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Short Title: CT Readout improves SAD Quantification 
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Abstract 

Objectives: Small airways disease (SAD) is a major cause of airflow obstruction in COPD 

patients, and has been identified as a precursor to emphysema. Although the amount of SAD 

in the lungs can be quantified using our Parametric Response Mapping (PRM) approach, the 

full breadth of this readout as a measure of emphysema and COPD progression has yet to be 

explored. We evaluated topological features of PRM-derived normal parenchyma and SAD as 

surrogates of emphysema and predictors of spirometric decline. 

Materials and Methods: PRM metrics of normal lung (PRMNorm) and functional SAD (PRMfSAD) 

were generated from CT scans collected as part of the COPDGene study (n=8956). Volume 

density (V) and Euler-Poincaré Characteristic (χ) image maps, measures of the extent and 

coalescence of pocket formations (i.e., topologies), respectively, were determined for both 

PRMNorm and PRMfSAD. Association with COPD severity, emphysema, and spirometric measures 

were assessed via multivariable regression models. Readouts were evaluated as inputs for 

predicting FEV1 decline using a machine learning model. 

Results: Multivariable cross-sectional analysis of COPD subjects showed that V and χ 

measures for PRMfSAD and PRMNorm were independently associated with the amount of 

emphysema. Readouts χfSAD (β of 0.106, p<0.001) and VfSAD (β of 0.065, p=0.004) were also 

independently associated with FEV1% predicted. The machine learning model using PRM 

topologies as inputs predicted FEV1 decline over five years with an AUC of 0.69. 

Conclusions: We demonstrated that V and χ of fSAD and Norm have independent value when 

associated with lung function and emphysema. In addition, we demonstrated that these 

readouts are predictive of spirometric decline when used as inputs in a ML model. Our 

topological PRM approach using PRMfSAD and PRMNorm may show promise as an early indicator 

of emphysema onset and COPD progression.  
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Introduction  

Chronic obstructive pulmonary disease (COPD) is a leading cause of death and healthcare 

burden in the United States and worldwide. Accounting for over 3 million deaths globally in 

20151, this disease is expected to rise in prevalence as the world population ages2. COPD is 

understood to be a complex heterogeneous disease presenting clinically diverse 

phenotypes3,4. Major causes of airflow obstruction are attributed to chronic bronchiolar 

obstruction, a.k.a small airways disease (SAD), and emphysema. Although SAD and 

emphysema are treated as separate COPD subtypes, studies have shown strong quantitative 

evidence that SAD exists as an intermediate state between healthy lung tissue and 

emphysema—i.e., irreversible lung damage—in COPD pathogenesis5-7. At present, little has 

been done to better quantify the onset of SAD from healthy lung parenchyma. 

The Parametric Response Map (PRM) is a CT-based voxel-wise computational technique that 

can identify and quantify functional small airways disease (fSAD; an indirect measure of SAD) 

even in the presence of emphysema8. The percent volume of PRM-derived fSAD (PRMfSAD), 

i.e., the amount of fSAD in the lungs, has improved COPD phenotyping and the prediction of 

spirometric decline in subjects at risk of COPD9. To determine the value of spatial features 

from each PRM classification, we developed topological PRM (tPRM) as an extension of the 

PRM algorithm10. These radiographic tPRM readouts were shown to improve upon commonly 

used whole-lung PRM measures with respect to COPD characterization, and correlate to 

structural changes in lung tissue samples from lung transplant recipients diagnosed with 

bronchiolitis obliterans11.  

In this study, we evaluated the PRM topologies volume density (V), a measure of extent, and 

Euler-Poincaré Characteristic (χ), a measure of pocket formation, of normal lung and fSAD as 

independent readouts of COPD severity, pulmonary function, and extent of emphysema using 

the Phase 1 COPDGene cohort12. We also investigated the potential of these topologic 

readouts as predictors of spirometric decline using a machine-learning model. This study 
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demonstrates how tPRM readouts may be used as possible measures of early emphysema 

and COPD progression.  
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Materials and Methods 

Study Sample 

Our study was a secondary analysis of data from COPDGene (ClinicalTrials.gov: 

NCT00608764), a large Health Insurance Portability and Accountability Act-compliant 

prospective multi-center observational study. In Phase 1 (2007-2012) and Phase 2 (2013-

2017), 5-year follow-up, written and informed consent was obtained from all participants and 

the study was approved by local institutional review boards of all 21 centers. Ever-smokers 

with greater than or equal to 10 pack-year smoking history, with and without airflow 

obstruction, were enrolled between January 2008 and June 2011. Participants were non-

Hispanic white or African American. Participants underwent volumetric inspiratory and 

expiratory CT using standardized protocol; images were transferred to a central lab for 

protocol verification and quality control (QC)12. Exclusion criteria included a history of other 

lung disease (except asthma), prior surgical excision involving a lung lobe or greater, present 

cancer, metal in the chest, or history of chest radiation therapy. Participants were excluded 

from the present study due to inadequate CT for computing tPRM, such as missing an 

inspiration/expiration scan, or failing QC implemented specifically for the present study. Our 

QC protocol is described in Appendix 1. Data for participants evaluated here have been 

utilized in numerous previous studies and a list of COPDGene publications can be found at 

http://www.copdgene.org/publications. Our study is the first to report tPRM analysis across 

the whole Phase 1 cohort and predict spirometric decline over 5 years in the Phase 2 subset 

of COPDGene participants. 

Spirometry was performed in the COPDGene study before and after the administration of a 

bronchodilator, specifically 180 mcg of albuterol (Easy-One spirometer; NDD, Andover, MA). 

Post-bronchodilator values were used in our analyses. COPD was defined by a post-

bronchodilator FEV1/FVC of less than 0.7 at the baseline visit, as specified in the Global 

Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines13. GOLD grades 1-4 were 
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used to define disease severity. GOLD 0 classification, i.e., “at-risk,” was defined by a post-

bronchodilator FEV1/FVC ≥ 0.7 at the baseline visit, alongside FEV1% predicted ≥ 80%. 

Participants with FEV1/FVC ≥ 0.7 with FEV1% predicted < 80% were classified as having 

preserved ratio impaired spirometry (PRISm)14. Demographic and spirometric measures used 

in this study included age, sex, race, smoking history, scanner manufacturer, body mass 

index (BMI), FEV1% predicted, FEV1/FVC and forced mid-expiratory flow (FEF25-75).  

Computed Tomography and Topological PRM Analysis 

All computed tomography (CT) data were obtained from multiple sites associated with the 

COPDGene project at Phase 1. Whole-lung volumetric multidetector CT acquisition was 

performed at full inspiration and normal expiration at functional residual capacity using a 

standardized previously published protocol12. Data reconstructed with the standard 

reconstruction kernel was used for quantitative analysis. All CT data were presented in 

Hounsfield units (HU), where stability of CT measurement for each scanner was monitored 

monthly using a custom COPDGene phantom12. For reference, air and water attenuation 

values are −1,000 and 0 HU, respectively. 

PRM were determined from paired CT scans using Lung Density Analysis (LDA) software 

(Imbio, LLC, Minneapolis, MN). LDA segmented the lungs from the thoracic cavity with airways 

removed. Inspiratory CT scans were spatially aligned to the expiratory geometric frame using 

deformable image registration. Lung voxels were classified using pre-determined HU 

thresholds as: normal (PRMNorm, -950 < inspiration HU ≤ -810, and expiration HU ≥ -856), 

functional small airways disease (PRMfSAD, -950 < inspiration HU ≤ -810, expiration HU < -

856), emphysema (PRMEmph, inspiration HU < -950, expiration HU < -856), or parenchymal 

disease (PRMPD, inspiration HU > -810)15. Only voxels between -1,000 HU and -250 HU at both 

inspiration and expiration were used for PRM classification. Each PRM classification was 

quantified as the percent volume, which is defined as the sum of a PRM classification 

normalized to the total lung volume at expiration multiplied by 100. 
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Topological analysis of PRM was performed using methods previously described10. tPRM 

metrics were defined through application of Minkowski measures on 3D binary voxel 

distributions: volume density (V) and Euler-Poincaré Characteristic (χ)16. Maps of V and χ 

were computed for each PRM class (Norm, fSAD, Emph, and PD) using a 3D moving window 

of size 21 x 21 x 21 voxels evaluated on a grid of every 5th voxel. V was normalized by the 

Minkowski estimate of the mask within the same local window volume (rather than a direct 

calculation of the mask volume in the window as previously described) and χ by the masked 

window voxel count. Linear interpolation was applied to determine V and χ values for all 

segmented voxels.  

To indicate the PRM class associated with a Minkowski measure, the class is presented as a 

superscript (e.g., VfSAD is the volume density of PRMfSAD). tPRM analysis was performed using 

open-source and in-house software developed in MATLAB R2019a (MATLAB, The MathWorks 

Inc., Natick, MA). A detailed overview and diagram, of computing tPRM from raw imaging 

data, was made by Hoff et al.10.  Because the focus of this study is the relationship between 

normal parenchyma and SAD, and its association with emphysema, all analyses were 

performed using V and χ for PRM classifications Norm and fSAD. For completeness, V and χ 

for PRM classifications Emph and PD are provided. 

Phase 1 Data and Statistical Analysis 

Data in this study are presented as mean and standard deviation unless stated otherwise. 

Correlation between V and χ for PRMNorm and PRMfSAD were calculated using Spearman rank-

order correlation coefficients (𝜌𝜌). The total Phase 1 cohort was separated into two subsets 

based on spirometry confirmed COPD: non-COPD (FEV1/FVC ≥ 0.7) and COPD (FEV1/FVC < 

0.7). Cross-sectional multivariable regression analysis was performed on both subsets using 

a stepwise approach with V and χ for PRM classifications Norm and fSAD as independent 

variables and selected pulmonary function testing and clinical features as outcome variables, 
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controlling for age, gender, race, BMI, smoking (pack years) and CT vendor. These control 

variables were included as compulsory independent variables in all regression models. 

Statistical work was conducted using IBM SPSS Statistics v27 (SPSS Software Products). In 

all tests, significance was defined by p < 0.05.  

Predict Spirometric Decline 

We evaluated baseline V and χ for PRM classifications Norm and fSAD as predictors of FEV1 

decline over 5 years using a machine learning (ML) model. A total of 4483 cases from the 

Phase 2 cohort of the COPDGene longitudinal trial, a subset of Phase 1, had FEV1 

measurements at baseline and 5-year follow up. Our ML model is a sparse dictionary learning 

algorithm17-20 that classifies image patch features as “normal” or “abnormal”. In our method, 

we used the tPRM maps VNorm, VfSAD, χNorm, and χfSAD of each case as inputs for training and 

testing the algorithm. For training our ML model, individual cases were stratified based on the 

change in FEV1 over 5 years [= (FEV1 at yr 5 – FEV1 at yr 0)/5 years] as fast (∆FEV1/yr ≤ -

60ml/yr; N=1516) and slow progressors (∆FEV1/yr > -60ml/yr; N=2967). We used 35% of 

the data for training and 65% for testing the model. Training was performed on a randomly 

selected subset of 1569 cases, with N = 531 fast progressors and N = 1038 slow progressors. 

The remaining 2914 cases, consisting of N = 985 fast progressors and N = 1929 slow 

progressors, were used for testing the algorithm. In brief, our ML model is designed to 

associate unique features from the input image patches with fast and slow progressors. This 

is achieved by randomly selecting image patches from within the lung and extracting the 

information from the inputs (tPRM maps VNorm, VfSAD, χNorm, and χfSAD given as input to the ML 

algorithm) at these image patch locations and comparing their underlying patch features with 

the compiled class dictionaries of features, which are determined during training. It is 

important to note that no previous knowledge about the case and lung tissue features, such 

as emphysema, are provided for the algorithm to delineate “normal” from “abnormal” lung 

tissue. Details on model design and methods for training and testing are provided in Figure 
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1 and Appendix 2. To determine the contribution of each feature to the model selection, we 

used the minimum redundancy maximum relevance feature selection algorithm21 to rank the 

tPRM inputs used in the dictionary learning algorithm. The algorithm quantifies the 

redundancy and relevance using mutual information of variables.22,23  We also investigated 

the selection bias for each input in the ML model and obtained the prediction accuracy for 10 

different choices of training image patches, considering each input separately in the model. 

The prediction accuracy for each training run is fit to a Gaussian probability density function24. 

All processing and analyses were performed using in-house algorithms developed in MATLAB 

version 2020a (MathWorks, Natick, MA). To determine the contribution of our ML model to 

account for spatial features in predicting FEV1 decline, we determined if whole lung mean 

values of VNorm, VfSAD, χNorm, and χfSAD were as predictive of FEV1 decline using a logistic 

regression classifier. 

 

Figure 1: Flowchart describing the various steps involved in the proposed dictionary learning algorithm. 
Step 1: 2D image patches are extracted from each of the prior maps (VNorm, VfSAD, χNorm, and χfSAD) in 
the labeled training data and a class specific dictionary is trained for the entire class. Step 2: all 2D 
patches from each 3D prior image map are classified and a threshold value is selected to classify the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.05.26.23290532doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.26.23290532
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

entire case as belonging to one of the classes. Step 3: The learned class specific dictionaries and the 
threshold for the entire case are used to classify the test images.  
 

Case Study: Spatial Analysis 

To better understand the relationship between PRMfSAD and PRMEmph, we evaluated the spatial 

dependance of V and χ for these PRM classifications from a single subject. The case is a female 

subject, 45-50 years of age, diagnosed with GOLD 4 COPD. On a single axial slice, profiles of 

V and χ for PRMfSAD and PRMEmph were generated by selecting points from high emphysema 

(VEmph > 0.6) and low emphysema (VEmph < 0.2). A line plot (Figure 2) was produced for V 

and χ vs distance along each point of the profile. The distance, in units of centimeter, along 

the image profile was determined using the voxel dimensions of the CT scan. All processing 

and analyses were performed using in-house algorithms developed in MATLAB version 2020a 

(MathWorks, Natick, MA). 
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Figure 2: Case study demonstrating the spatial relationship between the topologies of PRMfSAD and 
PRMEmph. The case is a female subject, 45-50 years of age, diagnosed with GOLD 4 COPD. Single axial 
slice from (A) spatially aligned CT scan acquired at full inflation with corresponding (B) slices from V 
and χ of PRMfSAD and PRMEmph. (C) Topology values were plotted along the dashed line on the CT slice, 
starting from circle to star. Lines on plot were color coded to match PRM classification (red signifies 
PRMEmph and yellow signifies PRMfSAD). Solid and dashed lines indicate V (left y-axis) and χ (right y-axis). 
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Results 

Population Characteristics 

The original COPDGene Phase 1 cohort consisted of 10,300 individuals. We excluded 1,344 

participants for: inadequate CT data, such as missing an expiration or inspiration scan, to 

conduct tPRM analysis (n = 1,125); missing clinical data (n = 16); or failing to pass our CT-

based QC testing (n = 203). Further details of CT QC are provided in Appendix 1. The 

resulting complete subset used for analyses thus consisted of 8,956 participants. Baseline 

demographics and lung function for all Phase 1 participants, grouped based on FEV1% 

predicted and FEV1/FVC—that is, by GOLD grade or PRISm as described in the Materials and 

Methods—are reported in Table 1. Due to the COPDGene recruitment strategy, the proportion 

of GOLD 0 (FEV1/FVC ≥ 0.7, FEV1% predicted ≥ 80%) participants12 account for almost half 

of the study population (43%; 3,867 of 8,956 participants). Increasing percent volume of 

PRM-derived fSAD (PRMfSAD) and PRM-derived emphysema (PRMEmph), with decreasing 

PRMNorm, was observed with higher GOLD grades. This is consistent with previously published 

work. PRM-derived parenchymal disease (PRMPD) was found to be elevated in PRISm and 

GOLD 0 participants (35.8 ± 16.4% and 26.3 ± 12.8% of the total lung volume, respectively) 

as compared to the COPD subset. 
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Table 1: Clinical Characterization of the Study Population 

 
Non-COPD COPD 

Variable GOLD 0 PRISm GOLD 1 GOLD 2 GOLD 3 GOLD 4 

Participants 

(N) 
3867 1088 699 1732 1041 529 

Age (yrs) 56.7 (8.36) 
57.1 

(8.20) 

61.6 

(8.96) 

62.6 

(8.86) 

64.3 

(8.27) 

64.1 

(7.53) 

Sex (M/F) 2048/1819 496/592 399/300 933/799 604/437 314/215 

BMI (kg/cm2) 29.0 (5.79) 
31.9 

(7.31) 

27.1 

(4.89) 

28.7 

(6.06) 

28.1 

(6.33) 

25.3 

(5.56) 

Smoking 

(Pack-Years) 
37.2 (20.0) 

42.6 

(24.2) 

45.0 

(24.4) 

50.9 

(26.8) 

55.1 

(27.1) 

56.7 

(28.7) 

FEV1% 

Predicted 

(%) 

97.4 (11.4) 
70.6 

(7.89) 

90.8 

(8.70) 

65.0 

(8.51) 

40.2 

(5.69) 

22.6 

(4.84) 

FEV1/FVC 0.79 (0.05) 
0.77 

(0.05) 

0.65 

(0.04) 

0.58 

(0.08) 

0.44 

(0.09) 

0.31 

(0.07) 

FEF25-75(L/s) 2.81 (1.00) 
1.79 

(0.66) 

1.31 

(0.50) 

0.80 

(0.35) 

0.39 

(0.16) 

0.21 

(0.08) 

PRMNorm(%) 61.7 (13.0) 
53.8 

(14.6) 

56.9 

(12.1) 

49.1 

(13.5) 

33.0 

(12.5) 

21.1 

(9.13) 

PRMfSAD(%) 9.90 (9.31) 
8.88 

(8.25) 

17.0 

(10.8) 

21.3 

(11.5) 

30.9 

(11.0) 

36.0 

(8.94) 

PRMEmph(%) 0.80 (1.42) 
0.73 

(2.29) 

3.00 

(3.49) 

5.40 

(6.95) 

14.7 

(12.2) 

26.0 

(14.0) 

PRMPD(%) 26.3 (12.8) 
35.8 

(16.4) 

20.8 

(8.44) 

22.2 

(9.04) 

19.6 

(9.29) 

15.7 

(5.43) 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.05.26.23290532doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.26.23290532
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

Notes: Participant characteristics of the entire study population separated in subsets of those with 
(FEV1/FVC < 0.7) and without (FEV1/FVC ≥ 0.7) COPD. Values are displayed as mean (standard 
deviation). GOLD, Global Initiative for Chronic Obstructive Lung Disease; PRISm, preserved ratio 
impaired spirometry; GOLD 0, at-risk smokers with normal spirometry; BMI, body mass index; FEV1, 
forced expiratory volume in one second; FVC, forced vital capacity; FEF25-75, forced mid-expiratory flow; 
PRM, parametric response map; Norm, Normal; fSAD, functional small airways disease; Emph, 
emphysema; PD, parenchymal disease. 
 

Topological Readouts of PRM 

Presented in Figure 3 is a case with elevated fSAD (PRMfSAD = 40%). Representative coronal 

slices of the expiration CT scan and PRMfSAD, overlaid on CT scan, are provided. To illustrate 

the dependence of V and χ on the arrangement of PRMfSAD, we have included VfSAD and χfSAD 

maps indicating regions with low (cyan box) and high (magenta box) VfSAD. As expected, VfSAD 

(Figure 3C) is dependent on the amount of fSAD (yellow voxels in Figure 3B). Averaged 

over the lungs, VfSAD is proportional to the percent volume of PRMfSAD by a factor of 100. 

However, χfSAD > 0 (cyan box in Figure 3D) corresponds to the formation of fSAD pockets 

(cyan box Figure 3B), whereas χfSAD < 0 (cyan box in Figure 3D) is the consolidation of 

these pockets into a mesh with holes (magenta box in Figure 3B).  
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Figure 3: Illustration of Volume Density (V) and Euler-Poincaré Characteristic (χ) for PRMfSAD. Presented 
are representative coronal slices for the (A) expiratory CT scan with associated (B) PRMfSAD overlay 
(yellow). Included are the (C) volume density and (D) Euler-Poincaré Characteristic of PRMfSAD. Magenta 
box indicates a lung region with elevated VfSAD and negative χfSAD. Cyan box indicates a lung region with 
minimal VfSAD and positive χfSAD. The subject is a GOLD 3 female, 50-55 years of age, with FEV1% 
predicted of 32% and percent volume of PRMfSAD of 40%.  

 

The volume density of PRMNorm and PRMfSAD demonstrated an inverse relationship with 

increasing COPD severity (Figure 4A), consistent with previous work. A similar inverse 

relationship was observed for χ of both normal lung and fSAD (χNorm and χfSAD).  Values of χNorm 

and χfSAD were found to flip about zero (e.g., χfSAD changes from positive to negative values) 

from GOLD 2 to GOLD 4 (Figure 4B). As provided in Table 2, χNorm and χfSAD had means 
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(standard deviations) of -0.0084 (0.0071) and 0.0047 (0.0074), respectively, for cases 

diagnosed as GOLD 2. For those with severe COPD, i.e., GOLD 4, χNorm and χfSAD were 0.0039 

(0.0055) and -0.0036 (0.0048), respectively. Mean values of χEmph and χPD were found to be 

positive and similar across GOLD (Table 2).  
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Figure 4: Boxplots for Volume Density (V) and Euler-Poincaré Characteristic (χ) of PRMNorm and PRMfSAD 
across all GOLD stages, “at-risk” (GOLD 0) and PRISm. Plots of (A) V and (B) χ are provided for PRMNorm 
(green) and PRMfSAD (yellow). Box plots were computed following standard protocol for box and 
whiskers. Box lines determined by lower quartile (Q1), middle quartile / median (Q2), and upper quartile 
(Q3). Whiskers are drawn out to Q1 - 1.5 x IQR and Q3 + 1.5 x IQR for lower and upper limits 
respectively. IQR = Q3-Q1. Outliers are defined as points beyond the given upper and lower limits and 
illustrated as black points with a random bounded horizontal perturbation beyond box whiskers.  
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Table 2: Topology Readouts for all PRM Classifications  

 
  Non-COPD COPD 

Topology PRM GOLD 0 PRISm GOLD 1 GOLD 2 GOLD 3 GOLD 4 

Vo
lu

m
e 

De
ns

ity
 [V

] Norm 
0.62 (0.13) 0.54 (0.15) 0.57 (0.12) 0.5 (0.14) 0.33 (0.13) 0.21 (0.09) 

fSAD 
0.1 (0.09) 0.09 (0.08) 0.17 (0.11) 0.22 (0.12) 0.31 (0.11) 0.36 (0.09) 

Emph 
0.01 (0.01) 0.01 (0.02) 0.03 (0.04) 0.05 (0.07) 0.15 (0.12) 0.26 (0.14) 

PD 
0.25 (0.13) 0.35 (0.16) 0.2 (0.08) 0.21 (0.09) 0.19 (0.09) 0.15 (0.05) 

Eu
le

r-
Po

nc
ai

ré
 

Ch
ar

ac
te

ris
tic

 [χ
] Norm 

-0.0095 (0.0063) -0.0095 (0.008) -0.0091 (0.0055) -0.0084 (0.0071) -0.0016 (0.0078) 0.0039 (0.0055) 

fSAD 
0.0081 (0.0059) 0.0096 (0.0065) 0.0058 (0.0057) 0.0047 (0.0074) -0.0009 (0.0071) -0.0036 (0.0048) 

Emph 
0.0024 (0.003) 0.0018 (0.0025) 0.0046 (0.0039) 0.005 (0.0039) 0.0052 (0.0039) 0.0033 (0.0032) 

PD 
0.0044 (0.0033) 0.0028 (0.0046) 0.0043 (0.0018) 0.004 (0.0022) 0.0031 (0.0017) 0.0024 (0.0009) 

 
Notes: Data are presented as the mean (standard deviation). The entire study population was separated 
into subsets of those with (FEV1/FVC < 0.7) and without (FEV1/FVC ≥ 0.7) COPD. GOLD, Global Initiative 
for Chronic Obstructive Lung Disease; PRISm, preserved ratio impaired spirometry; GOLD 0, at-risk 
smokers with normal spirometry; PRM, Parametric Response Map; Norm, normal lung parenchyma; 
fSAD, functional small airways disease; Emph, emphysema; and PD, parenchymal disease. 
 

We further evaluated the relationship of PRMNorm and PRMfSAD with respect to V (Figure 5A) 

and χ (Figure 5B). Both V and χ demonstrated strong correlations between Norm and fSAD 

(ρ = -0.666, p < 0.001 and ρ = -0.745, p < 0.001, respectively) over the Phase 1 cohort. 

Here the GOLD stages are coded by color and the relative amount of emphysema, quantified 

by VEmph, by size of the marker. As observed in Figure 5A, VNorm versus VfSAD had more scatter 

in the data compared to χNorm versus χfSAD (Figure 5B). As expected, GOLD 4 cases with 

elevated emphysema (VEmph) demonstrated a drop in VNorm and VfSAD values. In contrast, χNorm 

consisted of primarily positive values, whereas positive and negative values were observed 

for χfSAD (Figure 5B).  Although VfSAD was found to be strongly correlated to VEmph (r = 0.845, 

p < 0.001), only a weak correlation was observed between χfSAD and χEmph (ρ = -0.155, p < 

0.001). 
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Figure 5: Scatter plots of all study sample participants for (A) VNorm versus VfSAD and (B) χNorm versus 
χfSAD. Individual points are color coded based on COPD classifications. The size of the points indicates 
the amount of emphysema as measured by the volume density of PRMEmph (VEmph). 
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Multivariable Regression Analysis 

Presented in Table 3 are results from multivariable regression analyses that demonstrate the 

contribution of V and χ to PRMNorm and PRMfSAD when modeling spirometric measures and the 

volume density of emphysema, controlling for age, sex, race, BMI, pack-years, and CT vendor. 

Among those with spirometrically confirmed COPD, VNorm was found to be significantly 

associated with multiple clinical measures including FEV1% predicted, FEV1/FVC, FEF25-75 and 

VEmph (see Table 3).  VfSAD and χfSAD were found to independently and significantly contribute 

to FEV1% predicted (β = 0.065, p=0.004 and β = 0.106, p<0.001). Only the Norm topological 

measures were found to contribute to FEV1/FVC (β = 0.668, p<0.001 for VNorm and β = -

0.120, p<0.001 for χNorm), whereas V and χ for both Norm and fSAD were found to be 

significant parameters for FEF25-75. With respect to VEmph, extent of emphysema, V and χ for 

Norm and fSAD were highly significant but demonstrated similar trends irrespective of PRM 

classification. For completeness, the same analyses were performed on the non-COPD cohort 

(Table 4). As compared to the COPD cohort, statistical models generated from the non-COPD 

cohort demonstrated significant parameters but with weaker correlations (i.e., adjusted R2). 
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Table 3: Multivariable Regression for COPD Subset 

Performance FEV1% predicted FEV1/FVC FEF25-75 (L) VEmph 

Adjusted R2 0.516 0.602 0.526 0.778 

SE 15.8 0.084 0.331 0.057 

Age (yrs) 0.085** 0.021 (0.06) -0.184** 0.035** 

Sex (M/F)  0.018 (0.08) -0.283** -0.035** 

BMI (kg/cm2) -0.110** 0.033*  -0.232** 

Smoking (Pack 

Years) 
-0.046** -0.013 (0.22) -0.051** -0.015 (0.06) 

CT vendor    0.111** 

Race  0.113** -0.033*  

VNorm 0.727** 0.668** 0.688** -1.01** 

VfSAD 0.065*  0.138** -0.408** 

χNorm  -0.120** 0.134** 0.150** 

χfSAD 0.106**  0.175** 0.118** 

 
Notes: Multivariable regression modelling using volume density (V) and Euler-Poincaré Characteristic 
(χ) for PRM-derived Normal and fSAD (introduced stepwise) to model pulmonary function testing 
measures in the COPD subset. Each column presents results for a different regression model. FEV1, 
forced expiratory volume in one second; FVC, forced vital capacity; FEF25-75, forced mid-expiratory flow; 
Emph, emphysema; SE, standard error of the estimate; BMI, body mass index; Norm, Normal; fSAD, 
functional small airways disease. Model performance is reported as adjusted R2 and standard error of 
the estimate. Feature association is reported as standardized beta coefficients (β); cells for stepwise 
variables removed from final model. All regression models were controlled for age, sex, race, BMI, pack 
years and CT vendor. P values ≥ 0.01, < 0.01 and ≥ 0.001, and < 0.001 are presented as values in 
parentheses, *, and **, respectively. 
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Table 4: Multivariable Regression for non-COPD Subset 
 

Performance  FEV1pp FEV1/FVC FEF25-75 (L) V
Emph

 

Adjusted R
2
 0.143 0.126 0.265 0.263 

SE 14.39 0.048 0.883 0.014 

Age (yrs)  -0.119** -0.290** 0.042* 

Sex (M/F) -0.027 (0.05) 0.014 (0.298) -0.381** -0.062** 

BMI (kg/cm
2
) -0.075** 0.104**  -0.130** 

Smoking (Pack-Years) -0.105** -0.098** -0.098**  

CT vendor -0.052**  -0.015 (0.252) 0.185** 

Race  0.117** -0.068**  

V
Norm

 0.325** -0.044* 0.109** -0.157** 

V
fSAD

 0.134** -0.218** -0.075** 0.373** 

χ
Norm

    -0.038 (0.01) 

χ
fSAD

 -0.105** -0.075** -0.058**  

 
Notes: Multivariable regression modelling using volume density (V) and Euler-Poincaré Characteristic 
(χ) for PRM-derived Normal and fSAD (introduced stepwise) to model pulmonary function test measures 
in the COPD subset. Each column presents results for a different regression model. FEV1pp, forced 
expiratory volume in one second percent predicted; FEV1, forced expiratory volume in one second; FVC, 
forced vital capacity; FEF25-75, forced mid-expiratory flow; Emph, emphysema; SE, standard error of the 
estimate; BMI, body mass index; Norm, normal; and fSAD, functional small airways disease. Model 
performance is reported as adjusted R2 and standard error of the estimate. Feature association is 
reported as standardized beta coefficients (β); cells for stepwise variables removed from final model. 
All regression models were controlled for age, sex, race, BMI, pack years and CT vendor. P values ≥ 
0.01, < 0.01 and ≥ 0.001, and < 0.001 are presented as values in parentheses, *, and **, respectively. 
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Prediction Model of Spirometric Decline 

Representative axial slices of expiration CT scan, PRM, VfSAD, χfSAD and corresponding patch 

probability maps from a fast progressor (with ∆FEV1/yr of -249 ml/yr) are provided in Figure 

6. Our ML model correctly classified this subject as a fast progressor. This case is a male, 60-

65 years of age, diagnosed at baseline with GOLD 2 COPD. Using V and χ from PRMfSAD and 

PRMNorm as inputs, the ML model was able to determine regions of emphysema, discernible 

from existing fSAD, observed in the right upper lung as “abnormal” (blue patches in the 

probability maps). In contrast, the dorsal lung regions were classified as “normal” (red 

patches in the probability maps) due to the absence of fSAD and emphysema. For 

completeness we have provided in Figure 7 representative axial slices of expiration CT scan, 

PRM, VfSAD, χfSAD and corresponding patch probability maps from a slow progressor (with 

∆FEV1/yr of 101 ml/yr).  

 

Figure 6: The dictionary learning results on a 60- to 65-year-old male diagnosed at baseline with GOLD 
2 COPD and a fast progressor with ΔFEV1/yr of -249 ml/yr. Representative axial slice of an expiratory 
CT scan acquired at baseline, its associated PRM map, the tPRM maps VfSAD and χfSAD of PRMfSAD, and 
their image patch probability maps from the dictionary learning model.  
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Figure 7: The dictionary learning results for a 70- to 75-year-old male diagnosed at baseline with GOLD 
1 COPD and declared a slow progressor with ΔFEV1/yr of 101 ml/yr. This case was correctly identified 
by our ML algorithm as a slow progressor. Representative axial slice of an expiratory CT scan, its 
associated PRM map, the tPRM maps VfSAD and χfSAD of PRMfSAD, and their image patch probability maps 
from the dictionary learning model.  
 

As seen in Figure 8A and B, our ML model had an overall classification accuracy of 70.6% 

and Area Under the Curve (AUC) of 0.69 of the receiver operating characteristic (ROC) curve. 

We compared our ML model with a simple logistic regression model using whole lung mean 

values of VNorm, VfSAD, χNorm, and χfSAD. Figure 8B shows that the logistic regression model 

only achieved an AUC of 0.55. The contribution of each of the inputs to the model (VNorm, 

VfSAD, χNorm, and χfSAD) are shown in Figure 8C and D. V and χ of PRMfSAD are dominant inputs, 

followed by V and χ of PRMNorm (Figure 8C). Using a feature rank analysis performed on our 

test set, we observed that V and χ of PRMfSAD are important to achieve higher prediction 

accuracy. In fact, χfSAD was found to have the smallest spread/variance (Figure 8D), 

indicating highly desirable robustness to the choice of training image patches and its 

usefulness as an input in the ML model. As reported in Table 5, “normal” patches, on average, 

consisted primarily of PRMNorm, elevated VNorm (abundant) and negative χNorm (consolidated), 
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with negligible PRMfSAD, low VfSAD (depleted) and positive χfSAD (sparse pockets). In “abnormal” 

patches, similar values of V and χ for PRMNorm and PRMfSAD were observed (Table 5). Positive 

and negative values in χfSAD were found for “normal” and “abnormal” patches, respectively. 

This is consistent with the inverse relationship seen with increasing COPD severity shown in 

Figure 4. 

 

Figure 8: Results and relevance of the different features (tPRM metrics as inputs) used in the dictionary 
learning method. (A) Confusion Matrix showing the sensitivity and specificity of the ML model 
classifications for both the fast progressor (N = 985) and the slow progressor (N = 1929) classes in the 
test set. Green colored and red colored fields in the matrix represent agreement and disagreement, 
respectively, of the ML model with the actual decision. (B) Receiver Operating Characteristic (ROC) 
curve for our ML model and the logistic regression classifier with the corresponding Area Under the 
Curve (AUC) statistics. (C) Bar plot showing the feature importance score and feature ranking using the 
minimum redundancy maximum relevance method. (D) Plot showing the distribution of the features and 
their prediction accuracy over ten different training runs. 
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Table 5: Image Patch topological PRM metrics in the ML model 

tPRM Metrics Normal Abnormal 

V
Norm

 0.5458 (0.1587) 0.3798 (0.0897) 

V
fSAD

 0.1059 (0.0935) 0.3299 (0.1008) 

χ
Norm

 -0.0065 (0.0084) -0.0031 (0.0058) 

χ
fSAD

 0.0041 (0.0061) -0.0019 (0.0062) 

 

Notes: Data are presented as the mean (standard deviation).  

Dependence Between Topologies of PRMfSAD and PRMEmph 

As the topologies of PRM were determined as averages over the whole lungs, we provide a 

case study illustrating the relationship between V and χ of PRMfSAD and PRMEmph at the local 

level. Presented in Figure 2 are the profiles of V and χ of PRMfSAD and PRMEmph from a region 

of the right lung with elevated and reduced VEmph (orange circle and star, respectively, in 

Figure 2A and C). The case is a female subject, 45-50 years of age, diagnosed with GOLD 4 

COPD. The subject was found to have on average high levels of VfSAD (0.37) with relatively 

elevated VEmph (0.1). Mean values for the whole lungs of χ were 0.008 and -0.009 for PRMEmph 

and PRMfSAD, respectively. As seen in Figure 2C, VfSAD increased while VEmph decreased further 

from lung with the highest level of VEmph (~0.6 at orange circle in Figure 2A and C). At 

approximately 1.8 cm, volume densities between PRMfSAD and PRMEmph transitioned. In 

addition, χfSAD was found to increase with decreasing χEmph with transition occurring at ~1.2cm.   
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Discussion 

The topological parametric response map is an extension of the well-established PRM method, 

a quantitative imaging marker of SAD8. In this study, we have demonstrated that inclusion of 

topological features, in this case the Euler-Poincaré Characteristic (χ), improved 

characterization and interpretation of fSAD in COPD as a complimentary readout of volume 

density (V), which is equivalent to traditional percent volume of PRM classifications10. This 

study also evaluated the role of PRM-defined normal parenchyma (PRMNorm) and fSAD 

(PRMfSAD) as lone indicators of COPD severity. We observed distinct patterns in topological 

metrics with respect to GOLD grades and identified a complete inversion in topology, 

characterized by Euler-Poincaré Characteristic χ, between normal lung and fSAD, in mid-to-

late stages of COPD. We also found V and χ of PRMNorm and PRMfSAD to have statistically 

significant correlation with spirometric measures and emphysema and to be predictive of 

spirometric decline.  

Our study builds on previous work by Hoff et al.10 on tPRM characterization in COPD. This 

study used a much smaller population (n = 88) to demonstrate the trends of all four 

topological features (volume density, surface area, mean curvature and Euler-Poincaré 

Characteristic) with increasing COPD severity10. Limited in statistical power, it instead focused 

on the surface area of fSAD. Access to a notably larger population (n = 8,956) in the current 

study allowed us to evaluate the volume density (V) and Euler-Poincaré Characteristic (χ) of 

PRMNorm and PRMfSAD and relate our findings to the field’s current understanding of COPD 

progression, i.e., normal parenchyma transitions to emphysema through SAD.  

A key finding of our study is the ability to quantify parenchymal lung health, based not only 

on the extent but also on the arrangement of local lung abnormalities, i.e., fSAD. This is 

rooted in the concept that the lungs are healthy (i.e., PRMNorm) and COPD progresses through 

SAD (i.e., PRMfSAD), an intermediate between normal and emphysematous lung tissue, to 

emphysema. The nature of this transition suggests χ may be capturing a fundamental 
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mechanism in the emergence of fSAD. Based on our observation, fSAD appears to develop as 

distinct pockets, which are represented as positive values in χfSAD within healthy lung tissue, 

as depicted in the cyan box in Figure 3B. With increasing COPD severity, fSAD pockets 

coalesce to a mesh, which is represented by negative values in χfSAD (magenta box in Figure 

3B). On a whole lung level, this transition occurs on average from GOLD stages 2 to 4.  By 

quantifying the amount and arrangement of normal and fSAD parenchyma, one can assess 

the severity of COPD. As fSAD is an intermediate between healthy lung and emphysema, 

increasing levels of emphysema have a direct effect on V and χ of fSAD. This is observed in 

Figure 5 and Figure 2, where increasing values of VEmph resulted in a drop in VfSAD and 

increase in χfSAD. These trends were reflected in our multivariable model for VEmph as well 

(Table 3).  

In a seminal study, McDonough and colleagues7 provided pathological evidence demonstrating 

the role of SAD in COPD progression. Using high resolution (~10 µm) microCT to analyze 

frozen lung samples from lung transplant recipients with end-stage COPD, they found that 

widespread narrowing and destruction of the smaller airways (i.e., SAD) occurred before 

emphysematous lesions became large enough to be visible on standard CT imaging. They 

concluded that SAD might serve as an emphysema precursor. Based on their observation, we 

postulated that the transition observed between χNorm and χfSAD (Figures 4 and 5) should be 

observed for χfSAD and χEmph. Using mean values of χ over the lungs, χEmph was found to be 

relatively stable, generating positive values across GOLD (Table 4), as well as demonstrating 

a weak correlation to χfSAD (ρ = -0.155, p < 0.001). Nevertheless, evaluating χfSAD and χEmph 

at the local level, we observe a strong association between these two readouts (Figure 2), 

which may be linked to the structural changes in the terminal airways observed using microCT 

of lung explants.   

In a recent study, Bhatt and colleagues evaluated a CT readout, referred to as the mean 

Jacobian determinant of normal voxels, at varying distances from emphysematous tissue25. 
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When measured at 2mm from CT voxels designated emphysema (i.e., voxel HU <-950HU), 

this CT-based readout was found to be predictive of spirometric decline. Our spatial analysis 

of a single case clearly demonstrates a transition in topologies of PRMfSAD and PRMEmph, 1.8 

cm and 1.2cm for V and χ, respectively (Figure 2). It is the association of topologies between 

PRMfSAD and PRMEmph at the local level that allows our machine learning model to predict 

spirometric decline, with an accuracy of 70%, in the absence of any emphysema readout as 

an input (Figure 6). Although the readouts reported by Bhatt and colleagues lacked 

quantification of SAD, there is clear agreement that lung tissue along the periphery of 

emphysematous tissue provides potential insight into COPD progression. Using only 

topologies of PRMNorm and PRMfSAD, our patch-based ML model outperformed the whole-lung 

logistic regression model (Figure 8B). This result highlights the importance of the spatial 

relationship of χfSAD to χEmph to predict spirometric decline (Figures 6 and 8). 

We acknowledge several notable limitations. COPDGene comprises over 20 study sites, 

making scanner variation and reconstruction kernel inconsistency inevitable. Sensitivity of 

PRM to scanner variability was addressed previously26 and although effort was made to apply 

PRM only to soft kernels, variability in scanner type was unavoidable. However, we included 

scanner vendor in our multivariable regressions and found that it did not significantly 

confound models. Another limitation is variation in levels of inspiration and expiration during 

CT acquisition. Earlier work demonstrated that even small perturbations from functional 

residual capacity (FRC) have an observable effect on threshold-based techniques such as 

PRM26. To limit this, we implemented QC that excluded participants based on erroneous 

volume changes or strong discordance with correlation between PRMNorm and FEV1% predicted. 

In summary, we have demonstrated that topological features, V and χ, are able to enhance 

the sensitivity of PRM classifications, notably Norm and fSAD, to extent of emphysema and 

COPD severity. These data support the concept that as pockets of small airways disease 

coalesce, surrounding normal tissue is lost. Pockets of fSAD are seen to correlate with 

increasing presence of emphysema, independent of the amount of fSAD present. We further 
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demonstrated that local levels of χfSAD and χEmph correlate, which may be explained by 

bronchiolitis along the periphery of emphysematous tissue observed by McDonough and 

colleagues using microCT. In addition, we demonstrated that local values of V and χ for 

PRMNorm and PRMfSAD provide sufficient information to predict spirometric decline, even in the 

absence of any prior knowledge of emphysema. Our study provides a unique strategy to 

detect subtle changes in lung parenchyma that may progress to emphysema. This approach 

to monitoring extent and arrangement of Norm and fSAD offers insight into COPD phenotypes 

and provides improved prognostic information that has relevance in clinical care and future 

clinical trials.  
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Appendices 

Appendix 1: Quality Control (QC) Protocol 

QC was performed in two steps (e.g., see 3 and 4 in exclusion diagram below), using GOLD 

grade, segmented lung volume change (∆V = inspiration volume – expiration volume, as a 

function of segmented voxels), and a correlation test metric (Q) defined as the absolute value 

of the difference between standard scores of FEV1% predicted and %PRMNorm, reported to be 

highly correlated in COPD studies.8 

  
 

Specifically, imaging QC tests for exclusion were applied consecutively as follows:  

 

1. ∆V < -0.5 L OR Q ≥ 3 

 

A large negative volume change, here defined as greater than 0.5 L, often indicates 

transposition of intended respiratory stages (expiration/inspiration), due to faulty maneuver 

or data handling error. In addition, we test here if a deviation of equal to or greater than 3 

standard deviations from the expected positive correlation between FEV1% predicted and 

%PRMNorm has occurred. 

 

2. ∆V ≤ 0 L and GOLD < 3 

 

This second step goes on to test if a non-severe COPD participant (GOLD < 3) has zero or 

negative volume change. N.B. here and in step 1 we have considered that there may be 
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participants with severe disease that have some abnormal volume changes (close to 0 due to 

very limited lung function). 

 
 

Appendix 2: Dictionary Learning Algorithm 

Image sparsity has emerged as a significant property of images and sparsity-based 

regularization has been used for various image processing applications.18-20,24,27-30 Sparse 

image representations are at the heart of many modern approaches to medical image 

classification and include 31-33. The sparse model assumes that each patch within an image 

can be accurately represented using a few elements of a basis set called a dictionary. For 

image classification problems a separate class-specific dictionary is learnt from patches 

belonging to each class of images. In this work, we have developed a multiview task-driven 

dictionary learning algorithm – a novel approach that aims to learn discriminative dictionaries 

for each class from multiple views of the data in a joint fashion by imposing group sparsity 

constraints34. 

Dictionary Learning: Our proposed method utilizes an overcomplete dictionary 𝒟𝒟 

constructed from the CT images, which is an 𝑛𝑛 × 𝐾𝐾 matrix whose columns represent 𝐾𝐾 “atoms” 

of size 𝑛𝑛, where an “atom” is a sparse coefficient vector (i.e., a vector of weights/coefficients 

in the sparse basis). We train a separate dictionary for each class. Each dictionary 𝒟𝒟𝑖𝑖 

represents the image patches from class 𝑖𝑖 reasonably well, but at the same time represents 

the image patches from the other classes quite poorly. There are several ways to train/learn 

a dictionary.35 In this work, we have adopted the task-driven dictionary learning algorithm 

proposed by Mairal et al.36 To train them, we solve a combinatorial optimization problem, 

where an approximate solution is obtained by alternating between a greedy sparse coding 

step using the current dictionary estimate, and a dictionary update step. 

Sparse Coding: We assume that any image patch 𝑥𝑥 in a CT image can be represented 

as a sparse linear combination of the atoms of the dictionary 𝒟𝒟 as: 𝑥𝑥 ≈  𝒟𝒟𝒟𝒟, where 𝒟𝒟 is the 

sparse coefficient vector. Given a dictionary, 𝒟𝒟, the goal in sparse coding is to find a sparse 

coefficient vector 𝒟𝒟. This requires solving a second optimization problem, the optimal solution 

to which is found using a greedy approach such as an orthogonal matching pursuit 

algorithm.37  

 Classification: In sparse representation-based classification, an image patch 𝑥𝑥 is 

classified according to how well the patch is represented by the class-specific dictionaries. 

Once a dictionary 𝒟𝒟𝑖𝑖 has been trained for each class 𝑖𝑖, classification of a new image patch 𝑥𝑥new 
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is performed by evaluating the reconstruction/representation errors for different classes. 

From the class representation errors a pseudo-probability measure 𝑃𝑃𝑖𝑖 is computed and the 

image patch is assigned to the class that has the maximum probability value.    

Training: The dictionary learning model was trained on a desktop workstation running 

a 64-bit Windows operating system (Windows 10) with an Intel Xeon W-2123 CPU at 3.6GHz 

with 128GB DDR4 RAM. The x-, y-, and z-dimensions of each image in our dataset were x = 

512, y = 512, and z ~ 1250. CT lung scans from N = 4483 cases from the COPDGene phase 

1 dataset who had follow up examination were considered. A representative 2D slice of a 

donor lung CT image is shown in Figure 3A of the manuscript. The lungs within these CT 

images were then automatically segmented using in-house software developed using MATLAB 

R2020a (MathWorks, Natick, MA). Our dataset for this study consists of a total N = 4483 lung 

CT images belonging to two categories: i) N = 1516 CT lungs that were described as fast 

progressors with a change of  FEV1 ≥ -60ml/yr, referred to as class 1, and ii) N = 2967 CT 

lungs that were described as slow progressors with a change of < -60ml/yr in their FEV1, 

referred to as class 2. We used 35% of the data for training and the remaining 65% for 

testing. A total of 8,000,000 2D image patches from the three (axial, coronal, and sagittal) 

views from each of the prior maps (tPRM maps VNorm, VfSAD, χNorm, and χfSAD)  were extracted 

from the training data for each class to train the dictionaries. The proposed dictionary learning 

algorithm was developed using MATLAB R2020a software (MathWorks, Natick, MA). We used 

the sparse modeling software (SPAMS) toolbox38 for the orthogonal matching pursuit 

optimization algorithm to efficiently optimize the dictionary elements. The hyper parameters 

of the dictionary learning algorithm include the image patch size 𝑙𝑙, the number of dictionary 

bases 𝐾𝐾 for each dictionary, the sparsity controlling parameter 𝜆𝜆, and the positive 

regularization parameter 𝜌𝜌 in sparse coding. The optimal values for these parameters were 

automatically selected on a validation set (randomly chosen from within the training data) 

using the receiver operating characteristic (ROC) curves, by varying one parameter at a time 

while keeping the others fixed and choosing that value of the parameter that maximizes the 

area under the curve (AUC) of the ROC curve. The parameters of the dictionary learning 

algorithm were set to 𝑙𝑙 = 25, 𝐾𝐾 = 512, 𝜆𝜆 = 0.0015, and 𝜌𝜌 = 0.006.  
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