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19 Abstract

20 Lifestyle interventions have been shown to prevent or delay the onset of diabetes; however, 

21 inter-individual variability in responses to such interventions makes lifestyle recommendations 

22 challenging. We analyzed the Japan Diabetes Outcome Intervention Trial-1 (J-DOIT1) study 

23 data using a previously published mechanistic simulation model of type 2 diabetes onset and 

24 progression to understand the causes of inter-individual variability and to optimize dietary 

25 intervention strategies at an individual level. J-DOIT1, a large-scale lifestyle randomized 

26 intervention study, involved 2607 subjects with a 4.2-year median follow-up period. We selected 

27 112 individuals from the J-DOIT1 study and calibrated the mechanistic model to each 

28 participant’s body weight and HbA1c time courses. We evaluated the relationship of 

29 physiological (e.g., insulin sensitivity) and lifestyle (e.g., dietary intake) parameters with 

30 variability in outcome. Finally, we used simulation analyses to predict individually optimized 

31 diets for weight reduction. The model predicted individual body weight and HbA1c time courses 

32 with a mean (±SD) prediction error of 1.0 kg (±1.2) and 0.14% (±0.18), respectively. Individuals 

33 with the most and least improved biomarkers showed no significant differences in model-

34 estimated energy balance. A wide range of weight changes was observed for similar model-

35 estimated caloric changes, indicating that caloric balance alone may not be a good predictor of 

36 body weight. The model suggests that a set of optimal diets exists to achieve a defined weight 

37 reduction, and this set of diets is unique to each individual. Our diabetes model can simulate 

38 changes in body weight and glycemic control as a result of lifestyle interventions. Moreover, this 

39 model could help dieticians and physicians to optimize personalized nutritional strategies 

40 according to their patients’ goals.

41
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42 Introduction

43 In the National Diabetes Statistics Report 2020 [1] from the Centers for Disease Control and 

44 Prevention (CDC), it was estimated that about 34.2 million people (~10.5% of the US 

45 population) are diabetic, accounting for $237 billion in direct medical expenses and $90 billion 

46 in indirect medical costs. Globally, diabetes is now considered an epidemic, affecting more than 

47 420 million individuals (~6% of the world’s population) [2] and can lead to various 

48 complications [3]. Although lifestyle factors, such as diet composition, exercise, and sleep, play 

49 an important role in type 2 diabetes (T2D) development [4–6], the response to similar lifestyle 

50 changes varies dramatically among individuals [7]. This inter-individual variability could be due 

51 to pathophysiological differences among individuals [8], differences in the physiological 

52 response to dietary or exercise intervention [9], and other factors [7]. Therefore, it is desirable to 

53 develop a framework for designing individualized strategies to achieve defined health goals 

54 targeted toward preventing or delaying the onset of diabetes. However, a limited understanding 

55 of the causes of inter-individual variability makes it challenging to design individualized 

56 interventions, e.g., diet plans, for diabetes prevention. 

57

58 Precision nutrition aims to prevent and manage chronic diseases by tailoring dietary 

59 interventions or recommendations considering the individual's genetic background, metabolic 

60 profile, gut microbiome, and environmental exposure. Currently, the field of precision nutrition 

61 is faced with challenges such as the high cost of genomics and metabolomics technologies, and 

62 lack robust and reproducible results in studies on precision nutrition [10,11]. In contrast to 

63 precision nutrition, there are general strategies that do no attempt to individualize dietary 

64 recommendations, such as low-carbohydrate or low-fat diets. Several studies have shown the 
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65 effectiveness of both low-fat and low-carbohydrate diets for weight control and reduction of 

66 cardiovascular risk [12–16]. The US Diabetes Prevention Program (DPP) [4] and Finnish 

67 Diabetes Prevention Study (DPS) [5] on lifestyle modifications (low-fat diets, 5-7% weight loss, 

68 and exercise habits) have demonstrated a reduction in the burden of T2D by up to 58% [4]. A 

69 meta-analysis [17] of data from 11 randomized controlled studies (1369 participants) revealed 

70 that a low-carbohydrate diet can aid in weight reduction [18]. Moreover, a low-carbohydrate diet 

71 was also found to be more effective in glycemic control compared to a low-fat diet in patients 

72 with T2D [19].

73

74 While generalized dietary strategies such as low-fat and low-carbohydrate diets have been 

75 successful to varying degrees in various contexts, it is unclear whether and which approach may 

76 be successful for a specific individual. Advances in precision nutrition are promising but still 

77 under development and may not be cost-effective [10]. To address the need for individualized 

78 dietary recommendations, we explore the use of a computational simulation modeling tool in this 

79 work.

80

81 We previously developed a computational simulation model [20] of macronutrient metabolism 

82 and T2D onset and progression and tested it using data from DPP. The impact of lifestyle 

83 changes on endpoints including body weight and HbA1c were predicted at the individual level 

84 over a period of 3 years for 315 subjects from the DPP study. The mean prediction error for 

85 individual-level body weight and HbA1c changes over the three-year period was approximately 

86 5% each. This suggests that the model can be used to predict and optimize individual-level 

87 responses to lifestyle changes. To our knowledge, currently there are no studies on the 
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88 optimization of dietary strategies for preventing T2D using simulation modeling based on 

89 physiological principles. 

90

91 The Japan Diabetes Outcome Intervention Trial-1 (J-DOIT1), a nationwide pragmatic cluster-

92 randomized controlled trial, showed that participants who received telephone calls more 

93 frequently had a significantly reduced risk (41%) of T2D development [21,22]. Herein, using the 

94 simulation model, we analyzed data from J-DOIT1 [22] to evaluate factors affecting inter-

95 individual variability in response to diet change, including endogenous (physiological 

96 characteristics) and exogenous (e.g., macronutrient intake) factors. The model adequately 

97 described individual-level body weight and HbA1c dynamics over time. We also demonstrate 

98 how the simulation approach may be used to optimize diet therapy for individuals to achieve 

99 specific health goals.

100

101 Methods

102 Simulation model

103 A previously developed computational simulation model of T2D was used [20]. This 

104 computational simulation model of T2D, referred to as the “model” henceforth, is based on the 

105 physiological mechanisms underlying the onset and progression of T2D. Important physiological 

106 (endogenous) and lifestyle (exogenous) factors involved in T2D are represented in the model. 

107 Exogenous factors influencing T2D are represented through dietary intake of macronutrients, 

108 i.e., carbohydrates, fats, and proteins, as well as energy expenditure through physical activity. 

109 Endogenous or physiological drivers of T2D are represented mechanistically in the model 

110 through physiological processes occurring at the cellular, tissue, and whole-body levels. 
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111

112 At a high level, the model mathematically represents the dynamics of dietary intake of 

113 carbohydrates, fats, and proteins, their breakdown and transportation into major tissue 

114 compartments through the bloodstream, and the interconversion of metabolic species into stored 

115 and active forms (Error! Reference source not found.). A module representing the pancreas 

116 regulates insulin secretion into the bloodstream. Cellular processes modulating the activation of 

117 insulin receptors by insulin drive the development of insulin resistance, which in turn controls 

118 several processes, including glucose uptake by tissues. Oxidation of macronutrients generates 

119 ATP, which provides energy for basal metabolism and physical activity. Changes in caloric 

120 intake, macronutrient composition, and/or physical activity levels have a cascading impact on all 

121 components of the model, leading to changes in key outputs, such as body weight, plasma 

122 glucose, and HbA1c.

123 Details regarding the development and validation of the model have been described previously 

124 [20]. For the analysis presented here, the model described in the original publication was used.

125

126 Digital twins

127 The computational simulation model comprises several numerical parameters that can be 

128 adjusted to fit model outputs, such as body weight and HbA1c trends over time, to the observed 

129 data of a specific individual. A model that has been calibrated to represent the historical data of a 

130 specific individual can be considered a “digital twin” of the individual. The digital twin can be 

131 used to simulate experiments with various lifestyle modifications quickly and safely in a virtual 

132 in silico environment. The model’s ability to use digital twins to predict body weight and HbA1c 

133 was previously tested using individual-level data from DPP [4,20]. The concept of digital twins 
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134 was applied in the work presented here. Digital twins were created for individuals selected from 

135 the J-DOIT1 study by calibrating instances of the model using a previously described method 

136 [20]. The digital twins were then used to simulate various scenarios to understand and analyze 

137 the variability in individual responses to interventions.

138

139 J-DOIT1 study

140 The Japan Diabetes Outcome Intervention Trial-1 (J-DOIT1) is a pragmatic, cluster-randomized 

141 controlled trial conducted in Japan. The trial investigated the impact of lifestyle coaching 

142 delivered through telephone calls on T2D development in high-risk individuals in a primary 

143 healthcare setting [21]. A total of 2607 individuals (1240 in the intervention arm and 1367 in the 

144 control (placebo) arm) completed the study with a median follow-up period of 4.2 years [22]. 

145 Participants in the intervention arm received lifestyle support telephone calls from healthcare 

146 providers over a 1-year period. The intervention arm was further divided into three lifestyle 

147 support centers designated as centers A, B, and C. During the 1-year period for which telephone-

148 delivered lifestyle support was provided, participants in centers A, B, and C received 3, 6, and 10 

149 support calls, respectively. Thus, centers A, B, and C can be considered as low-, medium-, and 

150 high-support call frequency groups, respectively. The control arm did not receive any support 

151 through telephone but received periodic newsletters on diabetes and diabetes prevention. The 

152 participants were followed-up annually. The onset of T2D status was assessed as the primary 

153 outcome, and the other outcomes included body weight and HbA1c.

154 Patient recruitment

155 Using the 2006 health checkup data, candidates who met the inclusion criteria were identified in 

156 each group. Inclusion criteria included an age of 20-65 years and impaired fasting glucose (IFG), 
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157 defined as a fasting plasma glucose concentration (FPG) of 100-125 mg/dL (5.6-6.9 mmol/L). 

158 Exclusion criteria included diagnosed diabetes, a history of taking anti-diabetic agents, and a 

159 HbA1c of ≥ 6.5% [13]. Women with a history of gestational diabetes could be enrolled. Physical 

160 or medical conditions that do not allow exercise, pregnancy or possible pregnancy, type 1 

161 diabetes mellitus, liver cirrhosis or chronic viral hepatitis, and the use of a cardiac pacemaker 

162 were also exclusion criteria. The study participants were registered from March 31, 2007, to 

163 January 25, 2008. The follow-up of the participants ended in March 2011.

164 Selection of the analysis dataset

165 A total of 112 unique J-DOIT study participants were selected for the individual-level analysis 

166 using the following algorithm (Error! Reference source not found.). For each subject in the J-

167 DOIT1 dataset, the percentage change in the body weight and HbA1c level from baseline to the 

168 end of the intervention was calculated. The degree of response for each subject was defined as 

169 the sum of the percentage decrease in the body weight and HbA1c. Individuals with the largest 

170 collective decrease in the body weight and HbA1c were considered as the “best responders” 

171 while those with the least decrease or greatest increase were considered as the “worst 

172 responders.” Using this definition, 29 best responders were selected from the intervention arm, 

173 with 10 each drawn from the low- and high-support call frequency groups, and 9 from the 

174 medium-support call frequency group (corresponding to centers A, C, and B, respectively, as 

175 described above). Similarly, 30 worst responders were selected from the intervention arm, with 

176 10 each from the low-, medium-, and high-support call frequency groups. Thus, 59 subjects were 

177 selected from the intervention arm with nearly equal representation of the best and worst 

178 responders from all three call frequency groups.

179
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180 Subsequently, a baseline-matched subject from the control arm was identified for each of the 59 

181 subjects selected from the intervention arm. The method used to identify baseline-matched 

182 subjects is described next. Sex, height, baseline age, baseline body weight, and baseline HbA1c 

183 levels of each subject from the intervention arm were selected as the reference values. Matched 

184 subjects in the control arm with the same sex, height within ±3 cm, baseline age within ±2 years, 

185 baseline body weight within ±4 kg, and baseline HbA1c within ±0.3% of the reference value 

186 were selected. Of the subjects from the control arm that matched these criteria, the subject with 

187 the smallest difference in body weight and HbA1c level was selected as the baseline-matched 

188 pair of the intervention subject. If a matched subject from the control arm could not be found for 

189 a subject from the intervention arm, the intervention arm subject was dropped and another 

190 intervention subject was selected.

191

192 Using these criteria, 53 unique subjects were selected from the control arm. The number of 

193 unique subjects selected from the control arm was less than 59 because 6 control subjects were 

194 baseline-matched to 2 intervention subjects each. The 53 matched subjects from the control arm 

195 were used as the training dataset, and the other 59 from the intervention arm were used to test the 

196 model predictions. Further details of the training and test processes are described below.

197 12 unique subjects were selected for individual-level analysis. 59 subjects were selected from the 

198 intervention arm of J-DOIT1 with a nearly equal distribution over three call frequency groups 

199 and two response categories within each call frequency group. 53 subjects from the control arm 

200 were found to be the best baseline-matched pairs of the 59 subjects from the intervention arm.

201

202 Model calibration and testing
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203 The model consists of two types of parameters: 1) physiological parameters or parameters 

204 representing endogenous processes that are inherent to the individual and do not change over the 

205 course of the simulation; and 2) lifestyle parameters, which can change dynamically over time 

206 because of interventions. 

207

208 Calibration of the training dataset

209 For the training dataset, a subset of physiological parameters was calibrated in addition to 

210 lifestyle parameters (Table 1) to fit the model’s predicted body weight and HbA1c levels to each 

211 subject’s measured body weight and HbA1c time course over the duration of the J-DOIT1 study. 

212 While the physiological parameters were constant for an individual by design, step changes in 

213 lifestyle were allowed at discrete time points over the duration of the simulation. The set of 

214 physiological and lifestyle parameters that resulted in the best achievable fit to the measured 

215 body weight and HbA1c time course of an individual was accepted as the parameter set for that 

216 individual. As a result of this process, each subject from the training set had a unique 

217 combination of physiological and lifestyle parameters that defined the digital twin of that subject.

218

219 Table 1. Model parameters calibrated to fit individual subject time-course data.

Category Parameter fit to individual subject Parameter 

symbol3

Basal carbohydrate intake requirement to maintain steady state 

body weight

𝐶𝐼0Physiology 

parameters1

Basal fat intake requirement to maintain steady state body weight 𝐹𝐼0

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2023. ; https://doi.org/10.1101/2023.05.30.23290761doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.30.23290761
http://creativecommons.org/licenses/by/4.0/


11

Maximal HbA1c concentration 𝐶𝑚𝑎𝑥𝐵𝐿𝐷 
ℎ𝑏𝑎1𝑐

Initial HbA1c concentration 𝐶𝐵𝐿𝐷
ℎ𝑏𝑎1𝑐(𝑡  = 0)

Maximal inhibitory effect of free fatty acids (FFA) on insulin 

signaling

𝛼𝑑𝑒𝑝_𝑓𝑓𝑎

FFA concentration for half maximal inhibition of insulin signaling 𝑘𝑑𝑒𝑝_𝑓𝑓𝑎

Extent of pancreatic beta cell damage due to glucotoxicity, 

lipotoxicity, and inflammation

𝛼𝑏𝑐,𝑠_𝑟𝑜𝑠

Carbohydrate intake prior to study start 𝐶𝐼Historical 

lifestyle 

parameters1

Fat intake prior to study start 𝐹𝐼

Carbohydrate intake at various time points during the study 𝐶𝐼1,𝐶𝐼2,…, 𝐶𝐼4

Fat intake at various time points during the study 𝐹𝐼1, 𝐹𝐼2, …, 𝐹𝐼4

Change in physical activity at various time points during the study Δ𝑃𝐴1, …, ΔPA4

Lifestyle 

parameters 

during the 

study2 Time points at which carbohydrate intake, fat intake, and physical 

activity change during the study

𝑇1, 𝑇2,…, 𝑇4

220

221 1Calibrated only for baseline-matched subjects from the control group, i.e., training dataset.

222 2Calibrated for all subjects.

223 3Symbols as used in the original model [20].

224

225 Calibration of the test dataset

226 As described above, the training dataset was obtained by baseline-matching the test data. The 

227 baseline-matched pairs comprising one subject each from the training and test datasets were of 
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228 the same age and sex and had similar body weight, height, body mass index, and HbA1c at 

229 baseline. Because of this similarity in their baseline attributes, we assumed that the physiological 

230 parameters, as well as carbohydrate and fat intake prior to the start of the study were identical for 

231 both subjects in a baseline-matched pair. The implication of this assumption is that the 

232 physiological parameters of each test subject are predetermined by their corresponding match 

233 from the training dataset; any differences in the observed body weight and HbA1c time courses 

234 of the pair during the J-DOIT1 study could be explained only by differences in their lifestyles, 

235 such as carbohydrate and fat intake and exercise changes during the study. This limits the range 

236 of responses that can be achieved for individuals in the test dataset because lifestyle is the only 

237 variable input to the model and serves as a mechanism to test the model’s ability to forecast 

238 individual responses. For the test dataset, only step changes in the category “Lifestyle parameters 

239 during the study” (Table 1) were allowed. The time points at which these step changes in 

240 lifestyle were introduced in the simulation were determined empirically based on trends in body 

241 weight and HbA1c. Whenever a previously decreasing trend in either body weight or HbA1c was 

242 followed by an increasing trend or vice-versa, a lifestyle change was introduced, assuming that 

243 such changes in body weight or HbA1c could only be driven by lifestyle factors. A maximum of 

244 four such discrete lifestyle changes were permitted for each subject over the approximately 4-

245 year follow-up. Changes in lifestyle parameters were calibrated for each test subject to determine 

246 the best fit to individual time courses of body weight and duration over the duration of the J-

247 DOIT1 study.

248

249 Parameter calibrations were performed using the differential evolution algorithm [23] and the 

250 objective function to be minimized was the sum of the squared errors over all time points for 
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251 body weight and HbA1c. For calibration, each data point was assumed to have an inherent 

252 measurement error, and the objective function was designed to consider this error. Body weight 

253 was assumed to carry a measurement error of ±1 kg based on previous studies on imprecision in 

254 the measurement of body weight using weighing scales [24,25]. HbA1c was assumed to have a 

255 measurement error of ±0.15 percentage points, which is approximately 3% of the median HbA1c 

256 value of 5.5% across all data points in this analysis. A 3% error is well within the ±5% 

257 measurement error considered acceptable by the National Glycohemoglobin Standardization 

258 Program (NGSP) [26]. Based on a study of Japanese individuals, the measurement error for 

259 HbA1c was estimated to be 0.17 percentage points [27].

260

261 The following objective function was used for parameter estimation for each subject:

262 Φ(𝜃) =

 

𝑖 

 

𝑗 

(𝑦𝑖𝑗(𝜃) ― 𝑥𝑖𝑗)2

𝑒2
𝑖

263 where 𝜃 represents the model parameter vector,  𝑖 is either body weight or HbA1c and  𝑗 

264 represents all the time points at which biomarker  𝑖 is measured for the subject.  𝑒𝑖 is the 

265 measurement error associated with biomarker 𝑖, such that  𝑒𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 = 1 𝑘𝑔 and  𝑒𝐻𝑏𝐴1𝑐

266 = 0.15%.

267

268 Simulations

269 To test the effects of dietary changes and determine the optimal diet, simulations were performed 

270 using the calibrated digital twins of the study subjects. Starting from the baseline age (age at the 

271 start of J-DOIT1) of a digital twin, a random step change in carbohydrate and fat intake was 

272 introduced. Keeping all other parameters constant, the body weight and HbA1c time-courses 
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273 were simulated with diet change. This process was repeated multiple times for each digital twin 

274 using a Monte Carlo approach with macronutrient changes sampled from a uniform random 

275 distribution in the range baseline value – 25% to baseline value + 25%. The simulation outputs 

276 were recorded and analyzed.

277

278 Results

279 The model successfully captures individual-level dynamics of body 

280 weight and HbA1c

281 The model was fit to individual time-courses of body weight and HbA1c by calibrating both 

282 physiological and lifestyle parameters (Table 1) for the training dataset and only lifestyle 

283 parameters for the test dataset, as described in the Methods section. Results showed that 

284 individual-level changes in the body weight and HbA1c over time were captured well by the 

285 model for both the training and test datasets (Fig3,Error! Reference source not found. 

286 Supplementary Fig S1-S6). Visual comparison of the predicted values with the measured values 

287 across all time points for all subjects indicated that the model performs well at predicting the 

288 measured values (Supplementary Fig S7). The prediction error (mean [±SD]) across all data 

289 points in the training dataset for body weight was 0.7 kg (±0.8) and for HbA1c it was 0.08% 

290 (±0.08). In terms of percentage error (mean [±SD]), body weight of subjects in the test dataset 

291 was predicted with an error of 1.1% (±1.0) and HbA1c with an error of 1.4% (±1.4) relative to 

292 the actual measurement (Table 2).
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293

294 Panels on the left-hand side represent a subject from the training data set. Panels on the right-

295 hand side show the baseline-matched subject from the test data set. The test subject is from the 

296 high call frequency group and was classified in the best responder category. The error bars 

297 around the measured values are assumed measurement errors, ±1 kg for body weight and ±0.15 

298 points for HbA1c, as described under model calibration in the Methods section

299

300 The prediction error (mean [±SD]) across all data points in the test dataset for body weight was 

301 1.3 kg (±1.4), and for HbA1c it was 0.18% (±0.23). In terms of percentage error, body weight 

302 was predicted for the test dataset with an error of 1.8% (±1.9) and HbA1c with an error of 3.4% 

303 (±4.2) relative to the measured value (Table 2).

304

305 Table 2. Model prediction errors. Prediction errors are shown after grouping subjects using 

306 various criteria.

Group Number 

of 

unique 

subjects

Biomarker Absolute prediction 

error

 Mean (±SD)

Percentage prediction 

error

 Mean (±SD)

 [% of measured]

Body weight 1.0 kg (±1.2) 1.5 (±1.6)All subjects 112

 HbA1c 0.14% (±0.18) 2.5 (±3.4)

Body weight 0.7 kg (±0.8) 1.1 (±1.0)Control 

(Training data)

53

HbA1c 0.08% (±0.08) 1.4 (±1.4)

Intervention 59 Body weight 1.3 kg (±1.4) 1.8 (±1.9)
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(Training data) HbA1c 0.18% (±0.23) 3.4 (±4.2)

Body weight 1.6 kg (±1.8) 2.4 (±2.3)Best 

responders

29

HbA1c 0.20% (±0.26) 3.6 (±4.9)

Body weight 1.0 kg (±0.9) 1.4 (±1.2)Worst 

responders

30

HbA1c 0.17% (±0.19) 3.1 (±3.4)

307

308

309 Changes in caloric balance alone do not fully explain the variability 

310 in individual response

311 After calibration and testing against individual time-course data, the model was used to estimate 

312 the likely caloric change per individual that led to the observed change in body weight. 

313 Calibrated digital twins were used to estimate the caloric change for each individual due to 

314 modifications in diet and exercise during the period between baseline and first follow-up in the 

315 intervention period of the J-DOIT1 study (median duration 1 year). The total caloric change 

316 (decrease or increase) was defined as the sum of changes in caloric intake due to diet change and 

317 caloric expenditure due to exercise. Changes in daily calories from baseline to the first post-

318 baseline follow-up were estimated for each individual using the calibrated model parameters. 

319 The measured change in body weight during the same interval (baseline to the first follow-up) 

320 was also calculated. The model-estimated caloric change versus the observed weight change 

321 from baseline to the first follow-up is shown in Fig4Error! Reference source not found.. The 

322 measured change in body weight generally increased with the model-predicted increase in caloric 

323 intake, with a Pearson correlation coefficient of 0.82 (Error! Reference source not found.). 

324 The model predicted that similar caloric changes could lead to a wide range of responses in terms 
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325 of body weight changes across individuals, as indicated by the spread of the points along the y-

326 axis in Error! Reference source not found.. When a linear regression model was fit to the data 

327 (solid gray line in Error! Reference source not found.), the residual error ranged from -4.6 kg 

328 to +7.0 kg with a residual standard error of 2.5 kg, indicating a relatively wide spread of body 

329 weights around the line of best fit. This suggests that changes in calorie intake alone may not be 

330 sufficient to predict individual-level changes in body weight. Similar trends were observed for 

331 HbA1c levels (Supplementary Fig S8).

332 The measured change in body weight from baseline to the first follow-up during the J-DOIT1 

333 intervention (median duration 1 year) is plotted against model-estimated change in calories per 

334 day due to both diet and exercise changes averaged over the same period for subjects in the 

335 intervention arm. The gray number in each quadrant is the fraction of data points in that 

336 quadrant. The data points fit a linear regression model (solid gray line) with r2 = 0.67 and a 

337 residual standard error of 2.5 kg, indicating a relatively widespread around the line of best fit. 

338 Best and worst responders were defined based on the total percent change in body weight and 

339 HbA1c one year after the end of the J-DOIT1 intervention.

340

341

342 We also explored the question of whether the degree of response (change in body weight and 

343 HbA1c) could be related to endogenous characteristics (physiology parameters defined in Table 

344 1) of subjects. None of the calibrated physiology parameters, either alone or in linear 

345 combinations, were found to be correlated with changes in body weight or HbA1c. 

346
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347 Diet therapy is predicted to have maximal effectiveness when 

348 optimized individually

349 Simulations were performed to determine the “optimal” diet for achieving a 5-7% reduction in 

350 body weight over a period corresponding to the duration between baseline and 1-year post-

351 intervention. Digital twins of the J-DOIT1 study subjects from the test dataset (N = 59) were 

352 simulated with various random modifications to their carbohydrate, fat, and protein intake. Each 

353 macronutrient was sampled from a uniform distribution within ±25% of its default baseline value 

354 for the digital twin. Diets that led to a 5-7% reduction in body weight were selected as optimal 

355 diets. Using this approach, optimal diets could be identified for 48 of the 59 subjects; the 

356 remaining 11 subjects probably needed diet changes beyond the ±25% range simulated. Of the 

357 48 subjects for whom optimal diets could be identified, only a single diet change (24% reduction 

358 in carbohydrate and 25% reduction in fat intake) led to a 5-7% reduction in body weight.For all 

359 other subjects (N = 47), there was no single optimal diet that led to a 5-7% reduction in body 

360 weight; instead, a set of various diet compositions could lead to the target weight reduction (a 

361 range of 3 to 668 diet compositions for each subject with a median of 186 diet compositions). 

362 Furthermore, this set of diets was unique to each participant. A comparison of distributions of the 

363 optimal diets for two subjects is shown as an example in Fig5Error! Reference source not 

364 found..

365

366 The two subjects presented in Fig5Error! Reference source not found. show qualitatively 

367 different distributions of optimal diet changes. For subject ID Test-041, carbohydrate intake 

368 could change over a wide range of approximately -25% to +25% but fat change needed to be 

369 more narrowly restricted between approximately -25% to -10%. Contrary to this, for subject ID 
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370 Test-044, fat change could range between -25% to +25% but carbohydrate change had to be 

371 restricted to a narrower range (-25% to -5%). In an alternative interpretation, subject ID Test-041 

372 is predicted to be more sensitive to fat change than to carbohydrate change and should more 

373 precisely control fat intake to achieve the targeted weight loss. Subject ID Test-044, on the other 

374 hand, is predicted to be more sensitive to carbohydrate change; this subject should pay more 

375 attention to regulating carbohydrate intake but can be less particular about controlling fat intake.

376 Monte Carlo simulations identified a unique set of “optimal” carbohydrate and fat changes 

377 required for each subject that were predicted to lead to a targeted 5-7% reduction in body weight.

378

379 In addition to the 5-7% body weight reduction for subject Test-041(Fig5), an additional target of 

380 0.1-0.2 point reduction in HbA1c was added. Applying this additional target led to further 

381 refinement of the optimal diets and a subset of the original optimal diets was predicted to 

382 simultaneously achieve both targets (Fig6).

383 The subset (pink circles) of optimal diets identified for subject Test-041 (Fig5) to achieve a 5-7% 

384 reduction in body weight (gray and pink circles) was predicted to additionally reduce HbA1c by 

385 0.1-0.2%.

386

387 Individuals show differential sensitivity to carbohydrate and fat 

388 changes

389 The simulation-based diet optimization results were used to explore whether all subjects could be 

390 classified into carbohydrate or fat sensitive categories. After finding the set of optimal diets for 

391 each subject using simulations as described above, lines of best fit were obtained for each 

392 subject’s (N = 47 subjects with >1 optimal diets) predicted set of optimal diet changes (Fig7). 
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393 These lines approximate the predicted optimal diet change patterns for each subject and are a 

394 reasonable simplification for easy visualization and analysis of the diet patterns. All lines had 

395 negative slopes implying that if a subject were to shift to a smaller reduction in carbohydrate 

396 intake, it could be compensated by a larger reduction in fat intake, and vice versa. Additionally, 

397 the shifts would have to move along the line, so the magnitude of compensation required was 

398 different for each subject as determined by the slope of the line.

399

400 For a hypothetical subject whose line of best fit has slope of -1 (angle of -45º with the x-axis), a 

401 downward (upward) shift of X% in carbohydrate change could be compensated by a 

402 corresponding upward (downward) shift of exactly X% in fat change. Therefore, a subject with a 

403 slope of exactly -1 can be considered to be equally sensitive to changes in carbohydrate and fat 

404 intake. As the line becomes increasingly horizontal (angle with the x-axis between -45º and 0º, 

405 slope between -1 and 0), the sensitivity regime shifts towards greater sensitivity to fat change 

406 because for a nearly horizontal line, fat change must be tightly controlled while carbohydrate 

407 change can vary widely. Conversely, as the line becomes more vertical (angle with the x-axis 

408 between -90º and -45º, slope < -1), it indicates a greater sensitivity to carbohydrate change. 

409 Based on these concepts, individuals were classified as carbohydrate sensitive (slope < -1) or fat 

410 sensitive based on the slopes of their lines (slope > -1) (Fig7). A total of 29 (62%) subjects were 

411 identified as has having a greater sensitivity to fat change and 18 (38%) as being more sensitive 

412 to carbohydrate changes based on the sensitivity criteria defined above.

413 A line was fit to the set of optimal diets predicted for each subject. The slopes of the lines were 

414 used to classify subjects into carbohydrate or fat sensitive categories. Lines that tend to be more 

415 horizontal (green lines; slope > -1) indicate individuals with greater sensitivity to fat change. 
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416 Lines that tend to be more vertical (pink lines; slope < -1) indicate individuals with greater 

417 sensitivity to carbohydrate change.

418

419 Discussion

420 Diet therapy can be an effective non-pharmacological method to delay or prevent the onset of 

421 T2D; however, diet therapy has not been shown to be consistently effective [4–6,22]. The lack of 

422 effectiveness of diet therapy could be due to personalized dietary requirements [7–9]. Previous 

423 studies showed that individuals receiving an identical standardized low-energy diet show 

424 variability in their weight trajectories [28]. Metabolic heterogeneity among individuals could be 

425 due to genetic and epigenetic factors, microbiome, lifestyle, and environmental exposure [29]. 

426 Personalized nutrition is a growing area of focus for both patients and experts. Optimizing diet 

427 change to individual physiological responses could maximize the impact of lifestyle intervention; 

428 however, tools that can enable customization of interventions at the individual level are lacking. 

429 We demonstrate, for the first time to our knowledge, the application of a computational 

430 simulation model as a tool to optimize diets for prediabetic individuals.

431

432 The emergence of digital twins and digital representation of objects or individuals provides a 

433 new opportunity to tailor individualized interventions [30]. We used a previously developed and 

434 tested mechanistic simulation model of human physiological processes involved in the onset and 

435 progression of diabetes to create digital twins of a subset of pre-diabetic subjects from the J-

436 DOIT1 study. In the default setting, the parameters of the model are calibrated to represent a 

437 “typical” individual. When individual-level time-course data, such as body weight and HbA1c 

438 level over time are available, selected parameters of the model can be calibrated to fit the model 
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439 to an individual subject’s data, which leads to a model customized to the subject, i.e., a digital 

440 twin of the individual. The digital twin provides a platform to conduct computational 

441 experiments quickly and safely in an in silico environment. Digital twins were utilized in this 

442 study to explore and optimize lifestyle recommendations through simulation.

443

444 We leveraged the simulation model to understand the inter-individual variability in responses to 

445 lifestyle interventions in the J-DOIT1 study. The selected individuals from the intervention arm 

446 were baseline matched with the participants from the control arm of the study. The baseline-

447 matched individuals from the control arm formed the training set (n = 53), and individuals 

448 selected from the intervention arm comprised the test dataset (n = 59). Each subject from the 

449 training set was calibrated using the simulation model to generate a unique combination of 

450 physiological and lifestyle parameters that defined the digital twin of that subject. We assumed 

451 that individuals with similar baseline characteristics (age, sex, height, weight, and HbA1c) have 

452 similar physiological parameters and historical lifestyle. Therefore, physiological, and historical 

453 lifestyle parameters were replicated for the test subjects within each baseline-matched train-test 

454 pair. The post-baseline lifestyle parameters of the test subjects were allowed to change to explain 

455 the observed body weight and HbA1c trends. The digital twins thus generated captured the 

456 individual-level dynamics of the body weight with an error of 1.1% (±1.0) and HbA1c levels 

457 with an error of 1.4% (±1.4) relative to the actual measurements over a follow-up period of 

458 approximately 4 years.  

459

460 The digital twins enabled the exploration of inter-individual variability in response to diet 

461 intervention. The digital twins created using the model were used to estimate the actual lifestyle 
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462 change in terms of total caloric intake for all individuals in the training and testing datasets. We 

463 observed that the measured change in body weight generally increased with the model-predicted 

464 increase in daily caloric intake; however, similar changes in daily calories were predicted to 

465 result in a relatively wide band of weight change (approximately ±2.5 kg around the line of best 

466 fit, or a range of 5 kg) (Fig4). This suggests that changes in calories alone may not be sufficient 

467 to predict individual-level changes in body weight and elucidates the significance of physiology, 

468 among other factors, in determining an individual’s response to diet. 

469

470 Just as exogenous lifestyle factors were not fully predictive of the outcome, endogenous 

471 physiological parameters were also not found to be correlated with the outcome. This suggests 

472 that the outcome of a lifestyle change is an emergent property of complex interactions between 

473 underlying physiological processes and exogenous changes. Predicting such a response, 

474 therefore, requires an understanding of the complex interactions driving the response. Our 

475 physiology-based, quantitative framework, which captures such interactions by design, is well-

476 suited for this purpose.

477

478 Having tested the model’s ability to satisfactorily describe individual-level dynamics of body 

479 weight and HbA1c, we applied the model to generate optimal diet recommendations for 

480 individuals in the training and testing datasets. Monte Carlo simulations were performed for each 

481 individual using their digital twin, and a unique set of "optimal" carbohydrate and fat changes 

482 required for a targeted 5-7% reduction in body weight was determined. The model predicted that 

483 there is no single optimal diet to achieve the target body weight. Analysis of optimal diet 

484 trajectories at the subject levels suggested that while some patients required tight control over fat 
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485 intake (individuals sensitive to fat change), others required a a greater focus on managing 

486 carbohydrate intake (individual more sensitive to carbohydrate change). Furthermore, the set of 

487 optimal diets could be further refined by including additional goals, e.g., a targeted reduction in 

488 HbA1c. This result supports the role of personalized nutrition and dietary recommendations in 

489 improving health outcomes and demonstrates the potential utility of our approach in identifying 

490 such personalized recommendations based on historical subject data.

491

492 The modeling and analyses presented in this work are affected by a few limitations of data and 

493 methodology that should be acknowledged. The target population of our analysis only included 

494 Japanese individuals with prediabetes, thus limiting the generalizability of the predictions. The 

495 matching algorithm used to create pairs of train-test subjects allowed a small degree of mismatch 

496 so that matched pairs could be practically found. The assumption of physiological identity 

497 between the matched pairs has, therefore, some inaccuracy inherent to it and could impact the 

498 estimation of parameters as well as model predictions. Furthermore, all lifestyle changes were 

499 simulated as step functions, as this was mathematically the simplest form in the absence of 

500 additional information on individual lifestyle habits. In real life, lifestyle factors may be much 

501 more variable and may follow trends very different from a step function. This assumption is 

502 likely to impact the timing and rate of change of model-predicted variables like body weight. 

503 Finally, the mechanistic mathematical model used in this study makes several assumptions about 

504 the physiological processes underlying diabetes onset and progression, which may not always 

505 reflect the underlying biology and physiology accurately. Nonetheless, even with these 

506 limitations, the model predicted the body weight and HbA1c time courses of the training as well 
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507 as test groups with high accuracy, which lends credence to the model and supports its use for 

508 predictive analysis.

509

510 An advantage of the model-based framework developed in this study over approaches like 

511 precision nutrition is that it can provide optimal dietary recommendations without requiring 

512 specific genetic and microbiome data, making it a quicker, lower-cost alternative. Prior 

513 validation of the simulation model using long-term data [20] and additional validation in this 

514 work using a subset of participants from the J-DOIT1 study showed that the framework predicts 

515 weight changes and glycemic control in individuals with high accuracy. This provides assurance 

516 that the framework can be used to predict optimal dietary recommendations for prediabetic 

517 individuals. Generatability was limited and careful attention should be paid for interpretation 

518 results because of the target population (Japanese adults with prediabetes). A prospective study 

519 in human subjects is required to build further confidence in this simulation model framework and 

520 confirm its utility in clinical practice.

521

522 The latest Dietary Guidelines for Americans (DGA) focus on limiting fat, especially saturated 

523 fat, and allowing higher carbohydrate intake. Volek et al. have argued that the DGA 

524 recommendations of a low-fat high-carbohydrate diet for the past several years have coincided 

525 with rapidly escalating epidemics of obesity and T2D that contribute to the progression of 

526 cardiovascular diseases [31]. This guideline lacks flexibility and does not appreciate the 

527 heterogeneity in individuals’ responses to dietary interventions. The findings of the J-DOIT1 

528 study, coupled with the model-based framework for diet optimization presented in the study, 

529 offer additional evidence to convince experts and policymakers of the need for optimal diet 
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530 interventions because of inter-individual variability in responses to identical diets. Our modeling 

531 framework can simulate changes in body weight and glycemic control as a result of lifestyle 

532 interventions at an individual level. The ability to optimize nutritional strategies using this model 

533 could help dieticians and physicians personalize diet recommendations to their patients’ goals.
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641 Supporting information

642 S1 Fig. Calibrated pairs for best responders, low call frequency group.

643 S2 Fig. Calibrated pairs for best responders, medium call frequency group.

644 S3 Fig. Calibrated pairs for best responders, high call frequency group.

645 S4 Fig. Calibrated pairs for worst responders, low call frequency group.

646 S5 Fig. Calibrated pairs for worst responders, medium call frequency group.

647 S6 Fig. Calibrated pairs for worst responders, high call frequency group.

648 S7 Fig. Measured vs Predicted Biomarkers. Model-predicted body weight and HbA1c values 

649 for all subjects across time points show reasonable concordance with corresponding measured 

650 values with most values lying on or close to the line of identity.

651

652 S8 Fig. Model-estimated change in calories vs measured change in HbA1c from baseline. 

653 The measured change in HbA1c from baseline to the first follow-up during the J-DOIT1 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2023. ; https://doi.org/10.1101/2023.05.30.23290761doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.30.23290761
http://creativecommons.org/licenses/by/4.0/


30

654 intervention plotted against model-estimated change in calories per day due to both diet and 

655 exercise changes averaged over the same period for subjects in the intervention arm. The gray 

656 number in each quadrant is the fraction of data points in that quadrant. The data points fit a linear 

657 regression model (solid gray line) with r2 = 0.20 and a residual standard error of 0.28 points. 

658

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2023. ; https://doi.org/10.1101/2023.05.30.23290761doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.30.23290761
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2023. ; https://doi.org/10.1101/2023.05.30.23290761doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.30.23290761
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2023. ; https://doi.org/10.1101/2023.05.30.23290761doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.30.23290761
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2023. ; https://doi.org/10.1101/2023.05.30.23290761doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.30.23290761
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2023. ; https://doi.org/10.1101/2023.05.30.23290761doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.30.23290761
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2023. ; https://doi.org/10.1101/2023.05.30.23290761doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.30.23290761
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2023. ; https://doi.org/10.1101/2023.05.30.23290761doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.30.23290761
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2023. ; https://doi.org/10.1101/2023.05.30.23290761doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.30.23290761
http://creativecommons.org/licenses/by/4.0/

