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Abstract 

 

INTRODUCTION: Leukocyte telomere length (LTL) is an objective biomarker of biological aging, 

and it is proposed to play a crucial role in Alzheimer's disease (AD) risk. We aimed at evaluating the 

cross-sectional association between LTL and cognitive performance in middle-aged cognitively 

unimpaired individuals at increased risk of AD. METHODS: A total of 1,520 participants from the 

ALFA cohort were included. Relative telomere length was measured in leukocytes through qPCR. LTL 

was residualized against age and sex, and associations with cognitive performance were assessed in 

accelerated and decelerated biological aging individuals based on residual LTL (rLTL). Interactions 

with sex and genetic risk of AD were tested. RESULTS: Non-linear associations were found between 

LTL and episodic memory (EM). Better EM was associated with longer rLTL among women in the 

accelerated aging group. DISCUSSION: Results suggest a potential role for telomeres in maintaining 

cognition in aging with sex-specific patterns. 

 

Keywords: Alzheimer’s disease, Biological aging, Cognitive performance, Sex differences, Telomere 

length 

 

Highlights: 

● There is a non-linear association between telomere length and cognitive performance. 

● Longer telomeres are suggested to have a beneficial effect on episodic memory. 

● The association between telomeres and cognitive performance might be sex-specific. 
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1. Introduction 

Aging is the primary risk factor for most neurodegenerative diseases, including dementia due 

to Alzheimer's disease (AD) 1,2. The number of individuals living with dementia worldwide is 

expected to increase upon 153 million in 2050, due primarily to population aging 3. However, 

deciphering molecular mechanisms linking aging with neurodegeneration is a complex 

undertaking, as these two phenomena likely evolve in tandem and mutually influence each 

other 4,5 .  

The human telomere complex consists of tandem repeated short DNA sequences and associated 

proteins located at the end of chromosomes that protects genomic integrity. Telomere attrition 

naturally occurs during aging due to cellular division 6,7. However, telomere erosion to a critical 

length can trigger aging-associated disease by inducing genomic instability, which can lead to 

cellular apoptosis or senescence 8. Thus, telomere length (TL) is considered one of the 

hallmarks of aging, along with others such as epigenetic alterations or chronic inflammation 9. 

These hallmarks are functionally related to each other and are interconnected with the main 

determinants of health, collectively contributing to the complex and multifactorial nature of 

aging 10.  

In epidemiological studies, TL is commonly measured in leukocytes from peripheral blood 

(i.e., leukocyte telomere length [LTL]) and it has been proposed as an objective biomarker of 

biological aging across human tissues 11. Shorter LTL has been  associated with increased 

mortality rates and higher incidence of several age-related comorbid diseases associated with 

AD, such as cardiovascular or metabolic traits 12–15. Importantly, while LTL is a highly 

heritable trait 16, recent evidence suggests that it may be modifiable by lifestyle interventions 

and exposure to environmental factors 17.  
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Shorter LTL has been associated with an increased risk of developing AD 18,19 and people living 

with AD showed shorter LTL than age-matched controls in a meta-analysis study 20. However, 

the underlying biological pathways driving these associations remain to be elucidated. In this 

regard, LTL has been associated with multiple structural brain endophenotypes of 

neurodegenerative diseases among cognitively unimpaired (CU) middle-aged individuals from 

the UK Biobank 21. Moreover, longer LTL was associated with a lower risk of incident AD, 

better cognitive performance, larger hippocampus volume and lower total volume of white 

matter hyperintensities 22. 

Nonetheless, the association of LTL with early markers of AD, including cognitive 

performance, requires further investigation along the continuum of the disease. For instance, 

prior studies have reported a detrimental effect of telomere shortening on cognitive 

performance in the general population 23–25. However, LTL was unrelated to cognitive ability 

among CU older individuals or those having dementia or incipient dementia 26. Besides, LTL 

at baseline was associated with worse cognitive performance among individuals with high 

baseline AD pathology at different stages of the disease’s continuum from the AD 

Neuroimaging Initiative 27.   

Given the conflicting findings in previous studies, the primary objective of this study was to 

investigate the association between baseline LTL and cognitive performance in a cohort of 

middle-aged, CU individuals at increased risk of AD. In addition, we explored potential non-

linear associations, sex-interactions, and effect modifications related to the genetic risk of AD. 

The results of our study are expected to shed light into the complex relationship between LTL 

and AD pathological processes during the earliest stages of the continuum. 

2. Methods 

2.1. Study participants 
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The present is a cross-sectional analysis that was conducted in the context of an existing study, 

the ALFA (Alzheimer and Families) study 28. Briefly, the ALFA study (Clinicaltrials.gov 

Identifier: NCT01835717) includes a total of 2,743 CU participants, aged 45–74, many of them 

kindred of people living with AD (86% had at least one parent with dementia regardless age at 

onset, 48% of the participants had at least one parent diagnosed with AD before the age of 75).  

Participants were characterized at their baseline visit in 2013–2014 at multiple levels 

(sociodemographic, anthropometric, clinical, epidemiological, cognitive and neuroimaging). . 

ALFA exclusion criteria were (1) Cognitive performance falling outside established cutoffs: 

Mini-Mental State Examination 29,30 < 26, Memory Impairment Screen 31,32 < 6, Time-

Orientation subtest of the Barcelona Test II 33 < 68, semantic fluency 34,35 (animals) < 12. (2) 

Clinical Dementia Rating scale 36 > 0. (2) Major psychiatric disorders (DSM-IV-TR) or 

diseases that could affect cognitive abilities. (3) Severe auditory and/or visual, 

neurodevelopmental and/or psychomotor disorders, significant diseases that could interfere 

with cognition. (4) Neurological disorders. (5) Brain injury that could interfere with cognition. 

(6) Family history of AD with suspected autosomal dominant pattern. Further details of ALFA 

participants can be found in 28.  

The study was conducted in accordance with the directives of the Spanish Law 14/2007, of 3rd 

of July, on Biomedical Research (Ley 14/2007 de Investigación Biomédica). All participants 

accepted the study procedures by signing an informed consent form. 

2.2. Cognitive performance evaluation  

During neuropsychological evaluation at baseline, all participants were administered a 

cognitive test battery for the detection of early decline in longitudinal follow-up. Episodic 

memory (EM) was assessed by means of the Spanish version of the Memory Binding Test 

(MBT) 37,38. In this test, the examinee should learn two sets of 16 written words that share 
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semantic categories by pairs. Four main variables including free and cued recalls in immediate 

and delayed (after 25–35 min) trials were analyzed: Immediate total paired recall (TPR), 

immediate total free recall (TFR), delayed total paired recall (TDPR), and delayed total free 

recall (TDFR). Further cognitive domains were measured using the Wechsler Adult 

Intelligence Scale (WAIS) IV Coding, Digit Span, Visual Puzzles, Similarities and Matrix 

Reasoning subtests 39. Coding measures, among others, processing speed and attention. The 

Digit Span subtest evaluates short-term and working memory. Visual Puzzles measures 

complex visual processing. Matrix Reasoning assesses non-verbal reasoning, and Similarities 

measures verbal reasoning and abstract thinking. For our study, a modified Preclinical 

Alzheimer Cognitive Composite (PACC) 40 was created by averaging the z-scores of the 

following variables: MBT-TPR, MBT-TDFR, WAIS-IV Coding, and semantic fluency. 

Moreover, two additional cognitive composites to assess global EM and executive function 

(EF) were calculated by creating z-scores for the cognitive measures from MBT and from 

WAIS-IV subtests, respectively. These global measures were calculated by averaging 

normalized raw scores of all subtests in each domain 41. As with the individual cognitive tests, 

higher scores in the different composites represent better cognitive performance.  

2.3. Apolipoprotein E genotyping  

Total DNA was obtained from the blood cellular fraction by proteinase K digestion followed 

by alcohol precipitation. Using the following primers (APOE-F 5′-

TTGAAGGCCTACAAATCGGAACTG-3′ and APOE-R 5′-

CCGGCTGCCCATCTCCTCCATCCG-3′) samples were genotyped for two SNPs, rs429358 

and rs7412, determining the possible APOE alleles: ε1, rs429358 (C) + rs7412 (T); ε2, 

rs429358 (T) + rs7412 (T); ε3, rs429358 (T) + rs7412 (C); and ε4, rs429358 (C) + rs7412 (C). 

2.4. Genome-wide genotyping, imputation, and polygenic risk score  
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A total of 2,686 participants of the ALFA parent cohort were genotyped, as 57 individuals had 

to be excluded since blood extraction could not be performed or sufficient DNA could not be 

obtained to perform the genotyping. After genetic quality control (QC) procedure, a total of 

2,527 CU individuals from the ALFA parent cohort were genetically characterized. Imputation 

of genetic variants was performed using the Michigan Imputation Server with the Haplotype 

Reference Consortium Panel (HRC r1.1 2016) 42 using default parameters and following 

established guidelines. Polygenic risk scores (PRS) were calculated using PRSice version 2 43. 

PRSice computes PRSs by summing all SNP alleles carried by participants, weighting them by 

the SNP allele effect size estimated in a previous genome-wide association studies (GWAS), 

and normalizing the score by the total number of SNPs included. PRS for AD risk, CSF 

amyloid-β (Aβ) and PRS-CSFpTau were calculated using summary statistics from recent 

GWASs. PRS for AD was additionally calculated excluding the APOE region 

(chr19:45,409,011-45,412,650; GRCh37/hg19) (PRS-ADnoAPOE). Results were displayed at 

a restrictive threshold, 5x10-6. DNA extraction, genotyping, genetic QC, and imputation 

procedures are detailed elsewhere 44.  

2.5. Leukocyte telomere length measurements  

A total of 1,660 participants were selected for LTL determinations based on the availability of 

biological samples (already stored at the biobank) and cognitive assessment (available at in-

house databases). Samples were sent to the Harvard Cancer Center Genotyping & Genetics for 

Population Sciences Facility for LTL determination using a high throughput version of the 

quantitative real-time polymerase chain reaction (qPCR)-based telomere assay. LTL was 

measured in a single batch for all samples. LTL was determined by qPCR from the DNA 

extracted from peripheral blood leukocytes. First, DNA was quantified and normalized, and 

then the relative LTL was determined by a high-performance version of the real-time qPCR for 

telomeres. The assay was run on the Applied Biosystems 7900HT Sequence Detection System 
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(Foster City, CA, USA). Laboratory personnel were blinded to participants’ characteristics, 

and all assays were processed in triplicate by the same technician and under identical 

conditions. The average relative LTL (i.e., Exp ddCt) was calculated as the exponentiated ratio 

of telomere repeat copy number to a single gene (36B4) copy number corrected for a reference 

sample. 

Sample triplicates coefficient of variation (CV) ranged between 0.15-14.6. Samples with 

triplicate-CVs above 15% were removed for subsequent analysis (3 samples). The intra-set 

CVs ranged between 0.97-1.14. The average CV was 8.36% for the whole assay, which passes 

the internal standard quality controls. Forty-five samples failed the assay (2.6%), of which 21 

were expected to fail due to low concentration of DNA after the DNA quantification. A total 

of 48 samples did not fail but presented higher cycle threshold (Ct) values than they should be 

(Ct > 26 for telomere and Ct > 29 for 36B4) (N = 48). Additionally,  APOE-ε2ε4 individuals 

(N = 30) were removed from the analyses. Outliers were detected and removed based on the 

Grubbs test (N = 5), leaving reliable data for a total of 1,532 after quality control.  

2.6. Statistical analysis 

LTL values were natural log-transformed and normalized by computing z-scores. LTL was 

residualized (i.e., rLTL) against chronological age at LTL measurement and sex using a linear 

regression model. rLTL was considered a standardized measure of biological aging in the study 

population: greater rLTL values were indicative of longer telomeres than expected for a given 

chronological age (irrespective of sex) and vice versa.  

Initial analyses showed suggestive non-linear relationship between rLTL and cognitive 

performance in the study sample. In order to capture non-linear effects, categorization of the 

sample was performed by (1) using natural cubic splines to model the association between 

rLTL and cognitive performance 45 and (2) selecting the knots based on the lowest Bayesian 
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information criteria [BIC] 46. The most parsimonious description of the rLTL-cognitive 

performance association was found for a division based on the percentile 50th (according to the 

BIC, see Supplementary Figures 1-3). Thus, the sample was classified in two groups based 

on the percentile 50th of the rLTL: accelerated biological aging group (i.e., rLTL < percentile 

50th) and decelerated biological aging group (i.e., rLTL > percentile 50th). 

The cross-sectional association between rLTL and cognitive performance was tested in the 

whole sample and separately in the accelerated and decelerated biological aging groups. 

Generalized linear models with Poisson/quasi-binomial distributions and linear regression 

models were implemented to assess the association between rLTL and cognitive subtests as 

well as rLTL and cognitive composites, respectively. All models were adjusted by age, sex, 

education and APOE-ɛ4 status.  

Interactions with genetic risk for AD and sex were tested by including interaction terms for 

sex, APOE-ɛ4 status, PRS-ADnoAPOE, PRS-CSFAβ and PRS-CSFpTau in the models. 

Stratified analyses by sex were conducted. In those analyses, LTL was separately residualized 

against chronological age in women and men.  Sensitivity analyses were conducted by further 

adjusting linear models by systolic blood pressure (SBP), PRS-ADnoAPOE and parental 

history of AD.  

A false discovery rate (FDR) multiple-comparison correction was applied following the 

Benjamini-Hochberg procedure 47  for all analyses. FDR-P value < 0.05 were considered 

statistically significant. Unadjusted P value < 0.05 were considered nominally significant. All 

analyses were conducted under R software, version 4.2.3 48.  Descriptive analyses were 

performed using compareGroups R package 49.  
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The final sample size was 1,520 individuals with available information for clinical history, 

cognitive performance, LTL determinations, and genetic data. Eligible criteria for inclusion in 

the present study can be found in Figure 1.  

3. Results  

3.1. Main characteristics of the population by telomere length subgroups 

The study sample was classified in two groups of individuals at different stages of biological 

aging based on the percentile 50th of the rLTL: accelerated biological aging group (i.e., rLTL 

< percentile 50th) and decelerated biological aging group (i.e., rLTL > percentile 50th) (see 

Methods, section 2.6)  (Figure 2). The accelerated and decelerated aging groups had similar 

median age at baseline (56 years old) and proportions of women and men. Individuals in the 

accelerated aging group had higher SBP levels than those in the decelerated aging group (Table 

1). The distribution of APOE-ε4 carriers did not differ between biological aging groups. 

Individuals in the decelerated aging group had higher polygenic risk scores for AD without 

APOE effect (i.e., PRS-ADnoAPOE). However, individuals with positive parental history of 

AD were more likely to be classified in the accelerated aging group, and significant differences 

in the distribution of parental history of AD by parent were observed. Specifically, the 

percentage of individuals with positive family history of AD in both parents was significantly 

higher in the accelerated aging group than in the decelerated aging group. Conversely, a higher 

percentage of positive maternal familial history of AD was observed among individuals in the 

accelerated aging group. When considering a more stringent parental history encoding (age at 

symptom onset before 75 years old), no differences were found between the groups, although 

a similar distribution of parental history of AD by parent was observed (Table 1). 

No significant differences were observed among women in the accelerated or decelerated 

biological aging groups. However, among men, those with paternal family history of AD or 
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both parents diagnosed with the disease were more likely to be classified in the decelerated 

aging group, while those with positive maternal family history of AD were more prevalent in 

the accelerated aging group, even when considering a more restrictive parental history 

encoding (age at symptom onset before 75 years old). Furthermore, men in the accelerated 

aging group had an earlier maternal symptom onset of AD compared to those in the decelerated 

aging group. There were no other statistically significant differences observed between the 

groups. (Table 2).  

3.2. Association between rLTL and episodic memory (EM) 

The results showed that shorter rLTL at baseline was associated with worse scores on the EM 

composite, but only among individuals classified in the accelerated aging group [EM composite 

= β: 0.101, SE: 0.037, FDR-P value: .031]. No other statistically significant associations with 

the EM composite were found in the entire population or among individuals in the decelerated 

aging group (Table 3). This association persisted after adjusting for PRS-ADnoAPOE, SBP 

and family history of AD (Supplementary Table 1). In the analysis with specific scores, 

shorter rLTL at baseline was associated with worse performance on verbal episodic memory 

variables related to both immediate and delayed paired and free recall of words from the MBT, 

but only among individuals within the accelerated aging group. However, after correcting for 

multiple comparisons only the association with TFR remained significant [TFR = Estimate: 

1.039, SE: 1.012, FDR-P value: .020] (Table 3). 

In the entire sample, a suggestive rLTL-sex interaction effect was found on EM [P value-

interaction: .065] (Supplementary Figure 4, Supplementary Table 2). Similarly, a 

statistically significant sex-interaction effect was observed among individuals in the 

accelerated aging group [P value-interaction: .043] (Figure 3, Supplementary Table 2). 

Specifically, shorter rLTL at baseline had a detrimental effect on the EM composite among 
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women in the accelerated aging group [EM composite = β: 0.151, SE: 0.045, P value: .007], 

whereas longer rLTL had a suggestive detrimental effect among men in the decelerated aging 

group [EM composite = β: -0.150, SE: 0.069, P value: .030] (Table 4).  

Regarding specific cognitive variables, shorter rLTL at baseline had significant detrimental 

effects on both TFR and TDFR among women included in the accelerated aging group [TFR 

= Estimate: 1.057, SE: 1.015, FDR-P value: .008; TDFR = Estimate: 1.051, SE: 015, FDR-P 

value: .013]. However, nominal statistically significant associations between longer rLTL and 

lower performance in TPR and TDPR were observed among men in the decelerated aging 

group [TPR= Estimate: 0.991, SE: 1.018, P value: .045; TDPR= Estimate: 0.948, SE: 1.053, P 

value: .020] (Table 4). 

No other significant interaction effects on the EM composite were observed between rLTL and 

the genetic risk of AD, including APOE-ε4 status,PRS-ADnoAPOE, PRS-CSFAβ or PRS-

CSFpTau (Supplementary Tables 3-6). 

3.3. Association between rLTL, executive function and semantic fluency 

In our population, no associations were found between rLTL and the EF composite in the entire 

sample, nor in subgroup analyses performed independently in the biological aging subgroups 

(Table 3). These associations were not changed after fully adjusting the models 

(Supplementary Table 1). Additionally, on the EF composite, rLTL had no interactive effect 

with sex, APOE-ε4, PRS-ADnoAPOE, PRS-CSFAβ or PRS-CSFpTau (Supplementary 

Tables 2-6). 

Regarding specific subtests on the EF domain, nominally statistically significant associations 

were found between longer rLTL and worse performance on WAIS-IV Coding, both in the 

whole sample [Coding = Estimate: 0.990, SE: 1.003, P value: .002] and among individuals in 
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the decelerated aging group [Coding = Estimate: 0.984, SE: 1.007, P value: .012] (Table 3). 

These associations were mainly driven by women (Table 4).  

Additionally, a nominally significant association was observed among men, where longer rLTL 

was associated with better semantic fluency [Semantic Fluency = Estimate: 1.023, SE: 1.009, 

P value: .012] (Table 4). 

3.4. Association between rLTL and pre-clinical Alzheimer cognitive composite 

Shorter rLTL at baseline was nominally associated with lower scores in the PACC, but only 

among women in the accelerated aging group [PACC = β: 0.071, SE: 0.034, P value: .038] 

(Table 4). In post-hoc sensitivity analyses, adjustment by further potential confounders (i.e., 

PRS-ADnoAPOE, SBP and family history of AD) revealed a borderline nominally statistically 

significant association between shorter rLTL and lower  scores in the PACC among individuals 

in the accelerated aging group [PACC = β: 0.044, SE: .022, P value: .049] (Supplementary 

Table 1). No other statistically significant associations were found (Table 3-4).  

4. Discussion 

The present study explored the cross-sectional association between rLTL and cognitive 

performance among 1,520 cognitively healthy individuals from the ALFA study. We found 

that shorter rLTL at baseline was associated with worse EM only among individuals with 

shorter telomeres than expected for their age (i.e., accelerated aging group [N = 760]). A sex-

interaction effect on the EM composite was found among individuals at accelerated aging: 

shorter rLTL at baseline was associated with worse performance on the EM domain only 

among women classified in the accelerated aging group (N = 472), whereas no significant 

association was found among men in the accelerated aging group (N = 289). Although no sex-

interactive effect was found among individuals at decelerated aging, longer rLTL had a 
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detrimental effect on the EM composite among men (N = 288) but not women at decelerated 

aging (N = 471). To our knowledge, this is the first study examining sex-differences in LTL-

cognition associations. 

Regarding cognitive variables, shorter rLTL at baseline had significant detrimental effects on 

both TFR and TDFR among women included in the accelerated aging group. However, among 

men in the decelerated aging group, associations between longer rLTL and lower performance 

in TPR and TDPR were observed. Remarkably, only free recall measurements remained 

significant after correction for multiple comparisons. Cued recall measurements are considered 

better predictors of memory impairment due to AD dementia since they remain intact during 

normal aging 50, being able to distinguish people living with AD from age-matched controls 51–

54. Nevertheless, free recall measurements have been found to be more sensitive for prediction 

of AD dementia specifically during pre-clinical stages 55–57. Interestingly, the delayed free 

recall of the second list of the MBT has been associated with amyloid burden in precuneus in 

clinical normal elderly 58. Moreover, worse performance in TDFR but not cued recall was found 

in prodromal amyloid positive individuals without degeneration, while both TDFR and TDPR 

worsened in more advanced biomarker stages with amyloid burden and neurodegeneration 59. 

In accordance with these findings, it has been described a sequence of memory impairment in 

the course of AD in which the first change occurs in free recall, while additional impairment 

in cued recall (i.e. paired recall trials in the MBT) occur later on 60,61. Additionally, free recall 

is more affected by aging than cued recall or recognition 62, since it relies on active self-guided 

processes that are dependent on the function of the frontal lobe 63, which is known to be the 

brain region primarily affected by aging 64,65. Thus, our observed  associations between free 

recall measures and rLTL in CU individuals at increased risk of AD may relate to an 

exacerbated cognitive aging and/or the effect of early AD pathological changes in some 

individuals 66. 
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Regarding the EF domain, the association between longer rLTL and poorer processing speed 

(specifically, WAIS-IV Coding) found to be nominally statistically significant, in both the 

entire sample and the decelerated aging group. However, given the lack of other significant 

associations related to executive performance in our sample, this finding should be interpreted 

with caution. In contrast, longer rLTL was nominally associated with better semantic fluency, 

but only among men (N = 577). Nominal significant associations were also found between 

shorter rLTL and worse PACC among women in the accelerated aging group. However, since 

PACC was computed by averaging scores coming from variables of MBT, WAIS-IV, and 

semantic fluency, we suspect this result was mainly driven by results in the EM domain and 

countered by the opposite associations encountered on the EF domain. 

Previous studies have reported associations between longer LTL and better performance in a 

variety of cognitive domains and general cognition in meta-analytic settings 24,67. Moreover, 

shorter LTL predicted 20-year memory decline among 880 dementia-free participants from a 

population-based study 68. In the UKBiobank, longer LTL was significantly associated with 

faster reaction time, higher fluid intelligence and higher numeric memory 22.  In contrast, longer 

telomeres at baseline had been associated with faster EF decline among AD biomarker-positive 

individuals and carriers of the APOE-ε4 allele 27, whereas longer LTL predicted worse episodic 

memory among APOE-ε4 carriers 69. Thus, whether longer telomeres play a protective or 

perjudicial role on cognitive resilience remains unclear, specially in the presence of other risk 

factors for AD. Interestingly, previous observational studies have described non-linear 

associations between LTL and AD risk 18,19, with different directions of associations among 

APOE-ε4 carriers and non-carriers 18. However, no effect modification by APOE-ε4 status or 

the polygenic liability for AD were observed in the associations between rLTL and the 

outcomes of the present study. Together, these results suggest complex heterogeneity in LTL 

mechanisms that may appear to change over the AD spectrum and the continuum of the disease.   
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Given the aforementioned results, biological aging due to telomere shortening could interact 

with the AD pathophysiological process and contribute to cognitive vulnerability since the 

earliest pre-clinical stages of the disease 22,70,71. Importantly, only critically short telomeres are 

able to trigger cellular senescence 72 and senescence phenotypes resulting from telomere 

shortening have been detected in microglial cells from post-mortem samples of people living 

with AD, indicating a possible link between telomere shortening and AD pathogenesis 73. 

Additionally, telomere shortening has been associated with reduced hippocampal progenitor 

cell proliferation and changes in gene expression that affect cognitive function 74. Conversely, 

a recent Mendelian Randomization study conducted in our sample showed genetically 

predicted longer LTL was associated with lower levels of cerebrospinal fluid (CSF) Aβ and 

higher levels of CSF NfL only among APOE-ɛ4 non-carriers. On the contrary, inheriting longer 

LTL was associated with lower levels of CSF p-tau among individuals with high polygenic risk 

scores of AD 75. The complex and dynamic relationship between biological aging and AD 

pathology through the disease continuum may partially explain the non-linear associations 

between LTL, cognitive performance, and AD risk, as suggested by the conflicting associations 

observed. 

Our study is not without limitations. Our cohort is rather selected and composed of middle-

aged CU individuals. Therefore, individuals at high risk of AD might have already shown signs 

of cognitive decline at recruitment, which was an exclusion criterion of the present study. 

Furthermore, participants in the ALFA study showed a low prevalence of other common 

comorbidities 28 and therefore our results might not be generalizable to the general population. 

On the other hand, sex-interactions, and stratified analyses by sex drawback from our sex-

unbalanced sample (i.e., 62% women vs. 38% males), which could explain lack of significant 

sex-interactions in the entire sample as well as associations among men. Importantly, given its 

cross-sectional design, our results on cognitive performance might reflect a transient stage 
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within the AD pathological process. Thus, longitudinal studies with greater sample sizes will 

be warranted to unravel the effect of telomere maintenance on cognitive performance during 

mid-life. Finally, those associations that did not survive FDR multiple comparisons correction 

should be interpreted with caution. 

However, this study also exhibits multiple strengths. Our study is based on a robust and well-

characterized cohort of CU middle-aged individuals. This included the extensive 

characterization of cognitive outcomes in the ALFA participants compared to the general 

population. As far as we know, no prior studies have explored sex-specific patterns of telomere 

effects on cognitive performance in a similar cohort of CU individuals at increased risk of 

developing AD. This implies our findings should be replicated in larger cohorts including 

people living with AD at different stages of the disease. Similarly, the follow-up of ALFA 

participants and further prospective observational studies are required to better understand such 

observations. 

In conclusion, this cross-sectional study shows a non-linear association between LTL and 

cognitive performance, with heterogeneous associations between telomere length and different 

cognitive domains. Shorter telomeres at baseline were associated with poorer memory 

performance among individuals at accelerated biological aging. Moreover, our findings 

indicate sex-specific effects, with women at accelerated aging experiencing more pronounced 

cognitive impairment than their male counterparts. Our results suggest sex-specific cognitive 

vulnerability associated with telomere homeostasis in our cohort. 
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Table 1. Characteristics of study population at blood draw, by percentile 50th of rLTL. 

  

Accelerated aging 

N = 760 

Decelerated aging 

N = 760 pval 

Whole sample 

N=1,520 N 

rLTL, md [Q1;Q3] -0.44 [-0.80;-0.17]  0.44 [0.23;0.88]  
 

<0.001   
 0.01 [-0.44;0.44]  1,520 

Age (years), md [Q1;Q3]  56.6 [51.1;61.6]    56.3 [50.7;62.1]    0.822    56.5 [50.9;61.8]   1,520 

Sex, n (%):                                          0.751                       1,520 

    Females     468 (61.6%)        475 (62.5%)                   943 (62.0%)          

    Males     292 (38.4%)        285 (37.5%)                   577 (38.0%)          

APOE-ε4 carrier-ship, n (%):                                          0.791                       1,520 

    Carriers     285 (37.5%)        279 (36.7%)                   564 (37.1%)          

    Non-carriers     475 (62.5%)        481 (63.3%)                   956 (62.9%)          

PRS-AD, md [Q1:Q3] -0.06 [-0.18;0.07]  -0.05 [-0.18;0.09]   0.140   -0.05 [-0.18;0.08]  1,520 

PRS-ADnoAPOE, md [Q1:Q3] -0.12 [-0.20;-0.02] -0.10 [-0.19;0.00]   0.046   -0.11 [-0.19;-0.01] 1,520 

Education (years), md [Q1;Q3]  12.0 [11.0;17.0]    13.0 [10.0;17.0]    0.746    12.0 [11.0;17.0]   1,520 

BMI (kg/m2), md [Q1;Q3]  26.3 [24.0;29.3]    26.2 [24.0;29.0]    0.935    26.2 [24.0;29.1]   1,520 

Heart Rate (bpm), md [Q1;Q3]  69.0 [61.0;75.0]    68.0 [61.0;76.0]    0.621    69.0 [61.0;76.0]   1,520 

SBP (mmHg), md [Q1;Q3]    126 [115;138]      124 [113;134]      0.029      125 [114;136]    1,517 

DBP (mmHg), md [Q1;Q3]  78.0 [71.0;85.0]    77.0 [70.0;83.2]    0.111    78.0 [70.0;84.0]   1,520 

Smoking status, n (%):                                          0.300                       1,520 

    Current     181 (23.8%)        203 (26.7%)                   384 (25.3%)          

    Former     457 (60.1%)        428 (56.3%)                   885 (58.2%)          

   Never     122 (16.1%)        129 (17.0%)                   251 (16.5%)          

Sleep (hours), md [Q1;Q3]  7.00 [6.50;8.00]    7.00 [6.50;8.00]    0.826    7.00 [6.50;8.00]   1,338 

Parental history of AD, n (%):                                          0.043                       1,520 

No     66 (8.68%)          91 (12.0%)                   157 (10.3%)          

Yes     694 (91.3%)        669 (88.0%)                  1363 (89.7%)          

Parental history of AD by parent, n (%):                                          0.004                       1,520 

No Family history     66 (8.68%)          91 (12.0%)                   881 (58.0%)          

Both parents     20 (2.63%)          39 (5.13%)                   157 (10.3%)          

Father     208 (27.4%)        215 (28.3%)                   59 (3.88%)           

Mother     466 (61.3%)        415 (54.6%)                   423 (27.8%)          

Parental history of AD before 75 years, n (%):                                          0.149                       1,507 

    No     295 (39.2%)        324 (43.0%)                   619 (41.1%)          

    Yes     458 (60.8%)        430 (57.0%)                   888 (58.9%)          

Parental history of AD before 75 years by 

parent, n (%): 
                                         0.024                       1,507 

    No FH     295 (39.2%)        324 (43.0%)                   38 (2.52%)           

    Both     13 (1.73%)          25 (3.32%)                   282 (18.7%)          

    Father     137 (18.2%)        145 (19.2%)                   568 (37.7%)          

    Mother     308 (40.9%)        260 (34.5%)                   619 (41.1%)          

Mother AAO (years), md [Q1;Q3]  72.0 [68.0;77.0]    73.0 [68.0;79.0]    0.070    73.0 [68.0;78.0]   1,046 

Father AAO (years), md [Q1;Q3]  73.0 [70.0;78.0]    73.0 [69.0;78.0]    0.484    73.0 [69.0;78.0]   596  

Executive Function, m (SD)  0.06 [-0.42;0.46]  0.05 [-0.40;0.51]    0.737    0.06 [-0.41;0.49]  1,520 

Episodic Memory, md [Q1;Q3]  0.06 [-0.54;0.72]  0.05 [-0.58;0.69]    0.632    0.05 [-0.57;0.71]  1,520 

PACC, md [Q1;Q3]  0.04 [-0.42;0.55]  0.06 [-0.43;0.54]    0.957    0.05 [-0.43;0.55]  1,520 

Legend: AAO, Age at symptom onset; AD, Alzheimer's disease; BMI, Body Mass Index; bpm, beats per minute; DBP, Diastolic Blood Pressure; 

m, mean; md, median; n, sample size; PACC, Pre-clinical Alzheimer Cognitive Composite; PRS, Polygenic risk score; Q1, quartile 1; Q3, 

quartile 3; PACC, Preclinical Alzheimer's Cognitive Composite; SBP, Systolic Blood Pressure; SD, Standard Deviation. Significant P values 

are marked in bold.  
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Table 2. Characteristics of women and men at blood draw, by percentile 50th of rLTL. 

  

Accelerated aging 

women 

N=472 

Decelerated aging 

women 

N=471 pval 

Women 

N=943 
N 

Accelerated aging 

men 

N=289 

Decelerated aging 

men 

N=288 pval 

Men 

N=577 
N 

rLTL, md [Q1;Q3] -0.43 [-0.79;-0.16]  0.44 [0.23;0.86]  
 

<0.001   
0.01 [-0.43;0.44]  943 -0.48 [-0.82;-0.20]  0.44 [0.22;0.85]   

 

<0.001   
-0.01 [-0.48;0.44]  577 

Age (years), md [Q1;Q3]  56.5 [50.9;61.9]    56.1 [50.9;61.5]    0.871    56.3 [50.9;61.7]  943  56.9 [51.4;61.3]    56.7 [50.7;62.5]     0.942    56.7 [51.1;61.8]   577 

APOE-ε4 carrier-ship, n 

(%): 
                                         0.356                      943                                           0.289                       577 

    Carriers     179 (37.9%)        164 (34.8%)                  343 (36.4%)             104 (36.0%)         117 (40.6%)                   221 (38.3%)         

    Non-carriers     293 (62.1%)        307 (65.2%)                  600 (63.6%)             185 (64.0%)         171 (59.4%)                   356 (61.7%)         

PRS-AD, md [Q1:Q3] -0.06 [-0.16;0.07]  -0.05 [-0.18;0.09]   0.515   -0.06 [-0.17;0.08] 943 -0.06 [-0.19;0.06]  -0.04 [-0.17;0.12]    0.055   -0.05 [-0.18;0.09]  577 

PRS-ADnoAPOE, md 

[Q1:Q3] 
-0.12 [-0.20;-0.02] -0.09 [-0.19;0.00]   0.099   -0.10 [-0.20;0.00] 943 -0.11 [-0.21;-0.02] -0.11 [-0.18;-0.01]   0.201   -0.11 [-0.19;-0.01] 577 

Education (years), md 

[Q1;Q3] 
 12.0 [10.0;17.0]    12.0 [10.0;17.0]    0.597    12.0 [10.0;17.0]  943  13.0 [11.0;17.0]    15.0 [12.0;17.0]     0.435    15.0 [11.0;17.0]   577 

BMI (kg/m2), md [Q1;Q3]  25.5 [23.1;28.3]    25.5 [23.3;28.6]    0.516    25.5 [23.3;28.4]  943  27.3 [25.5;29.8]    27.3 [25.0;29.6]     0.501    27.3 [25.3;29.8]   577 

Heart Rate (bpm), md 

[Q1;Q3] 
 70.0 [62.0;76.0]    69.0 [63.0;76.0]    0.838    70.0 [63.0;76.0]  943  67.0 [60.0;75.0]    67.0 [59.0;75.0]     0.745    67.0 [59.0;75.0]   577 

SBP (mmHg), md [Q1;Q3]    123 [111;135]      120 [111;134]      0.117     122 [111;134]    941    130 [120;140]       128 [119;135]      0.127      129 [120;138]    576 

DBP (mmHg), md [Q1;Q3]  75.0 [69.0;82.0]    75.0 [69.0;82.5]    0.579    75.0 [69.0;82.0]  943  81.0 [75.0;87.0]    80.0 [74.0;85.0]     0.052    80.0 [74.0;86.0]   577 

Smoking status, n (%):                                          0.342                      943                                           0.587                       577 

    Current     116 (24.6%)        134 (28.5%)                  250 (26.5%)             65 (22.5%)          69 (24.0%)                    134 (23.2%)         

    Former     277 (58.7%)        256 (54.4%)                  533 (56.5%)             182 (63.0%)         170 (59.0%)                   352 (61.0%)         

   Never     79 (16.7%)          81 (17.2%)                  160 (17.0%)             42 (14.5%)          49 (17.0%)                    91 (15.8%)          

Sleep (hours), md [Q1;Q3]  7.00 [6.50;8.00]    7.00 [7.00;8.00]    0.969    7.00 [7.00;8.00]  831  7.00 [6.50;7.62]    7.00 [6.00;7.00]     0.239    7.00 [6.38;7.15]   507 

Parental history of AD, n 

(%): 
                                         0.104                      943                                           0.408                       577 

No     40 (8.47%)          56 (11.9%)                   96 (10.2%)             27 (9.34%)          34 (11.8%)                    61 (10.6%)          

Yes     432 (91.5%)        415 (88.1%)                  847 (89.8%)             262 (90.7%)         254 (88.2%)                   516 (89.4%)         

Parental history of AD by 

parent, n (%): 
                                         0.056                      943                                           0.008                       577 

No Family history     40 (8.47%)          56 (11.9%)                   96 (10.2%)             27 (9.34%)          34 (11.8%)                    61 (10.6%)          

Both parents     14 (2.97%)          19 (4.03%)                   33 (3.50%)              5 (1.73%)          21 (7.29%)                    26 (4.51%)          

Father     117 (24.8%)        135 (28.7%)                  252 (26.7%)             90 (31.1%)          81 (28.1%)                    171 (29.6%)         

Mother     301 (63.8%)        261 (55.4%)                  562 (59.6%)             167 (57.8%)         152 (52.8%)                   319 (55.3%)         

Parental history of AD 

before 75 years, n (%): 
                                         0.670                      931                                           0.147                       576 

    No     193 (41.4%)        200 (43.0%)                  393 (42.2%)             104 (36.1%)         122 (42.4%)                   226 (39.2%)         

    Yes     273 (58.6%)        265 (57.0%)                  538 (57.8%)             184 (63.9%)         166 (57.6%)                   350 (60.8%)         

Parental history of AD 

before 75 years by parent, n 

(%): 

                                         0.492                      931                                           0.023                       576 

    No FH     193 (41.4%)        200 (43.0%)                  393 (42.2%)             104 (36.1%)         122 (42.4%)                   226 (39.2%)         

    Both      9 (1.93%)          12 (2.58%)                   21 (2.26%)              4 (1.39%)          13 (4.51%)                    17 (2.95%)          

    Father     79 (17.0%)          89 (19.1%)                  168 (18.0%)             57 (19.8%)          57 (19.8%)                    114 (19.8%)         

    Mother     185 (39.7%)        164 (35.3%)                  349 (37.5%)             123 (42.7%)         96 (33.3%)                    219 (38.0%)         

Mother AAO (years), md 

[Q1;Q3] 
 73.0 [68.0;78.0]    73.0 [68.0;78.0]    0.742    73.0 [68.0;78.0]  672  72.0 [67.0;75.0]    73.0 [68.0;79.0]     0.020    72.0 [68.0;77.0]   374 

Father AAO (years), md 

[Q1;Q3] 
 73.0 [70.0;78.0]    73.0 [69.0;77.0]    0.245    73.0 [69.0;78.0]  343  73.0 [69.0;78.0]    73.0 [69.0;78.0]     0.788    73.0 [69.0;78.0]   253 

Executive Function, m (SD) -0.08 [-0.49;0.33]  -0.07 [-0.53;0.37]   0.701   -0.08 [-0.50;0.35] 943  0.23 [-0.17;0.65]   0.24 [-0.21;0.72]    0.809    0.23 [-0.19;0.69]  577 

Episodic Memory, md 

[Q1;Q3] 
 0.15 [-0.41;0.82]  0.11 [-0.58;0.79]    0.500   0.13 [-0.50;0.80]  943 -0.09 [-0.66;0.56]  -0.10 [-0.63;0.53]    0.918   -0.10 [-0.65;0.55]  577 

PACC, md [Q1;Q3]  0.13 [-0.37;0.62]  0.08 [-0.40;0.58]    0.451   0.10 [-0.38;0.59]  943 -0.08 [-0.51;0.46]   0.04 [-0.47;0.50]    0.334    0.00 [-0.49;0.47]  577 

Legend: AAO, Age at symptom onset; AD, Alzheimer's disease; BMI, Body Mass Index; bpm, beats per minute; DBP, Diastolic Blood Pressure; m, mean; md, median; n, sample size; 

PACC, Pre-clinical Alzheimer Cognitive Composite; PRS, Polygenic risk score; Q1, quartile 1; Q3, quartile 3; PACC, Preclinical Alzheimer's Cognitive Composite; SBP, Systolic Blood 

Pressure; SD, Standard Deviation. Significant P values are marked in bold.  
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Table 3. Association between rLTL and cognitive variables. 

    Whole sample 

(N=1,520)   

Accelerated aging 

(N=760)   

Decelerated aging 

(N=760)  

  Outcome Est.* SE* pval FDR-pval   Est.* SE* p-val FDR-pval   Est.* SE* p-val FDR-pval 
 

Memory Binding 

Test 

TPR1 1.002 1.005 0.725 0.882  1.022 1.010 0.021 0.117  0.985 1.011 0.153 0.415  

TFR1 1.000 1.006 0.991 0.991  1.039 1.012 0.001 0.020  0.979 1.013 0.117 0.415  

TDFR1 1.001 1.006 0.855 0.956  1.030 1.012 0.011 0.081  0.988 1.013 0.358 0.529  

TDPR1 1.003 1.005 0.573 0.737  1.021 1.010 0.032 0.158  0.980 1.011 0.069 0.280  

SPI2 0.997 1.012 0.809 0.933  1.024 1.021 0.257 0.510  0.965 1.026 0.157 0.415  

EM composite3 0.005 0.021 0.810 0.810   0.101 0.037 0.007 0.031   -0.075 0.043 0.085 0.191  

WAIS-IV 

Visual Puzzles1 0.999 1.007 0.884 0.947  1.000 1.013 0.979 0.979  0.973 1.015 0.065 0.585  

Digit Span1 0.997 1.005 0.530 0.934  1.002 1.009 0.851 0.934  0.989 1.011 0.298 0.934  

Matrix Reasoning1 0.998 1.006 0.772 0.934  0.992 1.011 0.499 0.934  0.993 1.013 0.610 0.934  

Similarities1 1.004 1.006 0.525 0.934  1.009 1.010 0.382 0.934  0.991 1.011 0.435 0.934  

Coding1 0.990 1.003 0.002 0.073  0.998 1.006 0.726 0.934  0.984 1.007 0.012 0.140  

EF composite3 -0.010 0.014 0.439 0.801   -0.004 0.024 0.858 0.914   -0.044 0.026 0.094 0.608  

Semantic Fluency Animals in one minute1 1.005 1.006 0.389 0.772   1.002 1.010 0.864 0.864   1.003 1.011 0.789 0.864  

Preclinical Alzheimer Cognitive Composite3 -0.002 0.016 0.890 0.991   0.053 0.028 0.061 0.275   -0.046 0.033 0.164 0.491  

Legend: EM, episodic memory; EF, executive functioning; FDR: False Discovery Rate; TPR, Total paired recall; TFR, Total free recall; TDFR, Total delayed free recall; TDPR, Total 

delayed paired recall; SE, Standard Error; SPI, Semantic Proactive interference; WAIS-IV, Wechsler Adult Intelligence Scale- Fourth Edition.  

Significant P values are marked in bold. All continuous predictors are mean-centered and scaled by 1 standard deviation. 

(1) Outcomes modeled under Poisson distribution.  

(2) Outcomes modeled under Quasibinomial distribution.  

(3) Outcomes modeled under Normal distribution. Models were adjusted by age, sex and APOE-ɛ4 status.  

(*) Raw effects (estimates and SE) were exponentiated for outcomes modeled under Poisson and Quasibinomial distributions.  
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Table 4. Association between rLTL and cognitive variables stratifying by sex. 

    
Women 

(N=943) 
  

Women at accelerated aging 

(N=472) 
  

Women at decelerated aging 

(N=471) 
  

Men 

(N=577) 
  

Men at accelerated aging 

(N=289) 
  

Men at decelerated aging 

(N=288) 
 

  Outcome 
Est.* SE* p-val 

FDR-

pval   Est.* SE* p-val 

FDR-

pval 
  

Est.* SE* p-val 

FDR-

pval Est.* SE* p-val 

FDR-

pval Est.* SE* p-val 

FDR-

pval Est.* SE* p-val 

FDR-

pval 

 

Memory Binding Test  

TPR1 1.007 1.007 0.264 0.510  1.032 1.012 0.008 0.081  0.995 1.014 0.712 0.882  0.991 1.009 0.295 0.510  1.001 1.017 0.967 0.991  0.964 1.018 0.045 0.201  

TFR1 1.005 1.008 0.539 0.714  1.057 1.015 0.000 0.008  0.985 1.017 0.365 0.529  0.988 1.011 0.274 0.510  0.999 1.020 0.977 0.991  0.967 1.023 0.130 0.415  

TDFR1 1.009 1.008 0.267 0.510  1.051 1.015 0.001 0.013  0.996 1.016 0.803 0.933  0.984 1.011 0.138 0.415  0.982 1.020 0.347 0.529  0.968 1.022 0.143 0.415  

TDPR1 1.008 1.007 0.204 0.459  1.031 1.012 0.010 0.081  0.991 1.014 0.523 0.713  0.992 1.009 0.346 0.529  0.997 1.017 0.871 0.956  0.958 1.019 0.020 0.117  

SPI2 1.010 1.015 0.517 0.713  1.035 1.025 0.166 0.416  0.969 1.033 0.333 0.529  0.968 1.025 0.193 0.457  1.002 1.046 0.971 0.991  0.948 1.053 0.293 0.510  

EM composite3 0.033 0.027 0.228 0.342   0.151 0.045 0.001 0.007   -0.039 0.057 0.495 0.636   -0.050 0.035 0.154 0.278   -0.022 0.067 0.747 0.810   -0.150 0.069 0.030 0.090  

 WAIS-IV  

Test 

Visual Puzzles1 1.002 1.009 0.826 0.934   1.003 1.016 0.839 0.934   0.978 1.019 0.251 0.934   0.994 1.011 0.617 0.934   0.994 1.021 0.787 0.934   0.965 1.023 0.118 0.661  

Digit Span1 1.002 1.007 0.710 0.934  1.005 1.012 0.640 0.934  0.993 1.014 0.613 0.934  0.986 1.008 0.095 0.661  0.990 1.016 0.524 0.934  0.977 1.017 0.174 0.871  

Matrix Reasoning1 0.994 1.008 0.490 0.934  0.990 1.014 0.484 0.934  0.988 1.017 0.487 0.934  1.005 1.010 0.645 0.934  0.995 1.019 0.813 0.934  1.001 1.021 0.971 0.979  

Similarities1 1.000 1.007 0.946 0.979  1.005 1.012 0.667 0.934  0.989 1.014 0.442 0.934  1.008 1.009 0.349 0.934  1.015 1.017 0.386 0.934  0.992 1.018 0.671 0.934  

Coding1 0.989 1.004 0.009 0.135  0.998 1.007 0.764 0.934  0.976 1.008 0.004 0.079  0.992 1.005 0.111 0.661  0.996 1.010 0.665 0.934  0.997 1.011 0.777 0.934  

EF composite3 -0.007 0.017 0.695 0.914   -0.003 0.030 0.914 0.914   -0.049 0.033 0.135 0.608   -0.018 0.023 0.445 0.801   -0.013 0.044 0.771 0.914   -0.044 0.045 0.330 0.801  

Semantic Fluency Animals in one minute1 0.995 1.007 0.476 0.772   0.994 1.012 0.600 0.772   0.991 1.014 0.544 0.772   1.023 1.009 0.012 0.111   1.016 1.017 0.354 0.772   1.017 1.018 0.332 0.772  

Preclinical Alzheimer Cognitive Composite3 ~0 0.020 0.987 0.991   0.071 0.034 0.038 0.275   -0.048 0.043 0.257 0.530   -0.008 0.027 0.757 0.991   -0.001 0.051 0.991 0.991   -0.054 0.052 0.295 0.530  

Legend: EM, episodic memory; EF, executive functioning; FDR: False Discovery Rate; TPR, Total paired recall; TFR, Total free recall; TDFR, Total delayed free recall; TDPR, Total delayed paired recall; SE, Standard Error; SPI, Semantic Proactive 

interference; WAIS-IV, Wechsler Adult Intelligence Scale- Fourth Edition.  

Significant P values are marked in bold. All continuous predictors are mean-centered and scaled by 1 standard deviation. 

(1) Outcomes modeled under Poisson distribution.  

(2) Outcomes modeled under Quasibinomial distribution. 

(3) Outcomes modeled under Normal distribution. Models were adjusted by age, sex and APOE-ɛ4 status.  

(*) Raw effects (estimates and SE) were exponentiated for outcomes modeled under Poisson and Quasibinomial distributions.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2023. ; https://doi.org/10.1101/2023.05.29.23290678doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.29.23290678
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2023. ; https://doi.org/10.1101/2023.05.29.23290678doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.29.23290678
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2023. ; https://doi.org/10.1101/2023.05.29.23290678doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.29.23290678
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2023. ; https://doi.org/10.1101/2023.05.29.23290678doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.29.23290678
http://creativecommons.org/licenses/by-nc-nd/4.0/

