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5 Abstract
6 Heterogeneity in contact patterns, mortality rates, and transmissibility among and
7 between different age classes can have significant effects on epidemic outcomes. Adaptive
8 behavior in response to the spread of an infectious pathogen may give rise to complex
9 epidemiological dynamics. Here we model an infectious disease in which adaptive be-
10 havior incentives, and mortality rates, can vary between three age classes. The model
1 indicates that age-dependent variability in infection aversion can produce more complex
12 epidemic dynamics at lower levels of pathogen transmissibility.

s 1 Introduction

12 One of the principal failings of the attempts to model and predict future trends and dy-
15 namics of infectious disease epidemics has been the lack of incorporation of human behavior
16 into these models [1]. The social drivers of infectious disease dynamics have been relatively
17 neglected in the academic literature compared with the vast resources and attention paid
18 to the biomedical and, to a lesser extent, the ecological drivers of disease [2,3]. COVID-19,
19 however, has shone a spotlight on this discrepancy as socio-cultural factors have played an
20 important role in the pandemic — from the political polarization of risk perception in the
21 United States [4] to the social, cultural, and demographic factors associated with vaccine
22 hesitancy [5]. Models should incorporate relevant social phenomena, as well as their inter-

23 actions, as the study of each phenomenon in isolation may not be informative or useful.
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24 For example, adaptive age-specific preventative behaviors motivated by differentiated risk
s of COVID-19 mortality should be included. The resulting contact patterns and associated

26 infection dynamics are expected to interact in their influence on epidemic trajectories.

27 The mortality rate of COVID-19 is highly age-specific [6] with a log-linear increase of
25 infection fatality ratio by age among individuals over 30 [7]. This contributes to skewed
20 risk perceptions across the population’s age structure and economic activity associated with
s COVID-19risk [8,9]. Heterogeneity in contact patterns, mortality rates, and transmissibility
31 among and between different age classes is known to have significant effects on epidemic
32 outcomes [10,11]. In Germany, for example, younger adults and teenagers were likely the
53 main drivers of COVID-19 transmission dynamics during the first three pandemic waves [12].
s Goldstein et al. [13] found that vaccinating the elderly first against COVID-19 would save
55 the most lives, although the model neglected key features of transmission dynamics [14].
36 Further, Acemoglu and colleagues showed that optimal lockdown policies during COVID-
37 19 are age-specific, with strict lockdown policies on the oldest group and reduction of
s interactions between age classes being most effective [15]. Their model, however, assumed
30 exogenous targeted policies and did not incorporate adaptive behavior, a cornerstone of
w0 COVID-19 dynamics.

a1 As risk of transmission of a dangerous infection increases during an epidemic, individuals
2 and governments tend to react by mitigating that risk with adaptive behavior. Adaptive
53 behavior has enjoyed growing attention in the disease modeling literature [16, 17], with
s techniques using game theory [18], fear-infection parallel contagions [19,20], and network-
s and agent-based approaches [21]. Early work by Capasso et al. [22] experimented with
s the introduction of a negative feedback mechanism in the traditional susceptible-infected-
a7 recovered (SIR) model [23] and represented reduced contacts as a function of the number
a8 of infected. Philipson formalized the economic theory of adaptive behavior showing that
20 rational agents following dynamic incentives may lead to oscillations around an indifference
so0 point, or equilibrium [24]. Adaptive behavior can cause oscillatory dynamics because a

st system with a negative feedback can continuously overshoot adjustments [25,26].

52 Adaptive behavior may also lead to complex dynamics that are characteristic of determin-
53 istic, chaotic systems, especially with delays in adaptive response [27|. Empirical evidence
s« from the COVID-19 pandemic suggests that the behavior of the epidemic has been chaotic
55 in a majority of countries [28]. An investigation of the second derivative of infections over
56 time during COVID-19 found that the pandemic qualitatively met Henri Poincaré’s criteria
57 for chaos in deterministic dynamical systems: a large number of solutions, dynamic sensi-
ss  tivity, and numerical unpredictability [29]. Measles models show characteristically chaotic

so dynamics that may also characterize the observed dynamics [30,31]. In the SEIR framework
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60 with a periodically varying contact rate that represented seasonal changes, sustained oscilla-
61 tions [32] and period-doubling bifurcations [33] were found, and one case with a particularly
2 high degree of contact led to chaotic dynamics [34]. While age structure heterogeneity in
63 susceptibility and seasonal variance in contact rates due to school attendance characterize
s« measles modeling [35, 36], age structure heterogeneity in dynamic, adaptive contact rates
65 have not been modeled for COVID-19.

66 Here, we model an infectious disease with adaptive behavior incentives of the form used in a
7 previous model [27] and include different mortality rates for three age classes: the “young,”
¢ the “middle-aged,” and the “old” (& la Acemoglu et al. [15]).

o 2 Model specifications

70 We begin with a susceptible-infected-susceptible (SIS) compartmental disease model [37],
7 which includes an adaptive contact behavior that maximizes a utility function, as in Arthur
72 et al. [27]. With susceptible and infectious individuals, denoted by S; and I}, respectively,

73 at time ¢, and Ny the population size, we have:

Sty1 =5t —bo ¢ Sely + 1y (2.1)
Iipn =1 + by ¢ Sely — vIy (2.2)
St + It - Nta (23)

7 where by represents transmissibility given contact, y represents the removal rate, and cf

75 represents a contact rate at time ¢ chosen to maximize utility U(c) as a function of contacts:

Ul(c) :ao—al(c—é)Z—ag{l— [1— (ItNA>bOT}. (2.4)

76 Here, ¢ represents contacts per unit time, ¢ represents the optimal contact rate when the

77 disease risk is non-existent, a; represents the utility gained by achieving ¢ contacts and ayg
78 represents the utility lost if infected. Here, A represents delayed information, such that
79 an individual may base their perception of infection risk on prevalence during past time
so periods, rather than the current one. Maximizing Eq 2.4 with respect to c yields cj, the

g1 contact rate chosen at each time step to maximize utility.
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g2 To incorporate age structure, we stratify the population into k discrete age classes, repre-
83 sented by Aj,..., Ar. The number in sub-population A; is given by N;. We assume the
s size of each age class does not change: N;; = N; and let Zle N; = N. The utility function

ss (as in Eq 2.4) for each age class i is given by

Us(c) = ag — oni(c — &)* — aai {1 - [1 - (ItNA> bo]c} : (2.5)

8 where «q; represents the utility loss of reduced contacts for A;, ¢ represents the target

s7 contact rate for A;, and aw; represents the utility loss (i.e. aversion) to infection based on
s a delayed perception of population-level prevalence for A;. Here it is assumed that each
g0 age class perceives its risk according to the disease prevalence of the whole population (i.e.

w0 Ii_a= Zle I; +—), rather than just of their own group.

o1 Interactions between and within age classes at time t are defined in terms of a dynamic
e contact matrix M; (censu Ram & Schaposnik, 2021 [38]),

Cit cl12 ... Cik
%
C21 Cop ... Cof
Mt = . . . . ) (26)
c c c;
k1 k2 .- kt

o3 where cj, represents the within-group contact of A;, optimized at time step ¢ to maximize
o utility in A; (as in Eq 2.4), and ¢;; represents the contact between A; and A; for i # j. For
o5 simplicity, institutional behavior change is assumed to only affect the within-group contact
o (e.g., via school and workplace closures and nursing home quarantines), and thus, between-
97 group contact rates are assumed fixed and not adaptive to changing infection risks. It is

s assumed that c¢;; = cj;.

o Using the contact matrix (2.6), the transition between susceptible and infected disease states

wo for age class A;, as in Eqs. 2.1-2.3, can be expressed as

k
Sitt+1) = Sit — bociSitlir — Z bocijSitLjt + vilit, (2.7)
=L
k
Ligesr) = T+ boci Sl + Y, boci;Sieljr — vili, (2.8)
J=L1i#j
Sit + Lit = Nit. (2.9)
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101 We assume the following constraints:

102 1. The aversion to infection is greatest in the elderly and least in the young, i.e.,
Qof >+ > 09]. (2.10)

103 2. The target contact rate is greatest in the young and least in the elderly, i.e.,

1> > C. (2.11)
104 3. The recovery rate from the infected category to the susceptible is the same for all age
105 classes, namely, for all ¢, 7,

Y= = 1. (2.12)
106 4. The number of infecteds in any age class A; may never be greater than the population
107 size of that class or less than zero, i.e. for all i and t,

0<I; <N;. (2.13)

ws 3 Amnalytical Results

w 3.1 Equilibria

1o To understand the dynamic behavior of the number of infecteds in each age class, we first
1 examine conditions for the existence of equilibria. If I;bg is small relative to N, then on

12 linearizing with respect to I in Eq 2.5, the optimal value of ¢; at time ¢ for A; is found to be

« . oiboli_a
Cit =& — 721061,]\7 (3.1)
1
u3  Define the parameter o; as
a;bo
= . 3.2
Q; 21 ( )

e We begin with a 2-age-class model, where A; represents the youth and As represents the

s middle-aged and elderly, in which case, Eqgs. 2.6-2.13, with £ = 2, become

M, = | (3.3)
C12  Cy
L1y = D + bocipS1elae + boci2S1elor — 1, (3.4)
116
Iy 41y = Iot + bocsy Sailae + boci2.Sai 1y — 1o, (3.5)
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ur  with S1¢ + I1y = Ny, So¢ + Io = No, and N = Ny + Na.

us For simplicity, we assume the population sizes of all groups are equal (i.e. Ny = Ny = %)

1o Then, substituting cj, from Eq 3.1 and «; from Eq 3.2, with A = 0, we obtain

. I + I N N
Iy = I — vl + bolé1 — a1 7< HN Qt)](z — L)1 + boclglgt(§ — Iy). (3.6)
= filig, I2t) (3.7)
a1b I aqb N
gflt (Ozlboﬁ — b001 ! O)Ilt (bocl——
=V bocur I N 2N (3.8)
D2 bocialy + 1 — )1t + 506121—%5-
120 By symmetry,
aob aob N
AIQt + (Ozzbof — bpCo — 2 O)Izt (bgCgf—
Ly = 2 (3.9)
(t+1) = boaa I N
—5 bociolie + 1 — ) Ia + b001211t5-
121
= fa(lt, Iot). (3.10)

122 A fixed point (i.e., equilibrium) exists for A; when I;(;; 1) = I;; for i = 1,2. Thus, equilibria

123 are the roots of the two simultaneous polynomial equations

b I b N
MI1 (a1bo=2 — boéy — L 0)11 + (boér = —
_ N 2
0= - N (3.11)
0 21 2 bocials — v) I + 50012-725
124 and b b N
@200 75 1 (anbok — by — 2220V 2 4 (hoip e
N N 2 2
0= . N (3.12)
0 22 L byerod) — )12 + 50012-715

15 3.2 Stability

126 To analyze local stability, we calculate the Jacobian of the differential equations corre-
127 sponding to Eqs 3.8-3.9, where Iy(11) = fi([1t, [2:) and Irqp1y) = fa(lat, I2) and evaluate
18 the Jacobian at the equilibrium. Differentiating each function with respect to each variable

129 Il and _[2,
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(22 304171)011 +2(anbo— —5061—albo%)h—l—(boélNl—boallg%—boclgb—l—l—y), (3.13)
gg = b(}\,ﬂfl - 50041*]1 — bocizlh + boci2Vy, (3.14)
gﬁ bo%fz - 50@2%12 — bocialz + boci2Na, (3.15)

0F2 _ 3020 13 +2(ab——bc—ab—)[ +(ch—baI——bc N+1—

oy N 2 270 0C2— 0200 2+ (00C2 N2 —bpa [y oc1211 7). (3.16)

1w 4 Computational Results

m 4.1 The 2-population model

122 We first examine the numerical iteration of the discrete time SIS recursions (Egs 3.8-3.9)

133 without time-delay, and set default values for all parameters, namely:

13 N7 = 5000, Ny = 5000, Iy = 1,1 = 0.1, v = 0.1, & = 0.02, & = 0.01, ¢12 = 0.005, o = 1,
135 (91 = 20, 99 = 40, b() = 0.009.

136 By increasing the transmissibility parameter by from the default value, we see a progression
137 of dynamical regimes across critical thresholds from simple convergence to cyclic behavior
1s in 2, 4, and 6-point cycles, chaos, and collapse (Figs 1,3,5). By increasing the contact rate
130 between the 2 populations, cj2, there is a progression from simple convergence to a 2-pt
uo cycle, 6-pt cycle, chaos, back to a 6-pt cycle, and finally an asynchronous 8-pt and 2-pt
w cycle (Figs 2,4).
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Figure 1: Disease dynamics for 2-population age-structured model using default
parameters and varying transmissibility bg. A) by = 0.009, Convergence to
stable equilibria; B) by = 0.013 =, 2-point cycle; C) by = 0.02, 4-point cycle; D)
bp = 0.021, chaos; E) by = 0.0235, 6-pt cycle; F) by = 0.025, Collapse.
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Figure 2: Bifurcation diagram of equilibria, oscillatory dynamics, and chaotic
behavior as a function of transmissibility bg.
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Figure 3:

Disease dynamics for 2-population age-structured model using default parameters and
varying between-group contact rate cja. A) c12 = 0.005, Convergence to stable equilibria;
B) c12 = 0.025, 2-point cycle; C)ei2 = 0.04, 6-point cycle; D) ¢;2 = 0.05, chaos; E)
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w2 4.2 The 3-population model

13 For our 3-age-class model, A; represents the youth, Ay represents the middle-aged, and As
s represents the elderly. Then the analogous equations to Eqs 2.6-2.13, for k = 3, are

¢ c12 c13
My = |ci2 ¢y cosl s (4.1)

c13 €23 Cjg

Lit41) = T1e + bociS1el1e + boci2S1¢ L2t + bocisS1else — e, (4.2)
145
Iyt41) = Iot + boch SarIor + boc12S2i 11y + bocazSar Iz — 1o, (4.3)
146
I3¢41) = I3t + boc3 Sse I3 + boci3Ssil1e + bocasSsilar — Vs, (4.4)
147 with
S1t + Iy = N1, So¢ + Ioy = N2, Sg¢ + I3 = N3. (4.5)

us Equilibria for the system defined by Egs. 4.2-4.4 solve ;4 y1) = I; for i = [1,2,3] and are

140 the roots of three simultaneous polynomial equations.
150 We set default values for parameters and initial conditions, such that

151 N7 = 5000, No = 5000, N3 = 5000, Ip = 1, 1 = 0.1, 72 = 0.1, 73 = 0.1, & = 0.02,
152 ég = 0.0157 63 = 0.01, C12 = 0.005, C13 = 0.003, Co3 = 0.007, a1 = 1, 91 = 20, 99 = 30,
153 (¥23 = 40, bo = 0.01.

13
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Figure 6: Disease dynamics for 3-population age-structured model using default
parameters and varying transmissibility by. A) by = 0.01, Convergence to stable
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cycle; D) by = 0.05, Collapse.

152 By increasing the transmissibility by, the model goes from simple convergence to a 2-point

155 cycle to chaos into a 2-pt cycle to collapse (Fig 6). By uniformly increasing the between-
group contact rates cia, c13, and co3, the model exhibits convergence, a 2-pt cycle, a 4-pt
cycle, chaos, a 5-py cycle, and a 6-pt cycle. The amplitude of oscillations and the variance of

chaotic dynamics are greatest for the elderly population and least for the youth population.

156
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Disease dynamics for 3-population age-structured model using default parameters and
varying between-group contact rates cio, c13, and co3.
A) ¢12 = 0.005, ¢13 = 0.003, co3 = 0.007, Convergence to stable equilibria; B)
c12 = 0.008, ¢33 = 0.01, co3 = 0.01, 2-point cycle; C) ¢12 = 0.022, ¢33 = 0.02, co3 = 0.024,
4-point cycle; D) c12 = 0.032, ¢13 = 0.03, co3 = 0.034, Chaos; E)
C12 = 0.05, C13 = 0.048, C23 = 0.052, 5—pt cycle; F) C12 = 0.06, C13 = 0.058, C93 — 0.062, 6—pt

cycle.

s o Discussion

10 Results from the 2- and 3-population adaptive behavior models indicate that, for certain
161 parameter values, stable equilibria can be reached for each sub-population 4, including 0
162 for all age groups and an equilibrium between 0 and N;. In the 2-population case, the
163 equilibrium for each population can be derived numerically. With increasing values of by
1+ and ¢;; (the transmissibility and between-group contact rate, respectively), the system may
165 converge to a non-zero equilibrium, oscillate perpetually with 2-; 4-, 6-, 8-, and 10-period
166 intervals, become chaotic, and collapse. Complexity of dynamics can be found at lower
167 levels of transmissibility with greater differentiation between aversions to infection (Fig 5).

168 For both the 2-population and 3-population models, the younger population has a higher

15
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160 non-zero equilibrium size than the older population, and the older population has greater

170 amplitude of oscillations and variance of chaotic dynamics than the younger population.

171 Our model is built on a number of simplifying assumptions. Risk tolerance and reactions
172 to shifting prevalence are stratified by age class, but assumed homogeneous within each
173 class. In reality, individuals would have heterogeneous risk tolerance according to their age,
174 political affiliation, and other characteristics. We modeled adaptive behavior with dynamic
175 within-group contact rates, but assumed between-group contact rates were fixed. While
176 this was justified by COVID-19 public health policies that controlled within-group contact
177 more than between-group contact, between-group contact is also responsive to prevalence.
17s  Further, we constrained the model with 4 mathematical assumptions (Eqs 2.10-2.13), some
179 of which may not always hold in real-world scenarios. The relaxation of the above assump-
180 tions may yield different model outcomes. However, while the thresholds between dynamical
181 regimes may shift, the regimes themselves are likely robust. We note these assumptions were
182 made in order to construct the simplest possible mathematical model that includes adaptive

183 behavior and age-structured risk perceptions in an epidemic.

18« While the older population has a higher risk associated with infection, the younger popula-
185 tion’s lower aversion and higher baseline contact rates affect the epidemic dynamics in the
186 older population. Thus, transmission in the young may not only lead to transmission in
187 the elderly, but also increase the variance of the elderly dynamics and destabilize them. In
188 Germany, youths were found to drive COVID-19 transmission dynamics in the first three
189 pandemic waves [12]. Children are known to be the primary drivers of Influenza trans-
190 mission, although severe morbidity and mortality are mostly seen in older age groups [39].
101 The importance of the youth in the dynamics of our model provides theoretical support for
12 COVID-19 lockdown policies that reduce between-group interaction (i.e. ¢;;), as found by
13 Acemoglu et al. [15]. Transmission within the household is a key point of risk for the elderly
104 and middle-aged, and high levels of transmission in the youth are likely to significantly affect

105 disease outcomes in other age categories.

196 Our model may be usefully compared to other adaptive behavior models that look at sub-
107 populations with differentiated characteristics or reactions to epidemic dynamics. It is worth
108 noting that the justification for the bifurcated structure need not be restricted to age-based
190 differentiation, but can also include political party affiliation, income levels, or other demo-
200 graphic, social, behavioral, physical, or geographic differences. Some studies use structured
201 2-population models with varying homophily and outgroup aversion or varying awareness
202 separation and mixing separation [40,41]. Results from these models indicate that het-
203 erogeneous populations, even when simply structured compartmentally as two populations,

204 can produce greater complexity in epidemic dynamics, including large second waves and
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205 interconnected dual epidemics. Our results broadly agree with this theme: a 2-population
206 model with varying infection aversion can produce more complexity at lower levels of trans-

207 missibility, and the difference between aversions can also drive complexity (e.g Fig 5).

28 In our previous work [27], we compared the complex dynamics associated with endogenous
200 behavior change during epidemics to similar theoretical behavior in ecological systems. Of-
210 ten, when a single population is modeled in ecology (e.g. in a fishery [42]), the carrying
211 capacity operates as an attractor, above which the population is attracted downwards and
212 below which the population is attracted upwards. With endogenous behavior, the equilib-
213 rium, or indifference point, is also an attractor, below which the population is motivated to
214 relax protective behaviors and above which the population is motivated to adopt protective
215 behaviors. It may be productive to extend this parallel further in the case of multiple pop-
216 ulations. For example, the predator-prey model considers two interdependent populations.
217 When the prey population is high, the predator population grows, but when the prey are
218 low in number, the predators decrease. While our epidemiological model does not include
219 such direct competition or predation, the behavior is somewhat similar: when the young
20 population has high prevalence of disease, the prevalence in the older population increases
21 until the indifference point is crossed. When the young population has low prevalence,
22 the prevalence in the older population follows suit. If a comparison between ecology and
23 epidemiology is appropriate, it follows that careful study of the literature in theoretical
24 ecology may provide insights relevant to epidemiology, a field with as yet comparatively

25 little exploration of such complex system dynamics.

26 We recommend further theoretical work in both adaptive behavior modeling and complexity
27 in epidemiology. A systems perspective may better represent the inherent complexities
28 and heterogeneities of real-world epidemics. Social drivers of disease have been relatively
20 neglected in the literature [2], but played an important role in COVID-19 outcomes. For
230 example, the divergence of risk assessment by age class that characterizes our model was a
231 social phenomenon, though biologically motivated. Other complex phenomena important to
22 COVID-19 include simultaneous asynchronous epidemics, political bifurcation of attitudes
233 and practices, and the co-evolution of the human immune system and the virus. As public
23¢  health policies depend on our ability to forecast different scenarios under a high degree of
235 uncertainty and complexity, such modeling will play an important role in improving policy

236 and health outcomes in future epidemics.
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