deep learning solutions.

41

42 Author Summary

43 In this research, we actively explore various techniques for optimal initialization of deep learning 

44 models for analyzing medical images such that the resulting models are generalizable and also demonstrate 

45 high performance. Generalizability is an area of significant importance. It is often ignored in favor of the 
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46 model achieving high performance at the cost of maintaining on previously unseen, i.e. external data, that 

47 may also be out-of-distribution. This may result in the classifier performing inadequately thereby reducing 

48 its value. We demonstrate that unlike general-purpose images, such as those found in ImageNet collection, 

49 medical images, such as chest X-rays (CXRs), are different in their visual characteristics. We show that 

50 counter to previously reported results using non-medical images, ImageNet pre-trained models trained on 

51 medical images, in fact, converge sooner and generalize better than randomly initialized models. We 

52 compare three distinct model initialization methods using internal adult CXR data to train the models which 

53 are subsequently tested on external CXR images for both adult and pediatric populations. Additionally, we 

54 consolidate several of these models into an 'ensemble’ to demonstrate that they achieve a more accurate 

55 identification of relevant cases during both internal and external testing. Therefore, our work underscores 

56 the promising potential of employing ImageNet-pretrained models for medical imagess and merging them 

57 into ensembles, aiming to enhance the reliability of AI in medical image analysis.

58

59 Introduction

60 The prowess of Deep learning (DL) has been well established for medical imaging artificial 

61 intelligence (AI) applications with automation making way for improved and efficient image acquisition, 

62 quality assessment, object detection and tracking, disease screening, diagnostics, and prediction [1]. As a 

63 subset of machine learning (ML), DL comprises multilayered neural networks for automated feature 

64 extraction and predictions, outperforming traditional techniques in accuracy and robustness. 

65 Chest X-rays (CXRs) are a routinely used diagnostic imaging modality. Despite lower sensitivity 

66 compared to computed tomography (CT) scans, CXRs offer several advantages, including cost-

67 effectiveness, reduced radiation exposure, and accessibility, making them practical in resource-limited 

68 settings [2] [3]. Several CXR datasets are available to the ML community which has resulted in significant 

69 advances in disease detection [4–8]. This dataset listing is not intended to be exhaustive as new datasets are 

70 being made available with higher frequency.



4

71 A key step in developing high-performing DL solutions is determining appropriate model 

72 initialization strategies [9]. Model initialization refers to the method of assigning initial values to neural 

73 network weights and biases. Optimal selection of the initialization strategy depends on various factors such 

74 as data characteristics including dimensionality, variability due to differences in patient anatomy, disease 

75 states, image acquisition procedures, and requirement for expert interpretation among others, activation 

76 functions, and optimization algorithms selected in the design [10]. Understanding the intricacies of model 

77 initialization and its impact on performance is essential for devising effective training methodologies, and 

78 addressing various issues in the training process, including vanishing or exploding gradients, achieving 

79 faster convergence, and stable training dynamics. An appropriately selected initialization strategy can also 

80 result in reliable and enhanced medical AI performance which is crucial for precision medicine applications.

81 The significance of model initialization is amplified when we consider challenges in model 

82 generalization which are primarily due to feature distribution shifts between training datasets and real-world 

83 use. For example, a model trained and tested on adult CXR data from the same source (internal testing) 

84 may result in significantly higher performance compared to testing it on adult CXR data from another 

85 source (external testing) [11]. Additional performance degradation may be observed when pediatric images 

86 exhibiting the same disease(s) are included in the testing. The inherent high-dimensional complexity and 

87 variability of medical images exacerbate this problem, causing models to overfit the training data. In this 

88 work, we present findings from our investigations on the impact of different model initialization techniques 

89 on DL models and propose mechanisms to improve generalizability. 

90 A review of DL literature on model initialization reveals two main techniques, namely, cold-start 

91 and warm-start, each with distinct implications for model training dynamics, generalizability, and 

92 performance [10]. The cold-start method initializes new weights and biases with small random values which 

93 results in training a new model from scratch. This technique offers an unbiased foundation but deprives the 

94 model of initialization guidance thereby resulting in slower convergence. Conversely, the warm-start 

95 strategy leverages weights and biases from a model that has been previously trained on data from similar 

96 content. Initialization guidance offered using this approach enables faster model convergence and also 
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97 provides potentially enhanced performance.  However, a previous study [10] has conversely reported that 

98 warm-start consistently underperforms with non-medical images, yielding models with poorer 

99 generalization and lower prediction accuracy compared to cold-start models. The Shrink and Perturb 

100 method proposed in [10] shrinks existing model weights towards zero and adds noise, resulting in faster 

101 training than cold-start and improved generalization over warm-start models. However, that and other 

102 studies focused on non-medical images [9,10,12–15] left a gap in understanding the impact of model 

103 initialization techniques on medical computer vision. Unlike non-medical images, medical images have 

104 unique characteristics including (i) variations in imaging modalities, e.g., CT, MRI, ultrasound, X-ray, 

105 pathology, endoscopy, where each modality captures different aspects of the human body at varying levels 

106 of resolution, contrast, and noise levels; (ii) image acquisition conditions including patient positioning, 

107 imaging protocols, and the expertise of medical professionals during acquisition that impacts the quality 

108 and appearance; (iii) varying anatomical structures that depict internal organs, tissues, and systems, and 

109 physiological processes that provide vital information for the diagnosis, treatment planning, and monitoring 

110 of diseases, (iv) limited and imbalanced data where instances of specific diseases or conditions with varying 

111 levels of progression are significantly smaller compared to healthy cases, and (v) ethical and regulatory 

112 considerations in handling medical data since they involve sensitive patient information, thereby ensuring 

113 the confidentiality and other critical factors [16,17]. 

114 Model generalizability is defined as the ability of a trained model to capture generalized patterns 

115 and perform well on unseen data. Medical computer vision relies on model generalizability for several 

116 reasons [11] including accommodating patient diversity, adapting to various data sources and quality, 

117 addressing ethical considerations, and enhancing clinical utility. A general model is robust to different data 

118 sources and population distributions, considering factors such as the patient/study subject’s ethnicity, sex, 

119 and severity of the disease(s) expressed on the image. Further, in many ML applications, data continuously 

120 flows into the system which may require regular model updates and may be unreasonable or difficult to 

121 implement. Therefore, developing reliable and generalizable models mandates both internal and 

122 external/out-of-distribution testing [18]. 
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123 Most of the literature has focused on assessing internal generalization due to the lack of widely 

124 available data sets [5,19–21] and the findings, though significant, may not guarantee optimal model 

125 performance with external data. Federated learning methods have been proposed that use decentralized 

126 training to address challenges in achieving external generalization by incorporating diverse data 

127 distributions [22]. This approach could mitigate the risk of performance degradation when the model 

128 encounters unseen data distributions. However, this approach has its limitations, such as requiring 

129 consistent communication and synchronization between data sources, which can be challenging in real-

130 world settings with privacy concerns or network instability [23]. Further, there could be data 

131 interoperability and completeness issues that limit generalization gains. Therefore, while federated learning 

132 provides a path toward achieving external generalization, it also introduces new challenges. This presents 

133 us with an opportunity for considering and evaluating other novel and efficient methods for achieving 

134 external generalization. 

135 For this work, we use adult and pediatric CXRs to evaluate model generalizability as they 

136 simultaneously exhibit significant similarities and differences due to anatomy and disease presentation 

137 across age groups [24]. These include: (i) Developmental stages: Evolving thoracic anatomy in pediatric 

138 patients is distinct in appearance from adults. There are thinner chest walls and more compliant rib cages 

139 in children. (ii) Unique abnormalities: Pediatric disease can present differently than adults or similar 

140 presentations could indicate different diseases. (iii) Imaging technique: Distinct protocols for pediatric 

141 CXRs can result in variations in intensity and contrast. Further, inspiration may be inconsistent across 

142 patients. (iv) Patient pose: Pediatric patients may need to be held down resulting in the presence of other 

143 hands in the image and unusual and variable pose of the patient. These discrepancies present challenges for 

144 DL models trained on adult data when directly applied to pediatric cases, potentially leading to sub-optimal 

145 generalizability, and reduced clinical utility. Prior work in pediatric CXR image analysis includes the 

146 development and evaluation of a ResNet-50 model trained to classify pediatric CXRs as showing 

147 pneumonia-consistent manifestations or normal lungs [11]. The model demonstrated comparatively 

148 improved performance on the internal test set (area under the curve (AUC): 0.95) compared to the external 
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149 NIH-CXR test set (AUC: 0.54), highlighting potential limitations in model generalizability. There is limited 

150 literature analyzing the generalizability of deep models trained on adult CXRs to the pediatric population. 

151 Our study presents key contributions to address the knowledge gap in the current literature 

152 regarding the impact of model initialization methods on the generalizability of DL models when we apply 

153 them to external adult and pediatric populations after training on internal adult CXR data. We specifically 

154 focus on scenarios with periodically arriving data for training, which is a common challenge faced by 

155 medical computer vision algorithms. Our investigation delves into the performance of widely-used model 

156 initialization methods, providing insights into their adaptability and their implications on generalizability. 

157 Furthermore, we propose novel weight-level ensemble methods to improve model generalizability. This 

158 crucial understanding will pave the way for the successful deployment of DL models in medical imaging 

159 applications, ultimately improving clinical decision-making and patient outcomes.

160

161 Materials and methods

162 Datasets

163 This retrospective study utilizes the following datasets:

164 (i) RSNA-CXR dataset: This publicly available CXR collection results from a collaboration 

165 between the RSNA, the Society of Thoracic Radiology (STR), and the National Institutes of Health (NIH) 

166 for the Kaggle pneumonia detection challenge [25]. The objective was to help support the design and 

167 development of image analysis and ML algorithms through a challenge targeting automatic classification 

168 of CXRs as normal, containing non-pneumonia-related, or pneumonia-related opacities. The collection 

169 comprises 26,684 deidentified anterior-posterior (AP) and posterior-anterior (PA) CXRs in DICOM format, 

170 featuring 8,851 normal lungs and 17,833 other abnormal radiographic patterns, of which 6,012 manifest 

171 pneumonia-related opacities. We use this dataset to train, validate, and internally test the DL model.
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172 (ii) Indiana-CXR dataset: The Indiana CXR dataset contains 7,470 frontal and lateral CXR 

173 projections [26] in DICOM format, accompanied by multiple annotations, including indications, findings, 

174 and impressions in textual form. These images are sourced from hospitals affiliated with the Indiana 

175 University School of Medicine. Among these, 2,378 PA CXRs exhibit abnormal pulmonary manifestations, 

176 and 1,726 CXRs have normal lung appearances. This de-identified dataset is stored at the National Library 

177 of Medicine (NLM) and has been exempted from Institutional Review Board review (OHSRP # 5357). We 

178 use this dataset as the external adult test set.

179 (iii) VINDR-PCXR dataset: The VINDR-PCXR dataset is a publicly available pediatric CXR 

180 collection [27] developed to support computer-aided diagnosis algorithm development for pediatric CXR 

181 interpretation. It consists of 9,125 CXR scans, in DICOM format, collected from three major Vietnamese 

182 hospitals between 2020 and 2021. The pediatric dataset includes deidentified images of 5,354 males, 3,709 

183 females, and 62 patients with unknown gender. Among the 8,755 pediatric CXRs, 5,876 show normal lungs, 

184 and 2,879 exhibit other cardiopulmonary abnormalities, with age distributions as follows: 5,335 CXRs for 

185 ages 1 day to under 24 months, 3,351 CXRs for ages 24 months to under 11 years, and 69 CXRs for ages 

186 11 to under 18 years. We use this dataset as an external pediatric test.

187 (iv) NIH-CXR dataset: The NIH-CXR dataset is a publicly accessible, large-scale collection of 

188 deidentified CXRs [28] compiled by the NIH Clinical Center. It contains 112,120 frontal-view CXR images 

189 in PNG format, from 30,805 unique patients. The dataset includes 14 cardiopulmonary disease labels, text-

190 mined from radiological reports using a Natural Language Processing (NLP) labeler. Among these, 5,257 

191 pediatric CXRs represent normal lungs (n = 3,066) and other cardiopulmonary abnormalities (n = 2,191), 

192 divided into three age groups: 34 CXRs captured from pediatric patients of ages 1 day to under 24 months, 

193 1,787 CXRs of ages 24 months to under 11 years, and 3,486 CXRs of ages 11 to under 18 years. The 

194 pediatric group consists of 3,018 males and 2,239 females, while 106,863 CXRs belong to patients older 

195 than 18 years. We use this dataset as the external pediatric test.

196 We further partition the RSNA-CXR dataset at the patient level into 70% for training, 10% for 

197 validation, and 20% for internal testing. The training and validation sets are additionally divided into two 
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198 equal-sized subsets to simulate periodic data arrival for training and validation and facilitate the simplest 

199 case of warm-start. The DL model trains to converge on the first half of the data and then trains on the full 

200 collection, which represents 100% of the data. We name the first half RSNA-Partial (P) and the full 

201 collection RSNA-Full (F). The internal test remains the same for both the RSNA-P and RSNA-F datasets. 

202 Table 1 provides details of this partition.

203

204 Table 1. Training, validation, and internal test split using the RSNA-CXR dataset.

Train Val Internal testDataset

No finding Abnormal No finding Abnormal No finding Abnormal

RSNA-P 3098 6242 442 891 1770 3566

RSNA-F 6196 12484 885 1783 1770 3566

205

206 The external test sets consist of adult CXRs from the Indiana-CXR collection and pediatric CXRs from the 

207 NIH-CXR and VINDR-PCXR collections. We categorize the pediatric CXRs into three groups: Ped-2 (1 

208 day to under 24 months), Ped-11 (24 months to under 11 years), and Ped-18 (11 years to under 18 years), 

209 based on the lung developmental stages from infancy to adulthood as discussed in [29]. Table 2 shows the 

210 categorization of test CXRs according to various age groups.

211

212 Table 2. External test set categorization across various age groups.

1 day to < 24 months 24 months to < 11 years 11 years to < 18 years > 18 yearsDataset

No finding Abnormal No finding Abnormal No finding Abnormal No finding Abnormal

Indiana-CXR - - - - - - 1726 2378

NIH-CXR 29 5 1059 728 1978 1458 - -

VINDR-PCXR 3341 1994 2475 876 60 9 - -

Total 3370 1999 3534 1604 2038 1467 1726 2378

213

214 Lung region delineation and cropping 
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215 We utilize a UNet [30] model with an ImageNet-pretrained Inception-V3 encoder backbone from 

216 our previous study [31] to delineate the lung regions and crop them to the size of a bounding box. The 

217 purpose of lung cropping is to prevent the DL model from learning irrelevant features for cardiopulmonary 

218 disease detection. We resize the cropped lung bounding boxes to 256×256-pixel dimensions and normalize 

219 them to the range [0, 1] to reduce computational complexity.

220

221 Model architecture and training 

222 For the model architecture and training scenario, we employ a VGG-16 model [32] architecture. 

223 We truncate it at its deepest pooling layer and append a global average pooling (GAP) layer and a final 

224 dense layer with two nodes and Softmax activation. This modified model, referred to as VGG-16-M, 

225 predicts whether the CXRs show normal lungs or other cardiopulmonary abnormalities. We choose the 

226 VGG-16 model due to its simplicity, effectiveness, and well-known performance in medical image 

227 classification tasks, particularly using CXRs [33–35]. Selecting an optimal model falls beyond the scope of 

228 this research, as our study aims to analyze the impact of model initialization strategies on deep model 

229 generalization. The proposed technique can be applied to any model suitable for the characteristics of the 

230 data under study. Table 3 provides a list of the data and model terminologies used in this study.

231

232 Table 3. Data and model terminologies.

Terminologies Explanation

R, I Model initialization: random weights (R) or ImageNet-pretrained weights (I)

P, F VGG-16-M model dataset usage: RSNA-P (P) or RSNA-F (F)

Cold-RP Random initialization, trained on RSNA-P

Cold-IP ImageNet-pretrained initialization, trained on RSNA-P

Cold-RF Random initialization, trained on RSNA-F

Warm-RF Cold-RP model fine-tuned on RSNA-F

Shrink-RF Cold-RP model with weights shrunk by factor α1, found via Bayesian search

Cold-IF ImageNet-pretrained initialization, trained on RSNA-F
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Warm-IF Cold-IP model fine-tuned on RSNA-F

Shrink-IF Cold-IP model with weights shrunk by factor α2, found via Bayesian search

233

234 Each model undergoes training and validation using the RSNA-CXR dataset with a mini-batch size 

235 of 64. We utilize the Adam optimizer with an initial learning rate of 0.001 to minimize the categorical cross-

236 entropy loss. Model checkpoints are stored via callbacks when a decrease in validation loss is observed. 

237 The checkpoint exhibiting the lowest validation loss is used to generate predictions for both the internal 

238 and external test datasets. Test performance evaluation occurs at the ideal classification threshold, 

239 determined by maximizing the F-score for the validation dataset.

240

241 Optimizing the weight-scaling factor  

242 The method proposed in the Shrink and Perturb technique [10] involves shrinking the existing 

243 model weights by multiplying with a factor α and incorporating a small noise β to accelerate DL model 

244 convergence and enhance generalization compared to standard cold-start and warm-start methods. Let W 

245 be the set of model weights. We calculate the updated weights W’ using Equation (1):

𝑊′ =  𝛼𝑊 +  𝛽. (1)

246 Here, α denotes the weight-scaling factor. Previous experiments [10] used discrete α values and fixed β at 

247 0.01. In contrast, while we continue to use a fixed value for β as 0.01, we apply Bayesian optimization via 

248 Gaussian Process (GP) minimization [36] to identify the optimal α for shrinking the weights of the Cold-

249 RP and Cold-IP models. These are subsequently used to initialize the weights in the Shrink-RF and Shrink-

250 IF models, respectively. Bayesian optimization using GP minimization reduces susceptibility to local 

251 minima, enabling more effective identification of the optimal α within a continuous interval compared to 

252 the grid or random search methods at discrete intervals. GP minimization explores the search space more 

253 thoroughly and converges efficiently by modeling the objective function as a Gaussian process sample. We 

254 define the continuous search space for α within the range [0.1, 0.9]. We create a function that accepts α as 
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255 input and performs the following steps: (i) instantiate and compile the model with the current weights, (ii) 

256 train and validate the model, storing the best model weights, validation loss, α, and training history 

257 whenever the validation loss decreases, and (iii) perform GP minimization for 100 function calls and 30 

258 random starts to converge to the optimal α with minimal validation loss. The hyperparameters for GP 

259 minimization follow the default settings in the scikit-optimize Python library.

260

261 Weight-level ensembles

262 We are also proposing ensemble methods that merge the weights of multiple models. Our approach 

263 is different from traditional techniques that aggregate model predictions [37–39]. Our proposed weight-

264 level ensembles harness the power of diverse weight initializations, capitalizing on complementary learning 

265 dynamics to foster robust generalization in complex, high-dimensional medical data landscapes. 

266 We perform Equal Weight Averaging (EWA), which combines the weights of multiple trained 

267 models to create an average model. This technique aims to enhance classification performance by 

268 leveraging the complementary strengths of individual models in capturing data patterns. We achieve this 

269 by iterating through each model's layers, retrieving and averaging the layer weights with equal weight 

270 factors, resulting in a new model with a similar architecture for prediction.

271 We introduce a novel F-score-weighted Sequential Least-Squares Quadratic Programming (F-

272 SLSQP)-based weighted ensemble method to determine the optimal multiplication factors for combining 

273 the weights of multiple models in the ensemble. We identify these optimal factors by minimizing the error, 

274 as defined in Equation (2), through SLSQP-based constrained minimization [40]. 

𝐸𝑟𝑟𝑜𝑟 = 1 ― (𝐹 ― 𝑠𝑐𝑜𝑟𝑒𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛). (2)

275 The process of determining the optimal multiplication factors involves the following steps: (i) defining a 

276 function to compute the weighted average of weights for the ensemble models, (ii) defining a function to 

277 create a new model with the same architecture as the models in the ensemble, (iii) creating a global variable 

278 for the best multiplication factors, (iv) defining a function to calculate the error from the weighted average 
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279 of the models, (v) setting the optimization parameters, including the constraints and bounds, where the 

280 constraint ensures the sum of scaling factors equals 1.0 and the bounds ensure each scaling factor is within 

281 the range [0, 1], (vi) executing the SLSQP algorithm multiple times (n = 100) to minimize the error and 

282 find the optimal multiplication factors, (vii) performing weighted averaging with the optimal multiplication 

283 factors to create the weighted ensemble model, and (viii) compiling and saving the weighted ensemble 

284 model for prediction.

285 Additionally, we present a novel method for developing an attention-guided ensemble 

286 incorporating a learnable Fuzzy Softmax layer (AGELFS). This technique utilizes attention mechanisms 

287 [41] to emphasize relevant features of each model while mitigating less significant ones. The ensemble 

288 construction involves the following steps: (i) instantiating and freezing the constituent models with their 

289 respective weights, (ii) processing training input through these models and appending a GAP layer to each 

290 model's output, (iii) concatenating the outputs of the GAP layers, (iv) introducing an attention layer to 

291 derive attention-based weights for the concatenated outputs, (v) appending a dense layer with conventional 

292 Softmax activation to learn attention-based weights for the concatenated outputs, (vi) applying a learnable 

293 Fuzzy Softmax (LFS) layer to the dense layer output, and (vii) training the ensemble. The Fuzzy Softmax 

294 layer [42] enhances the conventional Softmax function by introducing a learnable Fuzziness parameter that 

295 controls the uncertainty level in output probabilities, as described in Equation (3), where x_i and x_j 

296 represent the input logits, and Fuzziness is the learnable parameter.

(𝐿𝑒𝑎𝑟𝑛𝑎𝑏𝑙𝑒 𝐹𝑢𝑧𝑧𝑦 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥_𝑖 ) = exp (𝑓𝑢𝑧𝑧𝑖𝑛𝑒𝑠𝑠 ∗  𝑥_𝑖 ))/ 𝑠𝑢𝑚(exp (𝑓𝑢𝑧𝑧𝑖𝑛𝑒𝑠𝑠 ∗  𝑥_𝑗 ) ). (3)

297

298 Performance evaluation and statistical significance analysis 

299 We examine model performance using key metrics, including balanced accuracy, precision, recall, 

300 the area under the precision-recall curve (AUPRC), F-score, and Matthews Correlation Coefficient (MCC). 

301 Each metric provides valuable insights into the model's effectiveness in various aspects of classification 

302 tasks. We present the statistical significance of the MCC by utilizing 95% binomial confidence intervals 



14

303 (CIs) and ascertain them through the Clopper-Pearson Exact methodology to distinguish model efficacy. 

304 We determine the p-values based on the CI-based Z-test [43]. We obtain the MCC values and their 

305 corresponding 95% CIs for the compared models. For each model, we compute the standard error (SE) 

306 using Equation (4):

𝑆𝐸 = (𝐶𝐼𝑢𝑝𝑝𝑒𝑟 ― 𝐶𝐼𝑙𝑜𝑤𝑒𝑟)/(2 ∗ 1.96). (4)

307 Here, CIupper and CIlower represent the upper and lower bounds of the CIs, respectively. We compute the 

308 difference in the MCC (ΔMCC) and SE (ΔSE) values using Equations (5) and (6) respectively: 

𝛥𝑀𝐶𝐶 =  𝑀𝐶𝐶2 ―  𝑀𝐶𝐶1. (5)

𝛥𝑆𝐸 =  𝑠𝑞𝑟𝑡(𝑆𝐸12 +  𝑆𝐸22). (6)

309 Here, MCC1, MCC2, SE1, and SE2 are the MCC and SE metrics of the compared models. We compute the 

310 Z-score from this difference using Equation (7): 

𝑍 =  𝛥𝑀𝐶𝐶 / 𝛥𝑆𝐸. (7)

311 We calculate the corresponding p-value for the Z-score using an online Z-table. A threshold of 0.05 is 

312 utilized to establish statistical significance using the 95% CIs. If the p-value is less than 0.05, we observe 

313 that the difference in performance, as gauged by MCC, is statistically significant. We repeat this process to 

314 present the statistical significance of the recall values for the proposed weight-level ensembles.

315

316 Results and discussion

317 We first present a comparative analysis between the performances of the Cold-RP and Cold-IP 

318 models. Recall that the Cold-RP model initializes the VGG-16 backbone of the VGG-16-M model with 

319 random weights and trains it on the RSNA-P dataset. Conversely, the Cold-IP model initializes the VGG-

320 16 backbone of the VGG-16-M model with ImageNet-pretrained weights and also trains it on the RSNA-P 

321 dataset. 
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322 Table 4 displays performance metrics when predicting the RSNA-P test set (internal adult test set), 

323 while Fig 1 illustrates the AUPRC, confusion matrices, and a comparison of MCC values. Based on the 

324 information in Table 4, we deduce the following: (i) The Cold-IP model converges considerably faster than 

325 the Cold-RP model, and (ii) the Cold-IP model exhibits a significantly higher MCC (p<0.00001) and 

326 notably higher values for other performance metrics compared to the Cold-RP model.

327

328 Table 4. Performance of models initialized with random and ImageNet-pretrained weights on the 

329 internal adult test set.  The terms B. Acc., P, R, and F denote balanced accuracy, precision, recall, and F-

330 score, respectively. Bold numerical values denote superior performance in respective columns. Values in 

331 parentheses represent the 95% CIs for the MCC metric. The * denotes statistically significant MCC 

332 (p<0.00001). 

Model AUPRC B. Acc. P R F MCC Training time 

(in sec.)

p-MCC

Cold-RP 0.9452 0.8156 0.8856 0.8531 0.8690 0.6204

(0.6073, 0.6335)

2052.83

Cold-IP 0.9671 0.8466 0.8961 0.9044 0.9002 0.6964

(0.6840, 0.7088)*

812.52
<0.00001

333

334 Fig 2 depicts histograms that illustrate the distribution of Softmax activations for the positive (1 - 

335 Abnormal) and negative (0 - No Finding) classes when predicting the RSNA-P test set using the Cold-RP 

336 and Cold-IP models. The Softmax histograms provide insight into the correctness and confidence of each 

337 model's predictions, as well as differences in Softmax predictions and overall performance. The x-axis 

338 represents Softmax activations, and the y-axis indicates the density of these activations. The histograms' 

339 shape and density reveal a more distinct separation between the two classes in the Cold-IP model, 

340 characterized by two clear peaks near 0 and 1. This distinction may result from the Cold-IP model's 

341 initialization with ImageNet-pretrained weights, allowing it to leverage useful features learned from a large-

342 scale dataset. 
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343

344 Fig 1. Internal adult test performance comparison between the Cold-RP and Cold-IP models. (a) 

345 AUPRC, (b) Confusion matrices, and (c) MCC comparison with the p-value.
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346

347 Fig 2. Histograms of the Softmax activations of Cold-RP and Cold-IP models.

348

349 Consequently, the model converges more effectively and generates more accurate and confident predictions 

350 for both classes. In contrast, the Cold-RP model, initialized with random weights, exhibits a less distinct 

351 separation and a wider distribution of predictions around 0.5, suggesting lower confidence and correctness 

352 in its predictions. These findings underscore the superior performance of the Cold-IP model relative to the 

353 Cold-RP model. 

354 We also use t-SNE visualizations [44] to assess the feature representations learned by the Cold-RP 

355 and Cold-IP models in the 2D space (Fig 3). The t-SNE visualization allows us to effectively evaluate each 

356 model's ability to capture the data's underlying structure and its generalizability. We determine the optimal 

357 perplexity and learning rate parameters through rigorous empirical analysis. The t-SNE plot highlights 

358 distinct visual disparities in the models' learned features. Although both models acquire meaningful data 

359 representations, the Cold-IP model's t-SNE presents two well-defined clusters for the No Finding and 

360 Abnormal classes, indicating that the Cold-IP model more effectively captures the data's essential features 

361 and generalizes to the internal adult test set. This representation can potentially enhance classification 

362 performance on unseen data. Conversely, the Cold-RP model's t-SNE displays greater class overlap. 

363 Despite some separation, the clusters are less defined compared to the Cold-IP model. This diminished 
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364 separation implies that the Cold-RP model struggles to accurately classify test set instances, particularly 

365 near the decision boundary. The t-SNE visualizations underscore that the Cold-IP model exhibits superior 

366 generalization capabilities relative to the Cold-RP model.

367

368

369 Fig 3. The t-SNE visualization of the features learned by the Cold-RP (left) and Cold-IP (right) 

370 models. 

371

372 We proceed to train and evaluate models on 100% of the data, i.e., the RSNA-F dataset, with the 

373 aforementioned configurations for Cold-RF, Warm-RF, Shrink-RF, Cold-IF, Warm-IF, and Shrink-IF 

374 models (Table 3). The weights of the Cold-RP and Cold-IP models that are used to initialize the weights 

375 for the Shrink-RF model and the Shrink-IF models, respectively, are shrunk by an optimal scaling factor of 

376 0.7209 (α1) and 0.9 (α2), respectively, as determined by Bayesian optimization through GP minimization 

377 in the constrained continuous interval of [0.1, 0.9]. 

378 Table 5 displays performance metrics, while Fig 4 illustrates the AUPRC achieved by each model 

379 when predicting the RSNA-F test (i.e., the internal adult test set). We observe that the models initialized 

380 with ImageNet-pretrained weights (Cold-IF, Warm-IF, Shrink-IF) converge considerably faster and also 
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381 significantly outperform their randomly initialized counterparts (Cold-RF, Warm-RF, Shrink-RF) in terms 

382 of MCC (p<0.00001) and other metrics. 

383

384 Table 5: Performance of models on the internal adult test set. Bold numerical values denote superior 

385 performance in their respective columns. The * denotes statistically significant MCC among each model 

386 pair, i.e., (Cold-RF, Cold-IF), (Warm-RF, Warm-IF), and (Shrink-RF, Shrink-IF) (p<0.00001).

Model AUPRC B. Acc. P R F MCC Training time 

(in sec.)

p-MCC

Cold-RF 0.9557 0.8383 0.9015 0.8676 0.8842 0.6650 (0.6523,0.6777) 3098.99

Cold-IF 0.9732 0.8534 0.8958 0.9232 0.9093 0.7187 (0.7066,0.7308)* 1458.36
<0.00001

Warm-RF 0.9522 0.8036 0.8593 0.9061 0.8821 0.6267 (0.6137,0.6397) 1453.58

Warm-IF 0.9723 0.8686 0.9214 0.8904 0.9056 0.7258 (0.7138,0.7378)* 1067.58
<0.00001

Shrink-RF 0.9572 0.8158 0.8711 0.8999 0.8853 0.6431 (0.6302,0.6560) 1982.63

Shrink-IF 0.9714 0.8508 0.8934 0.9237 0.9083 0.7150 (0.7028,0.7272)* 1205.31
<0.00001

387

388

389 Fig 4. AUPRC of the models while predicting the internal adult test set.  
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390 Among the ImageNet-initialized models, the Cold-IF model takes slightly longer to converge (1458.36 

391 seconds) compared to the Warm-IF (1067.58 seconds) and Shrink-IF models (1205.31 seconds). The 

392 confusion matrices of these models are shown in S1 Figure. S2 Figure shows a comparison of MCC values 

393 for each model pair, i.e., (Cold-RF, Cold-IF), (Warm-RF, Warm-IF), and (Shrink-RF, Shrink-IF).

394 Analyzing the t-SNE visualizations in Fig 5 allows us to glean insights into the generalization 

395 abilities of each model within their respective pairs: (Cold-RF, Cold-IF), (Warm-RF, Warm-IF), and 

396 (Shrink-RF, Shrink-IF). We determine the ideal perplexity and learning rate values for each model through 

397 extensive empirical evaluations. In the Cold-RF versus Cold-IF comparison, the Cold-IF model, initialized 

398 with ImageNet-pretrained weights, showcases more distinct clustering and superior class separation than 

399 its randomly initialized counterpart. Similarly, the Warm-IF model demonstrates clearer data point 

400 separation into distinct clusters compared to Warm-RF in their respective comparison. Lastly, the Shrink-

401 IF model presents more well-defined clusters and class separations than Shrink-RF. Based on the t-SNE 

402 visualizations, we observe that ImageNet-initialized models (Cold-IF, Warm-IF, Shrink-IF) exhibit 

403 enhanced generalization capabilities compared to their randomly initialized counterparts. These 

404 observations underscore the significance of employing ImageNet-pretrained weights to boost performance 

405 and generalizability in such models. 

406 The Softmax activation histograms (S3 Figure) help visualize performance disparities. In the Cold-

407 RF versus Cold-IF comparison, the Cold-IF model exhibits a bimodal distribution with peaks near 0 and 1, 

408 suggesting confident, accurate predictions for both classes. Conversely, the Cold-RF model displays a 

409 uniform distribution without a preference for either class, indicating less confident, less accurate 

410 predictions. In the Warm-RF versus Warm-IF comparison, we observe that the Warm-IF model's histogram 

411 displays a distinct bimodal distribution, indicative of confident, accurate predictions. The Warm-RF model 

412 exhibits a less pronounced bimodal distribution, signaling lower prediction confidence. The Warm-IF 

413 model's superior performance corresponds with its histogram's well-defined bimodal distribution. 

414 Similarly, the Shrink-RF and Shrink-IF model pair reveal performance differences. The Shrink-IF model's 

415 histogram presents a prominent bimodal distribution, implying greater confidence and accuracy in 
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416 predictions, whereas the Shrink-RF model shows a less distinct distribution, reflecting weaker prediction 

417 capabilities.

418
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419 Fig 5. t-SNE visualization of the features learned by the model pairs. (a) Cold-RF and Cold-IF; (b) 

420 Warm-RF and Warm-IF, and (c) Shrink-RF and Shrink-IF. 

421

422 As we examine Table 5, we make an intriguing observation. When predicting the internal adult 

423 test, the Cold-IF model only marginally outperforms the Warm-IF and Shrink-IF models in terms of 

424 AUPRC, F-score, and MCC. The Warm-IF model shows slightly higher balanced accuracy and precision, 

425 while the Shrink-IF model exhibits marginally better recall. However, there are no significant performance 

426 differences observed for the MCC metric (p>0.05). Other metrics also demonstrate similar values across 

427 the models. Nevertheless, considering their superior performance compared to their randomly-initialized 

428 counterparts, the Cold-IF, Warm-IF, and Shrink-IF models did not demonstrate significant differences in 

429 their generalizability to the internal test set.

430 Similar trends are observed when assessing external generalization in Table 6. For the external 

431 adult test, the Cold-IF model only marginally, but not significantly (p>0.05), outperforms the Warm-IF and 

432 Shrink-IF models in terms of MCC. This observation holds for balanced accuracy, recall, and F-score. The 

433 Warm-IF model slightly outperforms the other models in terms of AUPRC and precision. When predicting 

434 the external Ped-2 test, the Cold-IF model slightly outperforms the Warm-IF and Shrink-IF models in terms 

435 of all metrics. However, no significant difference in performance is observed for the MCC metric (p>0.05). 

436 Similar performance trends are observed for the Ped-11 and Ped-18 test sets. With the Ped-11 test, the 

437 Warm-IF model marginally outperforms (p>0.05) the other models in terms of MCC. The Cold-IF model 

438 demonstrates slightly superior values for AUPRC, recall, and F-score. The Shrink-IF model performs the 

439 worst among all models. With the Ped-18 test, the Warm-IF model achieves marginally superior balanced 

440 accuracy, precision, F-score, and MCC. The Shrink-IF model shows slightly better recall and AUPRC, 

441 while the Cold-IF model exhibits the lowest performance. These observations suggest that, despite 

442 differences in training scenarios, the ImageNet-initialized models, namely Cold-IF, Warm-IF, and Shrink-

443 IF, might have converged to distinct local optima that enable comparable generalization performance across 

444 the external test sets.
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445 Table 6. Comparing the model performances when predicting the external adult and pediatric test 

446 sets. Bold numerical values denote superior performance in their respective columns.

Test Models AUPRC B. Acc. P R F MCC p-MCC

Cold-IF 0.8490 0.7170 0.8452 0.5807 0.6884 0.4378 (0.4226, 0.4530)

Warm-IF 0.8573 0.6942 0.8939 0.4643 0.6112 0.4180 (0.4029, 0.4331)

Adult

Shrink-IF 0.8472 0.7073 0.8599 0.5345 0.6592 0.4263 (0.4111, 0.4415)

>0.05

Cold-IF 0.4685 0.5480 0.3997 0.8794 0.5496 0.1206 (0.1118, 0.1294)

Warm-IF 0.4289 0.5394 0.3953 0.8514 0.5399 0.0955 (0.0876, 0.1034)

Ped-2 

Shrink-IF 0.4589 0.5362 0.3927 0.8769 0.5425 0.0936 (0.0858, 0.1014)

>0.05

Cold-IF 0.5936 0.6235 0.4861 0.7519 0.5905 0.2458 (0.2340, 0.2576)

Warm-IF 0.5876 0.6327 0.5063 0.6976 0.5868 0.2595 (0.2475, 0.2715)

Ped-11

Shrink-IF 0.5887 0.6243 0.4881 0.7444 0.5896 0.2465 (0.2347, 0.2583)

>0.05

Cold-IF 0.6726 0.7116 0.5871 0.8569 0.6968 0.4281 (0.4117, 0.4281)

Warm-IF 0.682 0.7324 0.6229 0.8241 0.7095 0.4614 (0.4448, 0.4780)

Ped-18 

Shrink-IF 0.6822 0.7113 0.5849 0.8643 0.6977 0.4293 (0.4129, 0.4457)

>0.05

447

448 To assess weight distribution similarity, we generated a heatmap of Earth Mover Distance (EMD) 

449 values in Fig 6. Lower EMD values indicate higher weight similarity due to shared ImageNet-pretrained 

450 weight initialization for the Cold-IF, Warm-IF, and Shrink-IF models. This similarity, supported by the low 

451 EMD values, aligns with the observation that the models' performance differences are not pronounced. 

452 We further analyze the weight distribution similarity of the Cold-IF, Warm-IF, and Shrink-IF models using 

453 scatter plots (Fig 7). The plots visually depict the relationship between the weight distributions of each 

454 model pair, namely (Cold-IF, Warm-IF), (Cold-IF, Shrink-IF), and (Warm-IF, Shrink-IF). Each point in the 

455 scatter plot represents a pair of weights from the compared models, with the x-axis and y-axis representing 

456 the weights of the respective models. Dense point distributions along the diagonal indicate higher weight 

457 similarity, while more dispersed distributions suggest less similarity. We observe a strong positive 

458 correlation between weight distributions as evident from the scatter plot patterns. The scatter plots 
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459 demonstrate a dense diagonal distribution, indicating highly similar weight distributions for the compared 

460 models. This similarity implies that the models learned similar features and representations during training, 

461 resulting in comparable Softmax predictions for the positive and negative classes, as supported by their 

462 performance metrics.

463

464 Fig 6. Heatmap showing EMD values between each model pair for the Cold-IF, Warm-IF, and 

465 Shrink-IF models. 

466

467

468 Fig 7. Scatter plots show the correlation in weights between pairs of models.
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469 We also apply ensemble methods to evaluate if the generalization performance with internal and 

470 external test sets can surpass that of the individual models. Table 7 presents the ensemble performances 

471 when predicting the internal adult test. 

472

473 Table 7. Model performances achieved with the internal adult test. Bold numerical values denote 

474 superior performance in their respective columns. The * denotes statistically significant recall (p<0.00001) 

475 compared to the baseline.

Models AUPRC B. Acc. P R F MCC

Warm-IF-Baseline 0.9723 0.8686 0.9214 0.8904 0.9056 0.7258 (0.7138,0.7378)

EWA Ensemble

Cold-IF, Warm-IF 0.9709 0.8548 0.8999 0.9148 0.9073 0.7159 (0.7037,0.7281)

Cold-IF, Shrink-IF 0.9707 0.8611 0.9100 0.9019 0.9059 0.7190 (0.7069,0.7311)

Warm-IF, Shrink-IF 0.9730 0.8697 0.9200 0.8965 0.9081 0.7305 (0.7185,0.7425)

Cold-IF, Warm-IF, Shrink-IF 0.9712 0.8551 0.8993 0.9170 0.9081 0.7177 (0.7056,0.7298)

F-SLSQP Ensemble

Cold-IF, Warm-IF 0.9724 0.8680 0.9204 0.8915 0.9057 0.7254 (0.7134,0.7374)

Cold-IF, Shrink-IF 0.9722 0.8635 0.9096 0.9089 0.9092 0.7266 (0.7146,0.7386)

Warm-IF, Shrink-IF 0.9728 0.8604 0.9053 0.9136 0.9094 0.7244 (0.7124,0.7364)

Cold-IF, Warm-IF, Shrink-IF 0.9722 0.8611 0.9068 0.9108 0.9088 0.7238 (0.7118,0.7358)

AGELFS

Cold-IF, Warm-IF 0.9731 0.8698 0.9218 0.8920 0.9067 0.7284 (0.7164,0.7404)

Cold-IF, Shrink-IF 0.9734 0.8598 0.9026 0.9195* 0.9110 0.7267 (0.7147,0.7387)

Warm-IF, Shrink-IF 0.9727 0.8591 0.9020 0.9192 0.9105 0.7254 (0.7134,0.7374)

Cold-IF, Warm-IF, Shrink-IF 0.9729 0.8558 0.8980 0.9229 0.9103 0.7224 (0.7103,0.7345)

476

477 We select the baseline model based on the best MCC performance reported for the individual models in 

478 Table 5. We observe that the Attention-Guided Ensemble with Learnable Fuzzy Softmax (AGELFS) of the 

479 Cold-IF and Shrink-IF models deliver significantly superior values for recall (p<0.00001) and marginally 

480 higher values for AUPRC and F-score among other ensemble methods. The AGELFS of the Cold-IF and 

481 Warm-IF models delivers higher but not significantly superior values for balanced accuracy and precision. 

482 The learned Fuzziness values for the Softmax Layer in the AGELFS ensemble are 1.113, 1.113, 1.039, and 
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483 1.044 for the model pairs (Cold-IF, Warm-IF), (Cold-IF, Shrink-IF), (Warm-IF, Shrink-IF), and (Cold-IF, 

484 Warm-IF, Shrink-IF), respectively. The Equal Weight Averaging (EWA) ensemble of the Warm-IF and 

485 Shrink-IF models yields a marginally higher MCC value compared to the baseline. 

486 Table 8 presents the performances achieved with the external adult and pediatric test sets. For 

487 brevity, we present here only the key results in a single table while the complete tables are included in the 

488 Supplementary (S1 Table, S2 Table, S3 Table, and S4 Table). We observe sub-optimal external 

489 generalization compared to the results achieved with the internal test set in Table 7. For the external adult 

490 test set, the individual Cold-IF model achieves a relatively higher MCC of 0.4378 among other individual 

491 models and so we choose it as the baseline. The F-SLSQP ensemble of the Cold-IF and Warm-IF models 

492 demonstrates significantly superior precision (p<0.00001) and the highest AUPRC. The EWA ensemble of 

493 the Cold-IF and Warm-IF models achieves a marginally higher balanced accuracy, recall, F-score, and 

494 MCC compared to the baseline and other tested combinations. For the Ped-2 test set, the Cold-IF model 

495 serves as the baseline. The EWA ensemble significantly improves recall (p<0.00001). We use the Warm-

496 IF as the baseline for the Ped-11 test set. The EWA ensemble of Cold-IF, Warm-IF, and Shrink-IF models 

497 demonstrates significantly superior values for recall (p<0.00001). The AGELFS of Cold-IF and Warm-IF 

498 models demonstrate higher values for precision; however, these values are not markedly different compared 

499 to the individual Warm-IF model, which demonstrates the highest MCC compared to the ensembles. We 

500 use the Warm-IF as the baseline for the Ped-18 test set. The EWA ensemble of Cold-IF, Warm-IF, and 

501 Shrink-IF models achieves significantly superior recall (p<0.00007), while the AGELFS of Cold-IF and 

502 Warm-IF models yield higher, yet not markedly different, balanced accuracy, precision, F-score, and MCC 

503 values.

504

505 Table 8. Performances achieved with the external adult and pediatric test sets. Bold numerical values 

506 denote superior performance in their respective columns. The * denotes statistical significance for the 

507 respective column metric compared to the baseline models for each external test set.
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Models AUPRC B. Acc. P R F MCC

Adult

Cold-IF-Baseline 0.8490 0.7170 0.8452 0.5807 0.6884 0.4378 (0.4226,0.4530)

EWA Ensemble

Cold-IF, Warm-IF 0.8557 0.7272 0.8519 0.5976 0.7024 0.4568 (0.4415,0.4721)

F-SLSQP Ensemble

Cold-IF, Warm-IF 0.8591 0.6961 0.8929* 0.4697 0.6156 0.4205 (0.4053,0.4357)

Ped-2

Cold-IF-Baseline 0.4685 0.5480 0.3997 0.8794 0.5496 0.1206 (0.1118,0.1294)

EWA Ensemble

Cold-IF, Warm-IF, Shrink-IF 0.4367 0.5240 0.3847 0.9335* 0.5449 0.0785 (0.0713,0.0857)

AGELFS

Cold-IF, Shrink-IF 0.4567 0.5475 0.4003 0.8529 0.5449 0.1135 (0.1050,0.1220)

Ped-11

Warm-IF-Baseline 0.5381 0.6446 0.4368 0.6976 0.5372 0.2681 (0.2559,0.2803)

EWA Ensemble

Cold-IF, Warm-IF 0.5381 0.6222 0.3963 0.7918 0.5282 0.2336 (0.2220,0.2452)

Cold-IF, Warm-IF, Shrink-IF 0.5380 0.6180 0.3924 0.7943* 0.5253 0.2267 (0.2152,0.2382)

AGELFS

Cold-IF, Warm-IF 0.5450 0.6422 0.4374 0.6833 0.5334 0.2636 (0.2515,0.2757)

Cold-IF, Shrink-IF 0.5528 0.6420 0.4297 0.7145 0.5367 0.2635 (0.2514,0.2756)

Cold-IF, Warm-IF, Shrink-IF 0.5411 0.6414 0.4236 0.7394 0.5386 0.2631 (0.2510,0.2752)

Ped-18

Warm-IF-Baseline 0.6820 0.7324 0.6229 0.8241 0.7095 0.4614 (0.4448,0.4780)

EWA Ensemble

Cold-IF, Warm-IF, Shrink-IF 0.6698 0.7144 0.5890 0.8616* 0.6997 0.4342 (0.4177,0.4507)

AGELFS

Cold-IF, Warm-IF 0.6804 0.7368 0.6237 0.8371 0.7148 0.4708 (0.4542,0.4874)

Cold-IF, Warm-IF, Shrink-IF 0.6852 0.7178 0.5939 0.8582 0.7020 0.4397 (0.4232,0.4562)

508

509 We describe below our assessment of potential reasons for the significant improvement in recall (p<0.05) 

510 when using the EWA ensemble of Cold-IF, Warm-IF, and Shrink-IF models to predict the external pediatric 

511 test sets:

512 (i) Diverse error patterns: The models in the EWA ensemble exhibit different error patterns for the same 

513 classification task. The EWA ensemble excels at identifying true positive (TP) samples and enhancing 
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514 recall. However, an increase in false positive (FP) predictions could counteract precision improvements, 

515 resulting in relatively unchanged F-score, MCC, and AUPRC.

516 (ii) Ensemble learning bias-variance tradeoff: Ensemble learning aims to reduce the bias and variance of 

517 individual models for better generalization. The EWA ensemble decreases variance without significantly 

518 impacting bias. Since recall is sensitive to reducing false negatives (FN) (i.e., variance reduction), it can 

519 show significant improvement while other metrics remain unchanged if bias remains relatively constant.

520 (iii) Imbalanced datasets: In imbalanced datasets, EWA ensemble techniques can improve recall for the 

521 minority class without significantly affecting other metrics. This is evident in the external pediatric test sets 

522 where abnormal CXRs are fewer compared to normal samples. The EWA ensemble model's robustness 

523 against overfitting and improved generalization in identifying minority class samples may not lead to 

524 significant changes in other metrics. The aforementioned discussions also apply to the significantly superior 

525 recall values obtained using the AGELFS of Cold-IF and Shrink-IF models for the internal adult test.

526

527 Conclusion and future scope

528 Diverse model initialization techniques are instrumental for deep model optimization thereby 

529 affecting convergence speed, reducing the risk of overfitting, and improving generalizability. Our 

530 qualitative and quantitative analyses validate the claim that cold-start approaches can decelerate 

531 convergence while warm-start methods, such as ImageNet-pretrained weight initialization, enhance 

532 convergence and performance. Furthermore, improper weight initialization can introduce biases that 

533 inadvertently favor certain classes or feature sets which, in turn, increases the risk of model overfitting to 

534 the data and reducing generalizability. To mitigate this risk, we perform ensemble learning and propose 

535 novel weight-level ensemble methods to improve performance over individual constituent models. These 

536 ensembles can harness a broader range of feature representations, making them more adaptable and 

537 effective when handling unseen data. This adaptability is particularly relevant in medical computer vision, 
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538 where models must demonstrate exceptional generalizability across diverse patient populations and 

539 imaging modalities. 

540 Future research could explore alternative ensemble methods, such as advanced stacking or voting 

541 techniques, to further improve generalization. Further, incorporating demographic factors during model 

542 initialization could enable the development of personalized DL models for medical image analysis, 

543 extending the scope of this research to other medical imaging tasks and modalities. Pursuing these research 

544 directions could help improve medical computer vision DL models for reliable healthcare applications.

545
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