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Abstract5

Heterogeneity in contact patterns, mortality rates, and transmissibility among and6

between different age classes can have significant effects on epidemic outcomes. Adaptive7

behavior in response to the spread of an infectious pathogen may give rise to complex8

epidemiological dynamics. Here we model an infectious disease in which adaptive be-9

havior incentives, and mortality rates, can vary between three age classes. The model10

indicates that age-dependent variability in infection aversion can produce more complex11

epidemic dynamics at lower levels of pathogen transmissibility.12

1 Introduction13

One of the principal failings of the attempts to model and predict future trends and dy-14

namics of infectious disease epidemics has been the lack of incorporation of human behavior15

into these models [1]. The social drivers of infectious disease dynamics have been relatively16

neglected in the academic literature compared with the vast resources and attention paid17

to the biomedical and, to a lesser extent, the ecological drivers of disease [2,3]. COVID-19,18

however, has shone a spotlight on this discrepancy as socio-cultural factors have played an19

important role in the pandemic – from the political polarization of risk perception in the20

United States [4] to the social, cultural, and demographic factors associated with vaccine21

hesitancy [5]. Models should incorporate relevant social phenomena, as well as their inter-22

actions, as the study of each phenomenon in isolation may not be informative or useful.23
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For example, adaptive age-specific preventative behaviors motivated by differentiated risk24

of COVID-19 mortality should be included. The resulting contact patterns and associated25

infection dynamics are expected to interact in their influence on epidemic trajectories.26

The mortality rate of COVID-19 is highly age-specific [6] with a log-linear increase of27

infection fatality ratio by age among individuals over 30 [7]. This contributes to skewed28

risk perceptions across the population’s age structure and economic activity associated with29

COVID-19 risk [8,9]. Heterogeneity in contact patterns, mortality rates, and transmissibility30

among and between different age classes is known to have significant effects on epidemic31

outcomes [10, 11]. In Germany, for example, younger adults and teenagers were likely the32

main drivers of COVID-19 transmission dynamics during the first three pandemic waves [12].33

Goldstein et al. [13] found that vaccinating the elderly first against COVID-19 would save34

the most lives, although the model neglected key features of transmission dynamics [14].35

Further, Acemoglu and colleagues showed that optimal lockdown policies during COVID-36

19 are age-specific, with strict lockdown policies on the oldest group and reduction of37

interactions between age classes being most effective [15]. Their model, however, assumed38

exogenous targeted policies and did not incorporate adaptive behavior, a cornerstone of39

COVID-19 dynamics.40

As risk of transmission of a dangerous infection increases during an epidemic, individuals41

and governments tend to react by mitigating that risk with adaptive behavior. Adaptive42

behavior has enjoyed growing attention in the disease modeling literature [16, 17], with43

techniques using game theory [18], fear-infection parallel contagions [19, 20], and network-44

and agent-based approaches [21]. Early work by Capasso et al. [22] experimented with45

the introduction of a negative feedback mechanism in the traditional susceptible-infected-46

recovered (SIR) model [23] and represented reduced contacts as a function of the number47

of infected. Philipson formalized the economic theory of adaptive behavior showing that48

rational agents following dynamic incentives may lead to oscillations around an indifference49

point, or equilibrium [24]. Adaptive behavior can cause oscillatory dynamics because a50

system with a negative feedback can continuously overshoot adjustments [25,26].51

Adaptive behavior may also lead to complex dynamics that are characteristic of determin-52

istic, chaotic systems, especially with delays in adaptive response [27]. Empirical evidence53

from the COVID-19 pandemic suggests that the behavior of the epidemic has been chaotic54

in a majority of countries [28]. An investigation of the second derivative of infections over55

time during COVID-19 found that the pandemic qualitatively met Henŕı Poincaré’s criteria56

for chaos in deterministic dynamical systems: a large number of solutions, dynamic sensi-57

tivity, and numerical unpredictability [29]. Measles models show characteristically chaotic58

dynamics that may also characterize the observed dynamics [30,31]. In the SEIR framework59
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with a periodically varying contact rate that represented seasonal changes, sustained oscilla-60

tions [32] and period-doubling bifurcations [33] were found, and one case with a particularly61

high degree of contact led to chaotic dynamics [34]. While age structure heterogeneity in62

susceptibility and seasonal variance in contact rates due to school attendance characterize63

measles modeling [35, 36], age structure heterogeneity in dynamic, adaptive contact rates64

have not been modeled for COVID-19.65

Here, we model an infectious disease with adaptive behavior incentives of the form used in a66

previous model [27] and include different mortality rates for three age classes: the “young,”67

the “middle-aged,” and the “old” (à la Acemoglu et al. [15]).68

2 Model specifications69

We begin with a susceptible-infected-susceptible (SIS) compartmental disease model [37],70

which includes an adaptive contact behavior that maximizes a utility function, as in Arthur71

et al. [27]. With susceptible and infectious individuals, denoted by St and It, respectively,72

at time t, and Nt the population size, we have:73

St+1 = St − b0 c∗tStIt + γIt (2.1)

It+1 = It + b0 c∗tStIt − γIt (2.2)

St + It = Nt, (2.3)

where b0 represents transmissibility given contact, γ represents the removal rate, and c∗t74

represents a contact rate at time t chosen to maximize utility U(c) as a function of contacts:75

U(c) = α0 − α1(c− ĉ)2 − α2

{
1−

[
1−

(
It−∆

N

)
b0

]c}
. (2.4)

Here, c represents contacts per unit time, ĉ represents the optimal contact rate when the76

disease risk is non-existent, α1 represents the utility gained by achieving ĉ contacts and α277

represents the utility lost if infected. Here, ∆ represents delayed information, such that78

an individual may base their perception of infection risk on prevalence during past time79

periods, rather than the current one. Maximizing Eq 2.4 with respect to c yields c∗t , the80

contact rate chosen at each time step to maximize utility.81
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To incorporate age structure, we stratify the population into k discrete age classes, repre-82

sented by A1, . . . , Ak. The number in sub-population Ai is given by Ni. We assume the83

size of each age class does not change: Nit = Ni and let
∑k

i=1Ni = N . The utility function84

(as in Eq 2.4) for each age class i is given by85

Ui(c) = α0 − α1i(c− ĉi)
2 − α2i

{
1−

[
1−

(
It−∆

N

)
b0

]c}
, (2.5)

where α1i represents the utility loss of reduced contacts for Ai, ĉi represents the target86

contact rate for Ai, and α2i represents the utility loss (i.e. aversion) to infection based on87

a delayed perception of population-level prevalence for Ai. Here it is assumed that each88

age class perceives its risk according to the disease prevalence of the whole population (i.e.89

It−∆ =
∑k

i=1 Ii,t−∆), rather than just of their own group.90

Interactions between and within age classes at time t are defined in terms of a dynamic91

contact matrix Mt (censu Ram & Schaposnik, 2021 [38]),92

Mt =


c∗1t c12 . . . c1k

c21 c∗2t . . . c2k
...

...
. . .

...

ck1 ck2 . . . c∗kt

 , (2.6)

where c∗it represents the within-group contact of Ai, optimized at time step t to maximize93

utility in Ai (as in Eq 2.4), and cij represents the contact between Ai and Aj for i ̸= j. For94

simplicity, institutional behavior change is assumed to only affect the within-group contact95

(e.g., via school and workplace closures and nursing home quarantines), and thus, between-96

group contact rates are assumed fixed and not adaptive to changing infection risks. It is97

assumed that cij = cji.98

Using the contact matrix (2.6), the transition between susceptible and infected disease states99

for age class Ai, as in Eqs. 2.1-2.3, can be expressed as100

Si(t+1) = Sit − b0c
∗
itSitIit −

k∑
j=1,i̸=j

b0cijSitIjt + γiIit, (2.7)

Ii(t+1) = Iit + b0c
∗
itSitIit +

k∑
j=1,i̸=j

b0cijSitIjt − γiIit, (2.8)

Sit + Iit = Nit. (2.9)
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We assume the following constraints:101

1. The aversion to infection is greatest in the elderly and least in the young, i.e.,102

α2k > · · · > α21. (2.10)

2. The target contact rate is greatest in the young and least in the elderly, i.e.,103

ĉ1 > · · · > ĉk. (2.11)

3. The recovery rate from the infected category to the susceptible is the same for all age104

classes, namely, for all i, j,105

γi = γj = γ. (2.12)

4. The number of infecteds in any age class Ai may never be greater than the population106

size of that class or less than zero, i.e. for all i and t,107

0 ≤ Iit ≤ Ni. (2.13)

3 Analytical Results108

3.1 Equilibria109

To understand the dynamic behavior of the number of infecteds in each age class, we first110

examine conditions for the existence of equilibria. If Itb0 is small relative to N, then on111

linearizing with respect to I in Eq 2.5, the optimal value of ci at time t for Ai is found to be112

c∗it = ĉi −
α2ib0It−∆

2α1iN
. (3.1)

Define the parameter αi as113

αi =
α2ib0
2α1i

. (3.2)

We begin with a 2-age-class model, where A1 represents the youth and A2 represents the114

middle-aged and elderly, in which case, Eqs. 2.6-2.13, with k = 2, become115

Mt =

[
c∗1t c12

c12 c∗2t

]
, (3.3)

I1(t+1) = I1t + b0c
∗
1tS1tI1t + b0c12S1tI2t − γI1t, (3.4)

116

I2(t+1) = I2t + b0c
∗
2tS2tI2t + b0c12S2tI1t − γI2t, (3.5)

5
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with S1t + I1t = N1, S2t + I2t = N2, and N = N1 +N2.117

For simplicity, we assume the population sizes of all groups are equal (i.e. N1 = N2 = N
2 ).118

Then, substituting c∗1t from Eq 3.1 and α1 from Eq 3.2, with ∆ = 0, we obtain119

I1(t+1) = I1t − γI1t + b0[ĉ1 − α1
(I1t + I2t)

N
](
N

2
− I1t)I1t + b0c12I2t(

N

2
− I1t). (3.6)

= f1(I1t, I2t) (3.7)

=

α1b0
N

I31t + (α1b0
I2t
N

− b0ĉ1 −
α1b0
2

)I21t + (b0ĉ1
N

2
−

b0α1I2t
2

− b0c12I2t + 1− γ)I1t + b0c12I2t
N

2
.

(3.8)

By symmetry,120

I2(t+1) =

α2b0
N

I32t + (α2b0
I1t
N

− b0ĉ2 −
α2b0
2

)I22t + (b0ĉ2
N

2
−

b0α2I1t
2

− b0c12I1t + 1− γ)I2t + b0c12I1t
N

2
.

(3.9)

121

= f2(I1t, I2t). (3.10)

A fixed point (i.e., equilibrium) exists for Ai when Ii(t+1) = Iit for i = 1, 2. Thus, equilibria122

are the roots of the two simultaneous polynomial equations123

0 =

α1b0
N

I31 + (α1b0
I2
N

− b0ĉ1 −
α1b0
2

)I21 + (b0ĉ1
N

2
−

b0α1I2
2

− b0c12I2 − γ)I1 + b0c12I2
N

2

(3.11)

and124

0 =

α2b0
N

I32 + (α2b0
I1
N

− b0ĉ2 −
α2b0
2

)I22 + (b0ĉ2
N

2
−

b0α2I1
2

− b0c12I1 − γ)I2 + b0c12I1
N

2

(3.12)

3.2 Stability125

To analyze local stability, we calculate the Jacobian of the differential equations corre-126

sponding to Eqs 3.8-3.9, where I1(t+1) = f1(I1t, I2t) and I2(t+1) = f2(I2t, I2t) and evaluate127

the Jacobian at the equilibrium. Differentiating each function with respect to each variable128

I1 and I2,129
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∂f1
∂I1

= 3
α1b0
N

I21+2(α1b0
I2
N

−b0ĉ1−α1b0
N1

N
)I1+(b0ĉ1N1−b0α1I2

N1

N
−b0c12I2+1−γ), (3.13)

∂f1
∂I2

=
b0α1

N
I21 − b0α1

N1

N
I1 − b0c12I1 + b0c12N1, (3.14)

∂f2
∂I1

=
b0α2

N
I22 − b0α2

N2

N
I2 − b0c12I2 + b0c12N2, (3.15)

∂f2
∂I2

= 3
α2b0
N

I22+2(α2b0
I1
N

−b0ĉ2−α2b0
N2

N
)I2+(b0ĉ2N2−b0α2I1

N2

N
−b0c12I1+1−γ). (3.16)

4 Computational Results130

4.1 The 2-population model131

We first examine the numerical iteration of the discrete time SIS recursions (Eqs 3.8-3.9)132

without time-delay, and set default values for all parameters, namely:133

N1 = 5000, N2 = 5000, I0 = 1, γ1 = 0.1, γ2 = 0.1, ĉ1 = 0.02, ĉ2 = 0.01, c12 = 0.005, α1 = 1,134

α21 = 20, α22 = 40, b0 = 0.009.135

By increasing the transmissibility parameter b0 from the default value, we see a progression136

of dynamical regimes across critical thresholds from simple convergence to cyclic behavior137

in 2, 4, and 6-point cycles, chaos, and collapse (Figs 1,3,5). By increasing the contact rate138

between the 2 populations, c12, there is a progression from simple convergence to a 2-pt139

cycle, 6-pt cycle, chaos, back to a 6-pt cycle, and finally an asynchronous 8-pt and 2-pt140

cycle (Figs 2,4).141
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Figure 1: Disease dynamics for 2-population age-structured model using default

parameters and varying transmissibility b0. A) b0 = 0.009, Convergence to

stable equilibria; B) b0 = 0.013 =, 2-point cycle; C) b0 = 0.02, 4-point cycle; D)

b0 = 0.021, chaos; E) b0 = 0.0235, 6-pt cycle; F) b0 = 0.025, Collapse.
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Figure 2: Bifurcation diagram of equilibria, oscillatory dynamics, and chaotic

behavior as a function of transmissibility b0.

9
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Figure 3:

Disease dynamics for 2-population age-structured model using default parameters and

varying between-group contact rate c12. A) c12 = 0.005, Convergence to stable equilibria;

B) c12 = 0.025, 2-point cycle; C)c12 = 0.04, 6-point cycle; D) c12 = 0.05, chaos; E)

c12 = 0.08, 6-pt cycle; F) c12 = 0.15, 8-pt cycle for Old and 2-pt cycle for Young.

10
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Figure 4:

Bifurcation diagram of equilibria, oscillatory dynamics, and chaotic behavior as a function

of inter-group contact rate c12.

11
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Figure 5:

Heat maps of dynamic regimes as a function of the relationship between aversion to

infection in the youth (α21) and in the elderly (α22) with varying transmissibility (b0):

A) b0 = 0.009; B) b0 = 0.013; C) b0 = 0.02; D) b0 = 0.021; E) b0 = 0.0235; F) b0 = 0.025.
12
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4.2 The 3-population model142

For our 3-age-class model, A1 represents the youth, A2 represents the middle-aged, and A3143

represents the elderly. Then the analogous equations to Eqs 2.6-2.13, for k = 3, are144

Mt =

c
∗
t1 c12 c13

c12 c∗t2 c23

c13 c23 c∗t3

 , (4.1)

I1(t+1) = I1t + b0c
∗
1tS1tI1t + b0c12S1tI2t + b0c13S1tI3t − γI1t, (4.2)

145

I2(t+1) = I2t + b0c
∗
2tS2tI2t + b0c12S2tI1t + b0c23S2tI3t − γI2t, (4.3)

146

I3(t+1) = I3t + b0c
∗
3tS3tI3t + b0c13S3tI1t + b0c23S3tI2t − γI3t, (4.4)

with147

S1t + I1t = N1, S2t + I2t = N2, S3t + I3t = N3. (4.5)

Equilibria for the system defined by Eqs. 4.2-4.4 solve Ii(t+1) = Iit for i = [1, 2, 3] and are148

the roots of three simultaneous polynomial equations.149

We set default values for parameters and initial conditions, such that150

N1 = 5000, N2 = 5000, N3 = 5000, I0 = 1, γ1 = 0.1, γ2 = 0.1, γ3 = 0.1, ĉ1 = 0.02,151

ĉ2 = 0.015, ĉ3 = 0.01, c12 = 0.005, c13 = 0.003, c23 = 0.007, α1 = 1, α21 = 20, α22 = 30,152

α23 = 40, b0 = 0.01.153

13
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Figure 6: Disease dynamics for 3-population age-structured model using default

parameters and varying transmissibility b0. A) b0 = 0.01, Convergence to stable

equilibria; B) b0 = 0.013, 2-point cycle; C)b0 = 0.022, Chaos into a 2-pt cycle

cycle; D) b0 = 0.05, Collapse.

By increasing the transmissibility b0, the model goes from simple convergence to a 2-point154

cycle to chaos into a 2-pt cycle to collapse (Fig 6). By uniformly increasing the between-155

group contact rates c12, c13, and c23, the model exhibits convergence, a 2-pt cycle, a 4-pt156

cycle, chaos, a 5-py cycle, and a 6-pt cycle. The amplitude of oscillations and the variance of157

chaotic dynamics are greatest for the elderly population and least for the youth population.158

14
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Figure 7:

Disease dynamics for 3-population age-structured model using default parameters and

varying between-group contact rates c12, c13, and c23.

A) c12 = 0.005, c13 = 0.003, c23 = 0.007, Convergence to stable equilibria; B)

c12 = 0.008, c13 = 0.01, c23 = 0.01, 2-point cycle; C) c12 = 0.022, c13 = 0.02, c23 = 0.024,

4-point cycle; D) c12 = 0.032, c13 = 0.03, c23 = 0.034, Chaos; E)

c12 = 0.05, c13 = 0.048, c23 = 0.052, 5-pt cycle; F) c12 = 0.06, c13 = 0.058, c23 = 0.062, 6-pt

cycle.

5 Discussion159

Results from the 2- and 3-population adaptive behavior models indicate that, for certain160

parameter values, stable equilibria can be reached for each sub-population i, including 0161

for all age groups and an equilibrium between 0 and Ni. In the 2-population case, the162

equilibrium for each population can be derived numerically. With increasing values of b0163

and cij (the transmissibility and between-group contact rate, respectively), the system may164

converge to a non-zero equilibrium, oscillate perpetually with 2-, 4-, 6-, 8-, and 10-period165

intervals, become chaotic, and collapse. Complexity of dynamics can be found at lower166

levels of transmissibility with greater differentiation between aversions to infection (Fig 5).167

For both the 2-population and 3-population models, the younger population has a higher168

15
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non-zero equilibrium size than the older population, and the older population has greater169

amplitude of oscillations and variance of chaotic dynamics than the younger population.170

Our model is built on a number of simplifying assumptions. Risk tolerance and reactions171

to shifting prevalence are stratified by age class, but assumed homogeneous within each172

class. In reality, individuals would have heterogeneous risk tolerance according to their age,173

political affiliation, and other characteristics. We modeled adaptive behavior with dynamic174

within-group contact rates, but assumed between-group contact rates were fixed. While175

this was justified by COVID-19 public health policies that controlled within-group contact176

more than between-group contact, between-group contact is also responsive to prevalence.177

Further, we constrained the model with 4 mathematical assumptions (Eqs 2.10-2.13), some178

of which may not always hold in real-world scenarios. The relaxation of the above assump-179

tions may yield different model outcomes. However, while the thresholds between dynamical180

regimes may shift, the regimes themselves are likely robust. We note these assumptions were181

made in order to construct the simplest possible mathematical model that includes adaptive182

behavior and age-structured risk perceptions in an epidemic.183

While the older population has a higher risk associated with infection, the younger popula-184

tion’s lower aversion and higher baseline contact rates affect the epidemic dynamics in the185

older population. Thus, transmission in the young may not only lead to transmission in186

the elderly, but also increase the variance of the elderly dynamics and destabilize them. In187

Germany, youths were found to drive COVID-19 transmission dynamics in the first three188

pandemic waves [12]. Children are known to be the primary drivers of Influenza trans-189

mission, although severe morbidity and mortality are mostly seen in older age groups [39].190

The importance of the youth in the dynamics of our model provides theoretical support for191

COVID-19 lockdown policies that reduce between-group interaction (i.e. cij), as found by192

Acemoglu et al. [15]. Transmission within the household is a key point of risk for the elderly193

and middle-aged, and high levels of transmission in the youth are likely to significantly affect194

disease outcomes in other age categories.195

Our model may be usefully compared to other adaptive behavior models that look at sub-196

populations with differentiated characteristics or reactions to epidemic dynamics. It is worth197

noting that the justification for the bifurcated structure need not be restricted to age-based198

differentiation, but can also include political party affiliation, income levels, or other demo-199

graphic, social, behavioral, physical, or geographic differences. Some studies use structured200

2-population models with varying homophily and outgroup aversion or varying awareness201

separation and mixing separation [40, 41]. Results from these models indicate that het-202

erogeneous populations, even when simply structured compartmentally as two populations,203

can produce greater complexity in epidemic dynamics, including large second waves and204
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interconnected dual epidemics. Our results broadly agree with this theme: a 2-population205

model with varying infection aversion can produce more complexity at lower levels of trans-206

missibility, and the difference between aversions can also drive complexity (e.g Fig 5).207

In our previous work [27], we compared the complex dynamics associated with endogenous208

behavior change during epidemics to similar theoretical behavior in ecological systems. Of-209

ten, when a single population is modeled in ecology (e.g. in a fishery [42]), the carrying210

capacity operates as an attractor, above which the population is attracted downwards and211

below which the population is attracted upwards. With endogenous behavior, the equilib-212

rium, or indifference point, is also an attractor, below which the population is motivated to213

relax protective behaviors and above which the population is motivated to adopt protective214

behaviors. It may be productive to extend this parallel further in the case of multiple pop-215

ulations. For example, the predator-prey model considers two interdependent populations.216

When the prey population is high, the predator population grows, but when the prey are217

low in number, the predators decrease. While our epidemiological model does not include218

such direct competition or predation, the behavior is somewhat similar: when the young219

population has high prevalence of disease, the prevalence in the older population increases220

until the indifference point is crossed. When the young population has low prevalence,221

the prevalence in the older population follows suit. If a comparison between ecology and222

epidemiology is appropriate, it follows that careful study of the literature in theoretical223

ecology may provide insights relevant to epidemiology, a field with as yet comparatively224

little exploration of such complex system dynamics.225

We recommend further theoretical work in both adaptive behavior modeling and complexity226

in epidemiology. A systems perspective may better represent the inherent complexities227

and heterogeneities of real-world epidemics. Social drivers of disease have been relatively228

neglected in the literature [2], but played an important role in COVID-19 outcomes. For229

example, the divergence of risk assessment by age class that characterizes our model was a230

social phenomenon, though biologically motivated. Other complex phenomena important to231

COVID-19 include simultaneous asynchronous epidemics, political bifurcation of attitudes232

and practices, and the co-evolution of the human immune system and the virus. As public233

health policies depend on our ability to forecast different scenarios under a high degree of234

uncertainty and complexity, such modeling will play an important role in improving policy235

and health outcomes in future epidemics.236
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