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Abstract: 

 

Background: 

The biological age of a person represents their cellular level health in terms of biomarkers like 

inflammation, oxidative stress, telomere length, epigenetic modifications, and DNA damage. 

Biological age may be affected by extrinsic factors like environmental toxins and poor diet 

indicating socioeconomic disadvantage. While biological age can provide a much more accurate 

risk estimate for age-related comorbidities and general decline in functioning than chronological 

age, it requires well-established laboratory tests for estimation. 

Methodology: 

As an alternative to laboratory testing for biological age estimation, Incidental medical imaging 

data may demonstrate biomarkers related to aging like brian tissue atrophy. In this study, we 

designed a deep learning based image processing model for estimation of biological age from 

computed tomography scans of the head. We then analyzed the relation between gap in biological 

and chronological age and socioeconomic status or social determinants of health estimated by 

social deprivation index (SDI).  

Results: 

Our CNN based image processing regression model for biological age estimation achieves mean 

absolute error of approximately 9 years between estimated biological and chronological age with 

-0.11 correlation coefficient with SDI. With the fusion of imaging and SDI in the process of age 

estimation, mean absolute error is reduced by 11%.  

Conclusion: 

The results of our experiments clearly establish a correlation between social determinants of 

health and the gap between biological and chronological ages.   
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Introduction: 

 

While chronological age is based on time elapsed from the time of the birth of a person, cellular 

or biological age (BA) is a measure of gradual decline in cell division and proper functioning. BA 

may be affected by intrinsic factors like genetic changes and cellular metabolism as well as 

extrinsic factors like exposure to environmental toxins, lifestyle, and diet[1-3]. While chronological 

age is often used as a crude estimate of BA to assess risk of mortality and morbidity, BA can 

provide a more accurate risk estimate. Even with lack of a universally agreed upon definition and 

quantification of BA, laboratory test based BA estimation measures have been well-established[4-

6].  

 

Biological age related markers may be incidentally collected in medical data such as 

physical activity from wearable devices[7,8] and medical imaging data[9-16]. Age-related changes 

in bone density [17, 18], body composition [19-21], cardiovascular structures [22, 23], lungs [24, 

25], and ocular structures [26, 27] have been demonstrated on imaging. Deep learning based 

image processing models have recently been designed to quantify such biomarkers for biological 

age estimation using magnetic resonance imaging of the brain [28, 29], retinal photographs [30, 

31], and chest X-rays [32].  “Brain age” has been established as indicative of cognitive decline 

and mortality[28, 29]. Degree of atrophy in brain tissue captured in radiological images such as 

brain MR and head CT, can indicate biological age of a person which may be different from 

chronological age.  

Biological age estimation studies have often connected risk of mortality and morbidity with 

larger gaps between chronological and biological age[30, 31]. While this gap may be caused to 

some extent by intrinsic factors, social determinants of health (SDoH) can influence biological 

age, accelerating cellular aging and overall health outcomes [33]. Electronic health records (EHR) 

collected for patients in hospitals may provide clues to social determinants of health but cannot 

guarantee quantification of its influence. Objective of the current study is to understand the 

relation between biological age calculated using imaging features calculated from head CT 

studies and social determinants of health. Our hypothesis is that higher biological age than 

chronological age primarily represents poor quality of life including unhealthy diet, stress, 

exposure to environmental toxins, sedentary lifestyle, etc.  

 

Social deprivation index (SDI) is a composite measure of seven demographic 

characteristics collected in the American Community Survey (ACS) to quantify social 

determinants based on geolocation: percent living in poverty, percent with less than 12 years of 

education, percent single-parent households, the percentage living in rented housing units, the 

percentage living in the overcrowded housing unit, percent of households without a car, and 

percentage nonemployed adults under 65 years of age. SDI can address challenges in quantifying 

social determinants of health to best guide clinical and community health interventions. . The SDI 

measure was calculated at the four geographic areas: county, census tract, aggregated Zip Code 

Tabulation Area (ZCTA), and Primary Care Service Area (PCSA, v 3.1). While raw values are 

directly computed by the formula using the seven measures described above, SDI score is a value 

normalized between 0-100 with higher value indicating higher extent of social disadvantage. We 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2023. ; https://doi.org/10.1101/2023.05.27.23290611doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.27.23290611
http://creativecommons.org/licenses/by-nc/4.0/


use SDI score as a surrogate for social determinant of health and study the relation between gaps 

in biological age estimated by our deep learning based imaging model and chronological age of 

the patient at the time of the imaging exam. In order to prove our hypothesis, we adopted two 

parallel experiments - (i) (post-processing) establish the correlation between model computed 

biological age and SDI; (ii) (in-processing) include SDI during the learning of the model which may 

boost the model performance for biological age by providing surrogate for social determinant of 

the patient.  .  

Cohort selection: 

 

With the approval of Mayo Clinic Institutional Review Board (IRB), we included 3875 non-contrast 

head CT exams (sagittal views) with no acute finding performed between 2015-2022 belonging 

to 2433 patients. Patients were randomly split into training, test and validation sets. Table 1 shows 

demographic features of each split of the cohort. Patients’ chronological ages were computed 

through birth dates and head CT exam dates recorded in electronic health records (EHR). 9-digit 

zip codes were also extracted from EHR from the recorded addresses of patients. 

 

Table 1: Cohort statistics 

Split  
(Studies, Patients) 

Train 
(2672, 1755) 

Validation 
(297,  188) 

Test 
(816, 490) 

Chronological Age     
   (mean+/-std) 
   Min  
   Max 

 
69.5+/-12.6 years 
18 years 
98 years 

 
68.1+/-13.4 years 
21 years 
102 years 

 
69.9+/-12.5 years 
21 years 
99 years 

Gender 
    Female 
    Male 

 
1042 (59.4%) 
713 (40.6) 

 
112 (51.1%) 
76 (34.7%) 

 
286 (58.4%) 
204 (41.6%) 

Race 
    Caucasian 
    Black/African American 
    Asian 
    Other 
 

 
1632 (92.5%) 
45 (2.6%) 
34 (1.9%) 
44 (2.5%) 

 
172 (91.5) 
 4 (2.1%) 
 5 (2.7%) 
 7 (3.7%) 
 

 
452 (92.2%) 
12 (2.4%) 
13 (2.7%) 
 13 (2.7%) 

Ethnicity 
   Hispanic or Latino 
   Not Hispanic or Latino 
   Unknown 
 

 
119 (6.7%) 
1614 (91.9%) 
22 (1.3%) 

   
11 (5.9%) 
177 (94.1%) 
 — 

 
31 (6.3%) 
454 (92.6%) 
5 (1.0%) 

SDI score 
   (mean+/-std)  
   Min  
   Max 

 
49.8+/-18.1 
1.0 
98.0  

 
53.5-+/-16.4 
3.0 
94.0 

 
51.8+/-18.1 
2.0 
99.0 

  

Methodology: 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2023. ; https://doi.org/10.1101/2023.05.27.23290611doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.27.23290611
http://creativecommons.org/licenses/by-nc/4.0/


 

Imaging model for age prediction. Within the scope of this study, we used non-contrast CT 

studies with ‘no acute finding’ and extracted the middle slice from the sagittal direction from the 

axial thins (<1mm slice thickness). The images are processed with application of soft-tissue 

window (50, 100). To predict the numeric age, these slices were fed through a DenseNet-121 

based architecture with classification layer substituted with regression layer. The model was 

trained to minimize mean squared error (MSE)  computed by comparing model output with 

normalized value of chronological age computed through birth dates recorded in electronic health 

records (EHR).   

 

For analysis of discrepancy in predicted and chronological age, the normalized predicted output 

of the model was mapped back to actual age range (between 20 and 100 years). In addition,  9-

digit zip code recorded in EHR for each patient was mapped to county identifiers form Federal 

Information Processing System (FIPS) through a zipcode-to-FIPS table collected from online 

resources made available by Center for Disease Control (CDC)1. Database of social deprivation 

index for each county was collected from Robert Graham Center2.  Thus, SDI for the residential 

area of each patient in our database was collected. We estimated mean social deprivation scores 

for samples with larger than X years difference between estimated and chronological age, and 

varied X between 0 to +/-20 with negative values indicating that the age estimate was higher than 

chronological age and vice versa. We observed that social deprivation score and discrepancy 

between estimated and chronological age values are proportional to each other. 

 

 

 

 
Figure 1: Fusion of SDI and brain CT image for age prediction 

 

 
1 https://wonder.cdc.gov/wonder/sci_data/codes/fips/type_txt/cntyxref.asp 

 
2 https://www.graham-center.org/maps-data-tools/social-deprivation-index.html 
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In line with this observation, we decided to infuse the age prediction model’s proceeding with 

social deprivation index to evaluate if the model’s predictions can be made unbiased to the socio-

economic conditions of a patient’s residential area. Figure 1 shows the model architecture for our 

SDI-infused predictor inspired by DenseNet-121 architecture. Output of intermediate layers of  the 

model are manipulated by SDI before being passed on the 4th denseblock and final classification 

layer.  Our experiments indicate that the discrepancy in predicted and chronological age is no 

longer proportional to SDI score after this processing, in addition to achieving prediction 

performance improvement in terms of lower MAE. 

Results: 

 

With an optimal  learning rate of 1e-5 and 200 epochs of training, the model saturated to mean 

absolute error  of 0.009 for validation data. When predicted values were mapped back to the 

chronological age range, we observed an average discrepancy of 8.8+/-6.8 years in the test set 

Figure 2  shows a scatter plot for predicted and chronological ages. This result highlights the 

limitation of age estimation from head CT imaging data. However, we argue that this limitation 

stems from biological and chronological age. While the model can only predict biological age, it 

is being evaluated against chronological age. We also argue that socio-economic factors affect 

the difference in biological and chronological age values. Taking the social deprivation score of 

the residential area of a patient as a surrogate for their socio-economic status and estimated age 

as a surrogate for biological age, we analyzed differences in biological and chronological age 

against social deprivation score. Figure 3 shows that patients with higher biological age than the 

chronological age come from areas with higher mean social deprivation score indicating poor 

quality of life compared to patients with biological age equal to or less than the chronological age.  

 
Figure 2: Scatter plot for predicted biological and chronological age 

 

When social deprivation index is infused into the model, this correlation trend between predicted 

age (surrogate of biological age) and chronological age vanishes as indicated by Figure 4 and 

Pearson correlation coefficient comparison reported in Table 2. Marginal performance 

improvement is also observed in terms of lower MAE of 7.9+/-6.3 year.  
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Figure 3 - Difference in predicted biological and chronological age is proportional to SDI score. 

Higher SDI indicates poorer socio-economic conditions of the area. For patients with biological 

age higher than chronological age, mean SDI scores are higher than patients with biological age 

lower than chronological age. 

 

 
Figure 4 - For SDI-infused biological age predictions, difference in predicted biological and 

chronological age is no longer proportional to SDI score.  

 

Table 2: Age prediction performance for models with and without sdi 

Biological Age Estimator Pearson correlation 
coefficient between age 
gap and SDI 

Mean Absolute Error  
mean+/-std (in years) 

Head CT -0.11 8.8+/-6.8 

Head CT and SDI -0.07 7.9+/-6.3 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2023. ; https://doi.org/10.1101/2023.05.27.23290611doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.27.23290611
http://creativecommons.org/licenses/by-nc/4.0/


We analyzed the model's output by using gradients of the target values passing from convolutional 

layers to produce a localization map highlighting important regions in the image for target value 

prediction (Figure 5). It is evident that the model is focusing on texture in the brain region of the 

image while making predictions.  

 

  

Gap between predicted and chronological 
age:  0 years 
Chronological age: 60-64 years 

Gap between predicted and chronological 
age:  10 years 
Chronological age: 65-70 years 

Figure 5: Heatmap indicates model-assigned importance to image regions for age estimation 

 

  

Prediction without SDI 
Gap between predicted and chronological 
age:  6 years 
Chronological age: 45-50 years 

Prediction with SDI 
Gap between predicted and chronological 
age:  2 years 
Chronological age: 45-50 years 

Figure 6: Heatmaps for model-assigned importance to image regions for age estimation with 

(right) and without (left) SDI. 
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In comparative experiments, we noticed that when SDI-infused prediction is closer to 

chronological age, the infusion of SDI seems to have been able to focus the model's attention 

brain area earlier in the processing layers (3rd denseblock compared to the 4th denseblock) as 

compared to the model without SDI. Figure 6 shows the processing of the same sample with and 

without SDI where prediction of model with SDI is closer to chronological age compared to model 

without SDI. 

 

Discussion: 

 

Cellular or biological age of a person is indicative of health of a person at cellular level indicated 

by biomarkers like inflammation, oxidative stress, telomere length, epigenetic modifications, and 

DNA damage. Biological age can identify patients at higher risk of age-related diseases or 

functional decline. However, the current assessment of biological age is limited by the absence 

of a universally accepted approach for assessment and the invasive nature of the testing methods 

employed[34, 35]. An alternative approach is to quantify established biomarkers demonstrated in 

medical imaging data such as brian CT and MR and retinal images[28-32]. Often such 

quantification of biological age is accompanied by an  analysis of correlation between biological 

age and mortality and morbidity  

 

While biological age is demonstrated by intrinsic factors like cellular health, extrinsic factors like 

exposure to environmental toxins, quality of diet, and lifestyle have a sizable impact on cellular 

health. Such extrinsic factors are often expressed as social determinants of health. For design of 

community-level healthcare intervention as well as personalized assessment of age-related 

comorbidities, it is important to understand the connection between biological age and social 

determinants of health. This is the main goal of this study. 

 

We first design a predictive model that can estimate the biological age of the patient through deep 

learning based processing of sagittal view non-contrast enhanced head CT. The limitation of this 

model development was the fact that we only had access to the patient's chronological age values 

during the training process. Hence, the model, while only capable of estimating biological age, 

was penalized for discrepancy in predicted and chronological age. Due to this unique scenario, 

we were more interested in understanding the error of the model’s predictions, i.e., the difference 

between predicted biological and groundtruth chronological age rather than traditional quality 

measures for regression models like lean absolute error (MAE). We hypothesized that the gap 

between estimated biological and chronological age is connected with social determinants of 

health. We used the social deprivation index as a surrogate measure for gauging quality of life or 

relative socioeconomic disadvantage. Hypothetically, patients with larger socioeconomic 

disadvantage, as indicated by higher SDI, would have a larger negative gap between estimated 

biological and chronological ages (with estimated biological age higher than chronological age). 

Our hypothesis was confirmed through experimental results.  

 

We also attempted to fuse social determinants of health in age estimation through design of 

densenet inspired architecture where processed representations of imaging data are manipulated 
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with corresponding SDI values before prediction of final output. As expected, the ‘error’ in new 

model’s outputs, i.e., the difference in biological and chronological age were no longer directly 

affected by SDI values as the model had incorporated SDI already in the process of output 

prediction which loss function tried to push closer to chronological age as explained in the 

previous section. However, little improvement was recorded in overall regression quality in terms 

of mean absolute error. This may be caused by the limitation of the study that head CT were 

collected from patients presenting at a large academic healthcare institute where a much higher 

portion of population lies in 50 to 70 years age range rendering estimation of age outside of this 

range considerably harder. 
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