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Abstract 
 
Objective 
The T1GER study showed that treatment with the TNFα inhibitor golimumab in recently 
diagnosed type 1 diabetes patients showed better preservation of endogenous insulin 
production than placebo. However, considerable variation was observed among subjects. 
Therefore, a range of biomarkers were investigated for their potential to predict treatment 
response to golimumab. 
  
Research Design and Methods 
Baseline blood samples from 79 subjects were tested for autoantibodies, microRNA, 
metabolites, lipids, inflammatory proteins, and clinical chemistry. Univariate analysis was 
used to identify biomarkers that correlated with C-peptide change. Multivariate analysis 
was performed to establish a biomarker algorithm predicting the C-peptide response 
during the study. 
 
Results 
Multivariate analysis showed that baseline metabolites and miRNAs best predicted C-
peptide responses both for placebo and treatment arms. Lipids, and inflammatory 
proteins were moderately predictive, whereas autoantibodies and clinical chemistry 
showed little predictive value.   
An optimal model combining selected clinical variables and metabolites showed a 
correlation between predicted and observed C-peptide responses for the overall study up 
to 52 weeks, with an R2 of 0.85. An LOOCV model was developed as a surrogate 
validation test, resulting in an R2 of 0.69 overall, and an R2 of 0.76 specifically predicting 
C-peptide responses at week 38. 
 
Conclusions 
The exploratory analysis of the T1GER study resulted in a set of baseline biomarkers with 
promising performance in predicting future C-peptide responses during the study. If 
validated in independent cohorts, these prognostic and predictive biomarkers and 
algorithm carry significant translational impacts that can assist clinicians in making 
treatment decisions.  
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Introduction 
Type 1 diabetes is a chronic autoimmune disease of the pancreas that results in the 
destruction of insulin-producing beta cells (β-cells) of the islets of. Progressive destruction 
of β-cells eventually leads to metabolic imbalance and the inability to produce sufficient 
insulin for adequate glucose control without the use of exogenous insulin.    
 
Although insulin therapy and blood glucose management provide substantial benefit to 
patients, this approach does not target the underlying destructive autoimmune processes 
that drive disease pathogenesis. Instead, immunomodulatory agents aimed to inhibit the 
beta cell specific autoimmunity, have shown to delay natural progression of the disease(1-
3). The T1GER study showed C-peptide preservation in children and young adults with 
type 1 diabetes treated with the anti-TNFα antibody golimumab, compared to the placebo 
group (1). Almost half (41%) of the treatment group met one of the study’s definitions of 
responders, specifically higher or not more than 5% loss of C-peptide AUC at week 52 
compared to baseline. Even so, in both the placebo and the treatment groups, large 
differences were observed in C-peptide responses during the study. 
 
While the ability of golimumab treatment to delay disease progression is clear, the 
differential response to treatment warrants the investigation of predictive biomarkers that 
indicate which subjects will respond positively to treatment, and which subjects should 
avoid being exposed to potential side effects. Hereto baseline serum and plasma samples 
were collected from trial subjects and deployed multiple biomarker discovery 
technologies.  
 
Type 1 diabetes is characterized by metabolic imbalance that is likely reflected in specific 
circulating metabolites (4-8). Lipidomics may harbor relevant biomarkers as well, 

especially in relation to TNF which is known to affect lipid metabolism (9). Islet 
autoantibodies are a hallmark of the disease, and an autoantibody panel was included to 
investigate additional autoantibodies as biomarkers (10)). Inflammatory proteins were 
included due to the potential link with the disease specific islet inflammation (11), and the 
effect of the anti-TNFα antibody. In addition, miRNA’s were investigated as these have 
been implicated as beta cell death markers or general progression markers (12-15). 
Finally, clinical chemistry results were included as a negative control, as most of these 
measures are not expected to be linked to either the disease or treatment mechanism. 
This multi-omics approach was chosen for the discovery of both predictive biomarkers to 
determine which subjects respond to golimumab treatment, and prognostic biomarkers 
for the rate of disease progression in the placebo group. 
 
 
Materials & Methods 
 
Subject population and sample selection 
Samples included in the current study were obtained from the T1GER study as described 
by Quattrin (1). The study was a Phase 2 multicenter, randomized-controlled placebo 
controlled trial. Individuals between 6-21 years old were enrolled within 100 days of their 
T1D diagnosis. Of the 84 participants, 56 were assigned to golimumab and 28 to placebo.  
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For the current evaluation, 1 placebo control and 4 treated subjects were excluded due 
to lack of follow up for C-peptide responses, resulting in 27 placebo and 52 treated 
subjects, 79 in total. The study design is shown in Figure 1A. Baseline samples were 
obtained during the screening period from 10 weeks before up until day 0 of the study 
start before treatment administration. Baseline serum or plasma samples were used for 
biomarker analysis as described below. Clinical end points, 4 hour C-peptide Area Under 
the Curve (AUC) upon a Mixed Meal Tolerance Test (MMTT), HbA1c, insulin use and 
Insulin Dose Adjusted HbA1c (IDAA1c) were determined at baseline, week 12, 26, 38, 
and 52. 
 
Metabolomics and lipidomics 
For the global metabolomics analysis, performed by Metabolon (Morrisville, NC), plasma 
samples were extracted and split into equal parts for analysis on the three liquid 
chromatography tandem-mass spectrometry (LC-MS/MS) methods, and a polar LC 
method. For the CLP analysis, the samples underwent biphasic extraction and analyzed 
by LC-MS/MS in Multiple Reaction Monitoring (MRM) mode. Proprietary software was 
used to match ions to an in-house library of standards for metabolite identification and for 
metabolite quantitation by peak area integration. 
 
Proteomics 
Protein analysis was performed on serum samples using the multiplex proximity 
extension assay (PEA) by Olink (Uppsala, Sweden). For this study 3 panels were 
selected: Inflammation, Cardiovascular III, and Cardiometabolic panels adding up to 276 
proteins. For each panel, 1 µL sample was incubated with a mixture of 92 probe pairs, 
consisting of an antibody conjugated to a unique DNA oligonucleotide, in a 96-well plate. 
Pairs of antibodies bound to their corresponding antigens that form an amplicon by 
proximity extension of their DNA tails were quantified by high-throughput real-time PCR. 
Olink NPX Manager processing tool was applied to calculate Normalized Protein 
Expression (NPX) values, coefficient of variation and normalize data for subsequent 
statistical analysis. 

 
MicroRNA analysis 
Serum samples were analyzed for the presence of microRNAs using the EdgeSeq 
technology by HTG Molecular (Tuscon AZ). The HTG EdgeSeq system combines HTG’s 
proprietary quantitative nuclease protection assay (qNPA) chemistry with a next-
generation sequencing (NGS) platform to enable the semi-quantitative analysis of a panel 
of 2083 targeted miRNAs. Functional DNA nuclease protection probes (NPPs) flanked by 
universal wing sequences are hybridized to target RNAs. Universal DNA wingmen probes 
are hybridized to the wings to prevent S1 nuclease digestion. S1 nuclease is added to 
digest excess non-hybridized DNA probes and non-hybridized RNA, leaving only NPPs 
hybridized to RNA fully intact and able to be amplified / barcoded. Heat denaturation 
releases the protection probes from the DNA:RNA duplexes. The released DNA 
protection probes are ready for amplification / barcoding, quantification, and sequencing. 
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Autoantibody analysis 
Serum samples were analysed for autoantibodies using the KREX Immunome protein 
array by Sengenics (London, UK). This technology utilizes the biotin carboxyl carrier 
protein (BCCP) as a folding marker and solubility enhancer which results in expression 
of full-length, correctly folded and biotinylated proteins bound to the array slides. The 
immunome protein array consists of a panel of 1600 proteins to capture potential 
autoantibodies in the study samples.  
 
Clinical Chemistry 
A total number of 52 clinical chemistry analyses were performed as per protocol in the 
T1GER study. Clinical chemistry analyses included general measurements such as liver 
enzymes, white blood cell counts, lipids, and antiviral antibodies.  
 
Statistical analysis 
 

Univariate biomarker discovery 
The estimators of the effects were derived by a repeated measurements model (week 0-
week 52) that included baseline clinical variables, age, sex and BMI. A mixed-effect linear 
model was utilized to identify univariate biomarkers from our data to capture effect size 
at different visits while account for inter-visit correlations. The design of our model is:  
 
Response ~ intercep|visit + BL.Response|visit + Sex|visit + Age|visit + BMI|visit + 
BL.Biomarker|visit + BL.Response:BL.Biomarker|visit + Treatment|visit + 
Treatment:BL.Response|visit + Treatment:BL.Biomarker|visit 
 
Where 
BL.Response: Baseline response 
BL.Biomarker: Biomarker level at the baseline timepoint 
 
P-values were pooled across all visits to identify significant biomarkers. P-values 
corresponding to the BL.Biomarker|visit term represent prognostic biomarkers. P-values 
corresponding to the Treatment:BL.Biomarker|visit term represent predictive biomarkers 
for treatment effect.  
 
 
Multi-variate biomarker discovery 
Group LASSO (least absolute shrinkage and selection operator) (16) was used coupled 
with recursive feature elimination (RFE) to identify the most predictive combination of 
biomarkers. A threshold value of unadjusted p<0.10 from the univariate analysis was used 
as an inclusion filter and standard L2 regularization searching for the optimal weight-
decaying hyperparameter was applied to minimize cross-validation error (17). In the 
combined set of candidate predictors, LASSO (least absolute shrinkage and selection 
operator) downweighs the impact of predictors by using the λ1 penalty (17). A weight of 0 
cancels out a candidate predictor from the model. Group LASSO was used to include or 
exclude a candidate predictor in a group-wise manner for the response at all the 
successive time points (16). The optimal penalization level was derived by minimizing the 
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cross-validation error. The resulting set of predictors was consequently recycled though 
recursive feature elimination to yield only highly significant predictors. 
 

 
Results 
 
Univariate analysis of treatment predictive and prognostic biomarkers 
In total, data was collected on 731 metabolites, 982 lipids, 2083 miRNA, 276 proteins, 
1654 autoantibodies, 56 clinical chemistry assays on baseline serum or plasma samples, 
and 5 clinical variables from 79 subjects (Table I). 
 
Table I: Result summary for univariate and multivariate analysis for each biomarker platform 

Biomarker platform N detected 
biomarkers 

N biomarkers 
in multivariate 
model after RFE 

R2 full 
multivariate  
model after RFE 

R2 
LOOCV 

 Metabolomics    731 28 0.85 0.69 

 MicroRNA    2083 29 0.85 0.69 

 Lipidomics  982 20 0.69 0.48 

 Proteomics    276 17 0.67 0.44 

 Autoantibodies  1654 10 0.51 0.35 

 Clinical chemistry      52 8 0.50 0.38 

 Clinical variables        5 4 0.39 0.31 

 Combined   33 0.88 0.75 

 
 
 
Pair-wise univariate analyses between measured baseline biomarkers and future clinical 
outcome measures were initially performed to identify prognostic and predictive 
biomarkers. Clinical outcomes included in these analyses were the MMTT induced C-
peptide AUC, MMTT induced C-peptide max, HbA1C, Insulin use, and the Insulin Dose 
Adjusted for HbA1c (IDAA1C). C-peptide AUC was the major clinical outcome, including 
primary endpoint, reported for the T1GER study (1). Figure 1B and C show selected 
examples of metabolites that significantly predicted C-peptide responses during the study 
in either the placebo or treatment arm. Dot plots in the left panels show the biomarker 
levels at baseline for each subject per study arm. Each study arm was stratified into high 
and low based on the group median. The high (red) and low (blue) individuals are 
grouped, and their group average C-peptide response is plotted over time in the right 
panels. These show C-peptide responses (grey) as reported by Quattrin (1) using a  
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[Ln(x+1)] transformation, and different subgroup trajectories with high (red) or low (blue) 
baseline biomarker levels. In the top panels of Figure 1B, placebo subjects with a high 
baseline level of S-methyl cysteine show a faster decline in C-peptide response than the 
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low-level group. In the bottom panels, treated subjects with a low baseline level of 3-
Hydroxyoleate, have a better C-peptide response upon treatment than the high-level 
subjects, whereas this pattern was absent in the placebo group. 
 
Multivariate analysis 
Biomarkers predicting the C-peptide trajectory (mean C-peptide responses over time for 
a specific subgroup) for the pooled visits (unadjusted p value <0.05) or for at least one 
visit (unadjusted p value <0.01) from the univariate analyses were included for the 
multivariate analysis.  Recursive feature elimination (RFE) to a performance of at least 
95% of the optimal model was subsequently performed to identify the minimal biomarker 
set. The base model including only the clinical variables (Age, Sex, BMI, 
Treatment/Placebo, and Baseline C-peptide level) alone had limited predictive value 
(Figure 2A, left panel). The model based predicted C-peptide response on the y-axis only 
marginally correlates with the actual observed C-peptide responses on the x-axis with an 
R2 of 0.39. The model using 47 significant metabolites resulted in an R2 of 0.88 (Figure 
2A 2nd panel). Next we developed a model combining metabolites and clinical variables 
and consisting of 28 selected metabolites and 3 clinical variables that showed an R2=0.85 
(Figure 2A, 3rd panel). A list of the RFE selected metabolites and clinical variables is 
provided in the supplementary Table II.  
For reference, the R2 for the complete set of biomarker platforms in combination with 
clinical variables are listed in Table I. Metabolomics and miRNA platforms yielded the 
best performance, followed by lipidomics and proteomics, and finally neglectable 
performance by autoantibodies and clinical chemistry.  
 
Model Validation using leave-one-out cross validation (LOOCV) 
 

Given limited number of subjects per arm in the T1GER study, the Leave-One-Out CV 
was applied to assess model robustness. The LOOCV evaluation yielded to a respectable 
R2 of 0.69 (Figure 2A 4th panel). The LOOCV results for the other biomarker platforms 
are listed in Table I, again showing similar performance robustness for the predictive 
effects of the multivariate analyses. 
 
Next, we investigated for which timepoint in the study the model performed optimal. 
Figure 2B shows that the model performance at week 38 is the strongest R2 of 0.76. 
Similar results were obtained for the other biomarker platforms (data not shown).  
 
While the C-peptide response was the key clinical end point for this analysis, models to 
predict the other clinical end points, such as HbA1c, insulin use and IDAA1c, were also 
developed. Figure 2C shows the full models after RFE for each of the end points. These 
results show that metabolites (and other biomarkers) can also be used to predict 
trajectories for other clinical outcomes. 
 
A final analysis was done to combine all available biomarkers into a combined biomarker 
panel to predict the C-peptide response. This combination composed of 10 metabolites, 
13 miRNAs, 3 lipids, 4 clinical chemistry assays, 2 proteins, 1 autoantibody and 3 clinical 
variables, and resulted in an R2 of 0.88 for the full model, and 0.75 for the LOOCV model. 
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This combination modestly improves the prediction model compared to the metabolomics 
model. Since feasibility of clinical application is greatly enhanced when using just one 
type of biomarker platform, further efforts were focused on metabolites.  
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Applying the prediction model as a companion diagnostic tool 
While the original report on the T1GER study the definition of a responder was set at less 
than 5% loss of C-peptide response at week 52, we aimed to visualize the difference 
between the choice for placebo versus golimumab treatment. Figure 3 shows the 
predicted C-peptide trajectories when chosen for placebo versus treatment for each 
individual subject in dotted lines. An overlay is plotted of the actual observed C-peptide 
responses for each subject, which is only for either the treatment or placebo option, 
depending on the subject randomization in the trial.  The majority of predictions match 
nicely with the observed responses, reflecting the R2 0.69 for the LOOCV model, with the 
exception noted in subject 10. Interestingly, the predictions sometimes indicate that 
treatment would result in worse C-peptide responses than placebo (subjects 20, 40); for 
many subjects there is no clear difference between treatment or placebo predicted (eg 
subjects 8, 23); for most subjects however, there is a clear treatment benefit predicted 
(eg subjects 31,33), in agreement with the overall results of the T1GER study(1).   
 
 
Discussion & Conclusions 
 
Decades of research in type 1 diabetes have resulted in a considerably improved 
understanding of the disease mechanism and has led to the emergence of 
immunomodulatory treatment to arrest beta cell destruction (1-3). However, similar to 
other autoimmune diseases, treatment is only successful in portion of treated subjects, 
leading to exposure of non-responders to the potential side effects of immunomodulatory 
therapy. Developing biomarkers to indicate which subjects would benefit from treatment 
remains a desirable goal in developing such therapies. 
 
Here we report on the derivation of a prognostic and predictive biomarker panel, that was 
obtained in an agnostic approach using various omics technologies. Of the different 
biomarker types, metabolites and miRNA delivered the best signals for predicting 
treatment success in the treatment arm or disease progression in the placebo arm. 
Further development of this proposed biomarker panel will aid clinicians to make better 
informed treatment decisions, by which positive responders will be easier identified and 
selected for treatment, and fewer non responders will be exposed to potential side effects.  
  
Given that the combination of different biomarker types only marginally improved the 
prediction compared to single biomarker platforms, a single biomarker platform may best 
more clinical implementable without compromising results.   
There was no significant overlap in reported miRNA biomarkers in type 1 diabetes with 
our top performing miRNA’s. Previously reported miRNA markers for beta cell destruction 
MiR-375 (18; 19) and miR-204 (13) did not show up as significant biomarkers in our 
univariate analysis, nor did the miRNAs reported by Snowhite (15) that were associated 
with the C-peptide response at the 12 month MMTT. 
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We chose to focus on metabolomics-based model because, type 1 diabetes is an 
autoimmune disease with mainly metabolic consequences, and therefore the 
metabolomic platform would be a direct measure of the metabolic balance reflecting the 
disease state of an individual (4; 5; 20). Additionally, it could be argued that metabolites 
offer a better database to perform pathway analysis because metabolites can be directly 
linked to specific pathways, and miRNA often affect multiple pathways in epigenetics, 
making it more difficult to connect predictive miRNA with specific pathways. These are 
practical arguments and do not disqualify miRNAs as useful biomarkers. 
 

TNF blockers have been successfully used in various autoimmune related diseases 

(21). Despite increasing understanding of the molecular mechanism of TNF and its 
blockers (22-24), it has proven difficult to develop treatment predictive biomarkers into a 
clinically applicable diagnostic test (25). Promising results have been reported using RNA 
sequencing to predict responses in RA (26; 27), cytokine profiling and transcriptomics in 
Spondyloarthiritis (28), and metabolic profiling in Ankylosing Spondylitis (29). The 
reported biomarkers in the listed studies do not clearly match with our findings, however, 
and these studies are difficult to compare due to differences in disease, biomarker 

technologies and study design. Overall, it appears that that TNF affects multiple 
pathways in inflammation and lipid metabolism and more, which may also explain why 

different reports have found many different biomarker panels in TNF treatment. 
 
An interesting finding of our analyses is that the baseline biomarkers performed best 
when predicting the outcome at week 38. This may not be surprising as one can expect 
that treatment effect is still mounting at weeks 12 or 26 weeks, while after one year the 
effect may already be waning. A focus on week 38 may help to develop future models to 
be more accurate and meaningful. 
 
While this study shows promising results, a caveat of this study is the size of the study, 
and the lack of validation of the biomarker panel and algorithm in an independent study. 
Biomarker discovery using multiple omics platforms on a limited study population does 
include the risk of overfitting and including non-relevant molecules by chance. Whereas 
we acknowledge this caveat, the difference in yield of predictive biomarkers in the 
different biomarker types -the ~700 metabolites clearly outperforming the 1,600 
autoantibodies- suggest that is not completely attributable to overfitting. As a surrogate 
validation exercise, an LOOCV model was developed on the same set of biomarkers 
included in the full model. This leave one out approach creates multiple models each 
used to predict the clinical end point for the subject who is left out. These models resulted 
in an R2 lower than the full model as can be expected but offer a preview of the 
performance that could be expected when the model is validated in an independent study. 
While the confirmation of the reported biomarker panel is dependent on the initiation of 

clinical trials investigating TNF blockers in type 1 diabetes, the currently reported 
prognostic biomarkers for progression in the placebo group can be verified in natural 
progression studies or placebo arms of other clinical trials.  
 
In the original report on the T1GER study(1), the definition of a responder was set at less 
than 5% loss of C-peptide (from baseline) at week 52. Whereas this is a simple and useful 
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definition, it is not necessarily the best indication that a patient should be treated. A patient 
with low C-peptide response at baselinenot have much room for further decline and may 
show relatively stable C-peptide responses during the study, either with or without 
treatment. For instance, subjects 9, 17, 34, 66 in Figure 3 show stable C peptide 
responses during treatment and could be classified as responders who would benefit from 
treatment, but if no treatment is predicted to result in similar C-peptide levels, no treatment 
would actually be the better choice. Another example may be a treated patient who does 
show more than 5% loss of C-peptide, but without treatment would suffer a much worse 
decline of c-peptide response, and treatment may alleviate the otherwise fast progression 
(subjects 48, 53). In this study the biomarker panel was deployed to allow a comparison 
between treatment versus no treatment, instead of using a fixed cut point for the clinical 
end point.  
 
 
The current study brings forward aspects that could improve clinical decision making for 
physicians deciding to treat type 1 diabetes patients with immunomodulatory therapy. We 
envision a future decision model in which baseline biomarkers can predict multiple clinical 
end points. For each individual patient, the physician could order a MMTT and a 
biomarker panel test. The algorithm can subsequently predict the trajectories for either 
treatment or no treatment. If the treatment prediction line is distinctively above the placebo 
predicted trajectory, the decision may favor treatment. If the difference is only marginal, 
no difference at all, or even worse for the treatment option, the physician should decide 
not to treat. With the current biomarker panel and algorithm developed in this study, this 
would already be possible. In this scenario, the decision is still subjective to the physicians 
opinion, but the algorithm could also include a calculation of the area under the curves of 
the prediction to obtain an objective difference between treatment or not over time, 
including costs of treatment. A further future development could include the biomarker- 
based prediction of insulin use, and HbA1c, adverse events linked to treatment, and type 
1 diabetes related complications linked to HbA1c. All these predictions could feed a 
second algorithm that integrates the different predictions that can be translated in 
biological treatment effect in the form of beta cell function (C-peptide AUC), glucose 
control (IDAA1c), future risk for complications (HbA1c) etc, and offset these benefits with 
the cost for treatment and risk of side effects. While further validation is needed to enable 
this vision, this work sets the foundation for which this future may be built upon.   
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Part of this study has been presented as an oral poster presentation at the Immunology 
of Diabetes Society (IDS) conference, November 2021 
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Supplementary Table II: Multivariate model selected metabolites and clinical variables 
included in the full model  

Predictive markers Week 
12 

Week 
26 

Week 
38 

Week 
52 

 
Prognostic 
markers 

Week 
12 

Week 
26 

Week 
38 

Week 
52 

Treatment 0.45 0.64 0.64 0.57 
 

Natural 
Progression 

-0.44 -0.70 -0.80 -0.99 

N6,N6-dimethyllysine -0.02 -0.03 -0.07 -0.07 
 

Glutamine -0.03 0.09 -0.09 -0.10 

Ethylmalonate -0.06 -0.12 -0.12 -0.07 
 

Pyrraline -0.05 -0.06 -0.19 -0.16 

Cys-gly, oxidized 0.07 0.02 0.09 0.12 
 

Cysteine -0.08 -0.17 -0.11 -0.10 

Gamma-
glutamylisoleucine 

0.10 0.09 -0.01 -0.02 
 

N-methylproline -0.10 -0.01 -0.03 0.00 

Gamma-glutamyl-2-
aminobutyrate 

-0.14 -0.12 -0.08 -0.10 
 

BC 14:0 di 
carboxylic acid 

-0.04 -0.09 -0.02 -0.06 

2-aminophenol sulfate 0.06 0.06 0.13 0.10 
 

Leukotriene B4 0.03 0.07 0.10 0.08 

N-acetyl-2-
aminooctanoate 

0.05 0.11 0.14 0.12 
 

4-allylphenol 
sulfate 

-0.03 -0.06 0.00 -0.04 

10-undecenoate (11:1n1) -0.05 -0.03 -0.11 -0.09 
 

6-bromo-
tryptophan 

-0.02 -0.06 -0.08 -0.05 

Azelate (C9-DC) -0.05 -0.03 -0.04 0.04 
 

     

Dodecanedioate (C12) -0.09 -0.06 -0.10 -0.09 
 

Clinical Variable Week 
12 

Week 
26 

Week 
38 

Week 
52 

Tridecenedioate (C13:1-
DC) 

-0.08 0.04 0.00 0.03 
 

C-peptide AUC 
baseline 

-0.26 -0.25 -0.25 -0.29 

Fumarate 0.04 -0.02 -0.13 -0.22 
      

3-hydroxyoleate -0.02 -0.16 -0.08 -0.13 
 

     

Glycochenodeoxycholate -0.03 -0.10 -0.07 -0.10 
 

     

N4-acetylcytidine -0.07 -0.17 -0.10 -0.17 
      

Threonate -0.05 -0.11 -0.07 -0.07 
      

3-formylindole 0.00 -0.12 -0.01 -0.05 
      

Erythritol -0.08 -0.06 -0.19 -0.15 
      

Pyrraline 0.04 0.09 0.04 0.06 
      

Ribonate -0.09 0.05 -0.05 -0.14 
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