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Abstract 

 

Purpose: Small airways disease (SAD), a major cause of airflow obstruction in COPD patients, 

has been identified as a precursor to emphysema. Nevertheless, there is a lack of clinical 

techniques that can quantify the progression of SAD. We aim to determine if our Parametric 

Response Mapping (PRM) method to quantify SAD offers insight into lung progression from 

healthy to emphysema. 

Materials and Methods: PRM metrics quantifying normal lung (PRMNorm) and functional SAD 

(PRMfSAD) were generated from CT scans collected as part of the COPDGene study (n=8956). 

Volume density (V) and Euler-Poincaré Characteristic (χ) maps, measures of extent and 

coalescence of pocket formations, respectively, were determined for both PRMNorm and 

PRMfSAD. Association with COPD severity, emphysema, and spirometric measures were 

assessed via multivariable regression models.  

Results: Across all GOLD, we observed a strong linear correlation between χfSAD and χNorm ( 

=-0.745, p<0.001). Values of χfSAD and χNorm were found to flip signs in unison between GOLD 

2 and 4, demonstrating an inversion in parenchymal topology. For subjects with COPD, 

multivariable analysis showed that both χfSAD (β of 0.106, p<0.001) and VfSAD (β of 0.065, 

p=0.004) were independently associated with FEV1% predicted. V and χ measures for PRMfSAD 

and PRMNorm were independently associated with the amount of emphysema. 

Conclusions: We demonstrated that χ of fSAD and Norm have independent value when 

associated with lung function and emphysema, even when considering the amount of each 

(i.e., VfSAD, VNorm). Our approach for quantifying pocket formations of PRMfSAD from normal 

lung parenchyma (PRMNorm) may show promise as a CT readout of emphysema onset.  

Keywords: chronic obstructive pulmonary disease; small airways disease; parametric 

response mapping; computed tomography of the chest; emphysema  
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1. Introduction  

Chronic obstructive pulmonary disease (COPD) is a leading cause of death and healthcare 

burden in the United States and worldwide. Accounting for over 3 million deaths globally in 

2015 ("Global, regional, and national deaths, prevalence, disability-adjusted life years, and 

years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015," 

2017), this disease is expected to rise in prevalence as the world population ages (Mannino 

& Buist, 2007). COPD is understood to be a complex heterogeneous disease presenting 

clinically diverse phenotypes (Barker & Brightling, 2013; Han et al., 2010). Major causes of 

airflow obstruction are attributed to chronic bronchiolitis, a.k.a small airways disease (SAD), 

and emphysema. Although SAD and emphysema are treated as separate COPD subtypes, 

studies have shown strong quantitative evidence that SAD exists as an intermediate state 

between healthy lung tissue and emphysema—i.e., irreversible lung damage—in COPD 

pathogenesis (Jennifer L. Boes et al., 2015; Labaki et al., 2019; McDonough et al., 2011). At 

present, little has been done to better quantify the onset of SAD from healthy lung 

parenchyma. 

The Parametric Response Map (PRM) is a CT-based voxel-wise computational technique that 

can identify and quantify functional small airways disease (fSAD; indirect measure of SAD) 

even in the presence of emphysema (Galbán et al., 2012). The percent volume of PRM-derived 

fSAD (PRMfSAD), i.e., the amount of fSAD in the lungs, has improved COPD phenotyping and 

the prediction of spirometric decline in subjects at risk of COPD (Bhatt et al., 2016). To 

determine the value of spatial features from each PRM classification, we developed topological 

PRM (tPRM) as an extension of the PRM algorithm (Hoff et al., 2017). These radiographic tPRM 

readouts were shown to improve upon commonly used whole-lung PRM measures with respect 

to COPD characterization, and correlate to structural changes in lung tissue samples from 

subjects diagnosed with bronchiolitis obliterans (Ram et al., 2022). Of interest is the Euler-

Poincaré Characteristic (χ); positive values of this topological feature are associated with the 
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formation of pockets of like tissue (e.g., pockets of fSAD) (Hoff et al., 2017). χ, when 

generated from PRMfSAD (χfSAD), may serve to detect lung parenchymal transition from healthy 

to emphysema through SAD.  

The transition from normal parenchyma to SAD, and the relationship of this transition to 

emphysema, is the focus of this study. We investigated χfSAD as an index of COPD severity in 

baseline (Phase 1) data from COPDGene (Regan et al., 2011) and demonstrated the utility of 

our methodology to assess disease phenotype and transition of fSAD from normal lung 

parenchyma.  
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2. Materials and Methods 

2.1 Study Sample 

Our study was a secondary analysis of data from COPDGene (ClinicalTrials.gov: 

NCT00608764), a large Health Insurance Portability and Accountability Act-compliant 

prospective multi-center observational study. In Phase 1 (2007-2012), written and informed 

consent was obtained from all participants and the study was approved by local institutional 

review boards of all 21 centers. Ever-smokers with greater than or equal to 10 pack-year 

smoking history, with and without airflow obstruction, were enrolled between January 2008 

and June 2011. Participants were non-Hispanic white or African American. Participants 

underwent volumetric inspiratory and expiratory CT using standardized protocol; images were 

transferred to a central lab for protocol verification and quality control (QC) (Regan et al., 

2011). Exclusion criteria included a history of other lung disease (except asthma), prior 

surgical excision involving a lung lobe or greater, present cancer, metal in the chest, or history 

of chest radiation therapy. Participants were excluded from the present study due to 

inadequate CT for computing tPRM, such as missing an inspiration/expiration scan, or failing 

QC implemented specifically for the present study. Our QC protocol is described in the 

Supplemental Methods. Data for participants evaluated here have been utilized in 

numerous previous studies and a list of COPDGene publications can be found at 

http://www.copdgene.org/publications. Our study is the first to report tPRM analysis across 

the whole Phase 1 cohort of COPDGene participants. 

Spirometry was performed in the COPDGene study before and after the administration of a 

bronchodilator, specifically 180 mcg of albuterol (Easy-One spirometer; NDD, Andover, MA). 

Post-bronchodilator values were used in our analyses. COPD was defined by a post-

bronchodilator FEV1/FVC of less than 0.7 at the baseline visit, as specified in the Global 

Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines (Rabe et al., 2007). GOLD 

grades 1-4 were used to define disease severity. GOLD 0 classification, i.e., “at-risk,” was 
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defined by a post-bronchodilator FEV1/FVC ≥ 0.7 at the baseline visit, alongside FEV1% 

predicted ≥ 80%. Participants with FEV1/FVC ≥ 0.7 with FEV1% predicted less than 80% were 

classified as having preserved ratio impaired spirometry (PRISm) (Wan et al., 2014). 

Demographic and spirometric measures used in this study included age, sex, race, smoking 

history, scanner manufacturer, body mass index (BMI), FEV1% predicted, FEV1/FVC and 

forced mid-expiratory flow (FEF25-75).  

2.2 Computed Tomography and Topological PRM Analysis 

All computed tomography (CT) data were obtained from multiple sites associated with the 

COPDGene project. Whole-lung volumetric multidetector CT acquisition was performed at full 

inspiration and normal expiration using a standardized previously published protocol (Regan 

et al., 2011). Data reconstructed with the standard reconstruction kernel was used for 

quantitative analysis. All CT data were presented in Hounsfield units (HU), where stability of 

CT measurement for each scanner was monitored monthly using a custom COPDGene 

phantom (Regan et al., 2011). For reference, air and water attenuation values are −1,000 

and 0 HU, respectively. 

PRM were determined from paired CT scans using Lung Density Analysis (LDA) software 

(Imbio, LLC, Minneapolis, MN). LDA segmented the lungs from the thoracic cavity with airways 

removed. Inspiratory CT scans were spatially aligned to the expiratory geometric frame using 

deformable image registration. Lung voxels were classified using pre-determined HU 

thresholds as: normal (PRMNorm, -950 < inspiration HU ≤ -810, and expiration HU ≥ -856), 

functional small airways disease (PRMfSAD, -950 < inspiration HU ≤ -810, expiration HU < -

856), emphysema (PRMEmph, inspiration HU < -950, expiration HU < -856), or parenchymal 

disease (PRMPD, inspiration HU > -810) (Belloli et al., 2016). Only voxels between -1,000 HU 

and -250 HU at both inspiration and expiration were used for PRM classification. Each PRM 

classification was quantified as the percent volume, which is defined as the sum of a PRM 

classification normalized to the total lung volume at expiration times 100. 
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Topological analysis of PRM was performed using methods previously described (Hoff et al., 

2017). tPRM metrics were defined through application of Minkowski measures on 3D binary 

voxel distributions: volume density (V) and Euler-Poincaré Characteristic (χ) (Legland et al., 

2007). Maps of V and χ were computed for each PRM class (Norm, fSAD, Emph and PD) using 

a moving window of size 213 voxels evaluated on a grid of every 5th voxel. V was normalized 

by the Minkowski estimate of the mask within the same local window volume (rather than a 

direct calculation of the mask volume in the window as previously described) and χ by the 

masked window voxel count. Linear interpolation was applied to determine V and χ values for 

all segmented voxels.  

To indicate the PRM class associated with a Minkowski measure, the class is presented as a 

superscript (e.g., VfSAD is the volume density of PRMfSAD). tPRM analysis was performed using 

open-source and in-house software developed in MATLAB R2019a (MATLAB, The MathWorks 

Inc., Natick, MA). A detailed overview and diagram, of computing tPRM from raw imaging 

data, was made by Hoff et al. (Hoff et al., 2017).  Because the focus of this study is on the 

relation between normal parenchyma to SAD, and its association with emphysema, all 

analyses were performed using V and χ for PRM classifications Norm and fSAD. For 

completeness, V and χ for PRM classifications Emph and PD are provided. 

2.3 Statistical Analysis 

Data in this study are presented as mean and standard deviation unless stated otherwise. 

Correlation between V and χ for PRM classes Norm and fSAD were calculated using Spearman 

rank-order correlation coefficients (𝜌). The total cohort was separated into two subsets based 

on spirometry confirmed COPD: non-COPD (FEV1/FVC ≥ 0.7) and COPD (FEV1/FVC < 0.7). 

Multivariable regression analysis was performed on both subsets using a stepwise approach 

with V and χ for PRM classifications Norm and fSAD as independent variables and selected 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2023. ; https://doi.org/10.1101/2023.05.26.23290532doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.26.23290532
http://creativecommons.org/licenses/by-nc-nd/4.0/


pulmonary function testing and clinical features as outcome variables, controlling for age, 

gender, race, BMI, smoking (pack years) and CT vendor. These control variables were 

included as compulsory independent variables in all regression models. Statistical work was 

conducted using IBM SPSS Statistics v27 (SPSS Software Products). In all tests significance 

was defined by p < 0.05. 

2.4 Case Study: Spatial Analysis 

In a single subject, we evaluated the relationship between V and  for PRMfSAD and PRMEmph. 

The case is a female subject (46-50 years old) diagnosed with GOLD 4 COPD. First, a binary 

segmentation map was generated to identify lung regions with VEmph > 0.6. Based on the 

binary map and visual inspection, a profile was determined from a lung region with VEmph > 

0.6 to VEmph < 0.2 on a single axial slice. A line plot was produced for V and  vs distance 

along each point of the profile. The distance, in units of cm, along the image profile was 

determined using the voxel dimensions of the CT scan.  
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3. Results 

3.1 Population Characteristics 

The original COPDGene Phase 1 cohort consisted of 10,300 individuals. We excluded 1,344 

participants for: inadequate CT data, such as missing an expiration or inspiration scan, to 

conduct tPRM analysis (n = 1,125); missing clinical data (n = 16); or failing to pass our CT-

based QC testing (n = 203). Further details of CT QC are provided in Supplemental 

Methods. The resulting complete subset used for analyses thus consisted of 8,956 

participants. Baseline demographics and lung function for all participants, grouped based on 

FEV1% predicted and FEV1/FVC—that is, by GOLD grade or PRISm as described in the 

Materials and Methods—are reported in Table 1. There was a notably high proportion of GOLD 

0 (FEV1/FVC ≥ 0.7, FEV1% predicted ≥ 80%) participants, accounting for almost half of the 

study population (43%; 3,867 of 8,956 participants). Increasing percent volume of PRM-

derived fSAD (PRMfSAD) and PRM-derived emphysema (PRMEmph), with decreasing PRMNorm, 

was observed with higher GOLD grades. This is consistent with previously published work. 

PRM-derived parenchymal disease (PRMPD) was found to be elevated in PRISm and GOLD 0 

participants (35.8 ± 16.4 and 26.3 ± 12.8% of the total lung volume, respectively) as 

compared to the COPD subset. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2023. ; https://doi.org/10.1101/2023.05.26.23290532doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.26.23290532
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.2 Topological Readouts of PRM 

Presented in Figure 1 is a case with elevated fSAD (PRMfSAD = 40%). Representative coronal 

slices of the expiration CT scan and PRMfSAD, overlayed on CT scan, are provided. To illustrate 

the dependence of V and χ on the arrangement of PRMfSAD, we have included VfSAD and χfSAD 

maps indicating regions with low (cyan box) and high (magenta box) VfSAD. As expected, VfSAD 

(Figure 1C) is dependent on the amount of fSAD (yellow voxels in Figure 1B). Averaged 

over the lungs, VfSAD is proportional to the percent volume of PRMfSAD by a factor of 100. 

Table 1: Clinical Characterization of the Study Population 

 
Non-COPD COPD 

Variable GOLD 0 PRISm GOLD 1 GOLD 2 GOLD 3 GOLD 4 

Participants (N) 3867 1088 699 1732 1041 529 

Age (yrs) 56.7 (8.36) 57.1 (8.20) 61.6 (8.96) 62.6 (8.86) 64.3 (8.27) 64.1 (7.53) 

Sex (M/F) 2048/1819 496/592 399/300 933/799 604/437 314/215 

BMI (kg/cm2) 29.0 (5.79) 31.9 (7.31) 27.1 (4.89) 28.7 (6.06) 28.1 (6.33) 25.3 (5.56) 

Smoking Pack-Years 37.2 (20.0) 42.6 (24.2) 45.0 (24.4) 50.9 (26.8) 55.1 (27.1) 56.7 (28.7) 

FEV1% Predicted (%) 97.4 (11.4) 70.6 (7.89) 90.8 (8.70) 65.0 (8.51) 40.2 (5.69) 22.6 (4.84) 

FEV1/FVC 0.79 (0.05) 0.77 (0.05) 0.65 (0.04) 0.58 (0.08) 0.44 (0.09) 0.31 (0.07) 

FEF25-75(L/s) 2.81 (1.00) 1.79 (0.66) 1.31 (0.50) 0.80 (0.35) 0.39 (0.16) 0.21 (0.08) 

PRMNorm(%) 61.7 (13.0) 53.8 (14.6) 56.9 (12.1) 49.1 (13.5) 33.0 (12.5) 21.1 (9.13) 

PRMfSAD(%) 9.90 (9.31) 8.88 (8.25) 17.0 (10.8) 21.3 (11.5) 30.9 (11.0) 36.0 (8.94) 

PRMEmph(%) 0.80 (1.42) 0.73 (2.29) 3.00 (3.49) 5.40 (6.95) 14.7 (12.2) 26.0 (14.0) 

PRMPD(%) 26.3 (12.8) 35.8 (16.4) 20.8 (8.44) 22.2 (9.04) 19.6 (9.29) 15.7 (5.43) 

 

Notes: Participant characteristics of the entire study population separated in subsets of those with (FEV1/FVC < 

0.7) and without (FEV1/FVC ≥ 0.7) COPD. Values are displayed as mean (standard deviation). GOLD, Global 

Initiative for Chronic Obstructive Lung Disease; PRISm, preserved ratio impaired spirometry; GOLD 0, at-risk 

smokers with normal spirometry; BMI, body mass index; FEV1, forced expiratory volume in one second; FVC, 

forced vital capacity; FEF25-75, forced mid-expiratory flow; PRM, parametric response map; Norm, Normal; fSAD, 

functional small airways disease; Emph, emphysema; PD, parenchymal disease. 
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However, χfSAD > 0 (cyan box in Figure 1D) corresponds to the formation of fSAD pockets 

(cyan box Figure 1B), whereas χfSAD < 0 (cyan box in Figure 1D) is the consolidation of 

these pockets into a mesh with holes (magenta box in Figure 1B).  

The volume density of PRMNorm and PRMfSAD demonstrated an inverse relationship with 

increasing COPD severity (Figure 2A), consistent with previous work. A similar inverse 

relationship was observed for χ of both normal lung and fSAD (χNorm and χfSAD).  Values of χNorm 

and χfSAD were found to flip about zero (e.g., χfSAD changes from positive to negative values) 

from GOLD 2 to GOLD 4 (Figure 2B). As provided in Supplemental Table 1, χNorm and χfSAD 

 

Figure 1: Illustration of Volume Density (V) and Euler-Poincaré Characteristic (χ) for PRMfSAD. Presented are 
representative coronal slices for the (A) expiratory CT scan with associated (B) PRMfSAD overlay (yellow). Included 
are the (C) volume density and (D) Euler-Poincaré Characteristic of PRMfSAD. Magenta box indicates a lung region 
with elevated VfSAD and negative fSAD. Cyan box indicates a lung region with minimal VfSAD and positive fSAD. The 

subject is a GOLD 3 female (51-55 years old) with FEV1% predicted of 32% and percent volume of PRMfSAD of 
40%.  
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had means (standard deviations) of -0.0084 (0.0071) and 0.0047 (0.0074), respectively, for 

 
Figure 2: Boxplots for Volume Density (V) and Euler-Poincaré Characteristic (χ) of PRMNorm and PRMfSAD across 

all GOLD stages, “at-risk” (GOLD 0) and PRISm. Plots of (A) V and (B) χ are provided for PRMNorm (green) and 
PRMfSAD (yellow). Box plots were computed following standard protocol for box and whiskers. Box lines 
determined by lower quartile (Q1), middle quartile / median (Q2), and upper quartile (Q3). Whiskers are drawn 
out to Q1 - 1.5 x IQR and Q3 + 1.5 x IQR for lower and upper limits respectively. IQR = Q3-Q1. Outliers are 
defined as points beyond the given upper and lower limits and illustrated as black points with a random bounded 
horizontal perturbation beyond box whiskers.  
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cases diagnosed as GOLD 2. For those with severe COPD, i.e., GOLD 4, χNorm and χfSAD were 

0.0039 (0.0055) and -0.0036 (0.0048), respectively. Mean values of Emph and PD were found 

to be positive and similar across GOLD status (Supplemental Table 1).  

We further evaluated the relationship of PRMNorm and PRMfSAD with respect to V (Figure 3A) 

and χ (Figure 3B). Both V and χ demonstrated strong correlations between Norm and fSAD 

( = -0.666, p < 0.001 and  = -0.745, p < 0.001, respectively) over the full study cohort. 

Here the GOLD stage is represented by different colors and the relative amount of 

emphysema, quantified by VEmph, by size of the bubbles. As observed in Figure 3A, VNorm 

versus VfSAD had more scatter in the data compared to Norm versus fSAD (Figure 3B). Cases 

with elevated emphysema (VEmph) demonstrated lower VfSAD and χNorm > 0, but demonstrated 

positive and negative values of χfSAD (Figure 3B).  

3.3 Multivariable Regression Analysis 

Presented in Table 2 are results from multivariable regression analyses that demonstrate the 

contribution of V and χ for Norm and fSAD when modeling spirometric measures and the 

volume density of emphysema, controlling for age, sex, race, BMI, pack-years and CT vendor. 

Among those with spirometrically confirmed COPD, VNorm was found to be significantly 

associated with multiple clinical outcomes including FEV1% predicted, FEV1/FVC, FEF25-75 and 

VEmph (see Table 2).  VfSAD and χfSAD were found to independently contribute significantly to 

FEV1% predicted (β = 0.065, p=0.004 and β = 0.106, p<0.001). Only the Norm measures 

were found to contribute to FEV1/FVC (β = 0.668, p<0.001 for VNorm and β = -0.120, p<0.001 

for χNorm), whereas V and χ for both Norm and fSAD were found to be significant parameters 

for FEF25-75. With respect to VEmph, extent of emphysema, V and χ for Norm and fSAD were 

highly significant but demonstrated similar trends irrespective of PRM classification. For 

completeness, the same analyses were performed on the non-COPD cohort (Supplemental 
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Table 2). As compared to the COPD cohort, statistical models generated from the non-COPD 

cohort demonstrate weaker correlations (i.e., adjusted R2) with significant parameters. 

 

Figure 3: Scatter plots of all study sample participants for (A) VNorm versus VfSAD and (B) χNorm versus χfSAD. 
Individual points are color coded based on COPD classifications. The size of the points indicates the amount of 
emphysema as measured by the volume density of PRMEmph (VEmph). 
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Table 2: Multivariable Regression for COPD Subset 

Performance FEV1% predicted FEV1/FVC FEF25-75 (L) VEmph 

Adjusted R2 0.516 0.602 0.526 0.778 

SE 15.8 0.084 0.331 0.057 

Age (yrs) 0.085** 0.021 (0.06) -0.184** 0.035** 

Sex (M/F)  0.018 (0.08) -0.283** -0.035** 

BMI (kg/cm2) -0.110** 0.033*  -0.232** 

Smoking Pack 

Years 
-0.046** -0.013 (0.22) -0.051** -0.015 (0.06) 

CT vendor    0.111** 

Race  0.113** -0.033*  

VNorm 0.727** 0.668** 0.688** -1.01** 

VfSAD 0.065*  0.138** -0.408** 

Norm  -0.120** 0.134** 0.150** 

fSAD 0.106**  0.175** 0.118** 

Notes: Multivariable regression modelling using volume density (V) and Euler-Poincaré Characteristic (χ) for PRM-
derived Normal and fSAD (introduced stepwise) to model pulmonary function testing measures in the COPD subset. 
Each column presents results for a different regression model. FEV1, forced expiratory volume in one second; FVC, 
forced vital capacity; FEF25-75, forced mid-expiratory flow; Emph, emphysema; SE, standard error of the estimate; 
BMI, body mass index; Norm, Normal; fSAD, functional small airways disease. Model performance is reported as 
adjusted R2 and standard error of the estimate. Feature association is reported as standardized beta coefficients (β); 
cells for stepwise variables removed from final model. All regression models were controlled for age, sex, race, BMI, 
pack years and CT vendor. P values ≥ 0.01, < 0.01 and ≥ 0.001, and < 0.001 are presented as values in parentheses, 
*, and **, respectively. 
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3.4 Dependence Between Topologies of PRMfSAD and PRMEmph 

As expected from the multivariable analysis, VfSAD was strongly correlated to VEmph (r = 0.845, 

p < 0.001). Nevertheless, only a weak correlation was observed between fSAD and Emph ( = 

-0.155, p < 0.001). As the topologies of PRM were determined as averages over the whole 

lungs, we provide a case study illustrating the relationship between V and  of PRMfSAD and 

PRMEmph at the local level. Presented in Figure 4 are the profiles of V and  of PRMfSAD and 

 
 

 

Figure 4: Case study demonstrating the 

spatial relationship between the topologies 

of PRMfSAD and PRMEmph. The case is a female 

subject (46-50 years old) diagnosed with 

GOLD 4 COPD. Single axial slice from (A) 

spatially aligned CT scan acquired at full 

inflation with corresponding (B) slices from 

V and  of PRMfSAD and PRMEmph. (C) 

Topology values were plotted along the 

dashed line on the CT slice, starting from 

circle to star. Lines on plot were color coded 

to match PRM classification (red signifies 

PRMEmph and yellow signifies PRMfSAD). Solid 

and dashed lines indicate V (left y-axis) and 

 (right y-axis). 
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PRMEmph from a region of the right lung with elevated and reduced VEmph (orange circle and 

star, respectively, in Figure 4A and C). The case is a female subject (46-50 years old) 

diagnosed with GOLD 4 COPD. The subject was found to have over the lungs high levels of 

VfSAD (0.37) with relatively elevated VEmph (0.1). Mean values of  were 0.008 and -0.009 for 

PRMEmph and PRMfSAD, respectively. As seen in Figure 4C, VfSAD increased while VEmph 

decreased further from lung with the highest level of VEmph (~0.6 at orange circle in Figure 

4A and C). At approximately 1.8cm, volume densities between PRMfSAD and PRMEmph 

transitioned. Inversely, fSAD was found to increase with decreasing Emph with transition 

occurring at ~1.2cm.   
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4. Discussion 

The topological parametric response map is an extension of the well-established PRM method, 

a powerful quantitative imaging marker (Galbán et al., 2012). In this study, we have 

demonstrated that inclusion of topological features, in this case the Euler-Poincaré 

Characteristic (χ), improved characterization and interpretation of fSAD in COPD as a 

complimentary readout of volume density (V), which is equivalent to traditional percent 

volume of PRM classifications (Hoff et al., 2017). This study also evaluated the role of PRM-

defined normal parenchyma (PRMNorm) and fSAD (PRMfSAD) as lone indicators of COPD severity. 

We observed distinct patterns in topological metrics with respect to GOLD grades and 

identified a complete inversion in topology, characterized by Euler-Poincaré Characteristic χ, 

between normal lung and fSAD, in mid-to-late stages of COPD. We also found statistically 

significant associations of spirometric measures and emphysema with V and χ of PRMNorm and 

PRMfSAD.  

Our study builds on previous work by Hoff et al (Hoff et al., 2017) on tPRM characterization 

in COPD. This study used a much smaller population (n = 88) to demonstrate the trends of 

all four topological features (volume density, surface area, mean curvature and Euler-Poincaré 

Characteristic) with increasing COPD severity (Hoff et al., 2017). Limited in statistical power, 

it instead focused on the surface area of fSAD. Access to a notably larger population (n = 

8,956) allowed us in the current study to evaluate the volume density (V) and Euler-Poincaré 

Characteristic (χ) of PRMNorm and PRMfSAD and relate our findings to the field’s current 

understanding of COPD progression; i.e., normal parenchyma transitions to emphysema 

through SAD.  

A key finding of this study is the ability to quantify parenchymal lung health, based not only 

on the extent but also on the arrangement of local lung abnormalities, i.e., fSAD. This is 

rooted in the concept that the lungs are healthy (i.e., PRMNorm) and COPD progresses through 

SAD (i.e., PRMfSAD), which is an intermediate between normal and emphysematous lung 
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tissue. The nature of this transition suggests χ may be capturing a fundamental mechanism 

in the emergence of fSAD. Based on our observation, fSAD appears to develop as distinct 

pockets within healthy lung tissue as depicted in cyan box in Figure 1B. With increasing 

COPD severity, fSAD pockets coalesce to a mesh, which is represented by decreasing values 

in χfSAD (magenta box in Figure 1B). On a whole lung level, this transition occurs on average 

from GOLD stages 2 to 4.  By quantifying the amount and arrangement of normal and fSAD 

parenchyma, one can obtain a full assessment of the COPD lung. As fSAD is an intermediate 

between healthy lung and emphysema, increasing levels of emphysema have a direct effect 

on V and χ of fSAD. This is observed in Figure 3, where increasing values of VEmph resulted 

in a drop in VfSAD and increase in χfSAD. These trends were reflected in our multivariable model 

for VEmph as well (Table 2).  

We postulate that the transition observed between Norm and fSAD (Figures 2 and 3) should 

be observed for fSAD and Emph. Using mean values of  over the lungs, Emph was found to be 

relatively stable, generating positive values across GOLD (Supplemental Table 2). In a 

recent study, Bhatt and colleagues evaluated a CT readout, referred to as the mean Jacobian 

determinant of normal voxels, at varying distances from emphysematous tissue (Bhatt et al., 

2017). When measured at a distance of 2mm from CT voxels designated emphysema (i.e., 

voxel HU <-950HU), this CT-based readout was found to be predictive of spirometric decline. 

We applied a similar strategy to determine if a relationship between fSAD and Emph is observed 

at the local level (Figure 4). Our spatial analysis of a single case clearly demonstrates a 

transition in topologies of PRMfSAD and PRMEmph. Although the readouts reported by Bhatt and 

colleagues lacked quantification of SAD, there is clear agreement that lung tissue along the 

periphery of emphysematous tissue provides potential insight into COPD progression. 

Additional evidence is from the seminal work by McDonough and colleagues (McDonough et 

al., 2011). In this study they provided pathological evidence demonstrating the role of SAD 

in COPD progression. Using high resolution (~10 m) microCT to analyze frozen lung samples 
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from lung transplant recipients with end-stage COPD, they found that widespread narrowing 

and destruction of the smaller airways (i.e., SAD) occurred before emphysematous lesions 

became large enough to be visible on standard CT imaging. They concluded that SAD might 

serve as an emphysema precursor. We suspect that the transition of fSAD and Emph may be 

capturing what was observed using microCT of lung explants.  

We acknowledge several notable limitations. COPDGene comprises over 20 study sites, 

making scanner variation and reconstruction kernel inconsistency inevitable. Sensitivity of 

PRM to scanner variability was addressed previously, and although effort was made to apply 

PRM only to soft kernels, variability in scanner type was unavoidable. However, we included 

scanner vendor in our multivariable regressions and found that it did not significantly 

confound models. Another limitation is variation in levels of inspiration and expiration during 

CT acquisition. Earlier work demonstrated that even small perturbations from functional 

residual capacity (FRC) have an observable effect on threshold-based techniques such as PRM 

(J. L. Boes et al., 2015). To limit this, we implemented QC that excluded participants based 

on erroneous volume changes or strong discordance with correlation between PRMNorm and 

FEV1% predicted.  

5. Conclusions 

In summary, we have demonstrated that topological features, V and χ, are able to enhance 

the sensitivity of PRM classifications, notably Norm and fSAD, to COPD severity. This data 

supports the concept that as pockets of small airways disease coalesce, surrounding normal 

tissue is lost. These pockets of fSAD are correlated with increasing presence of emphysema, 

independent of the amount of fSAD present. We further demonstrated at the local level that 

fSAD and Emph correlate, which may be explained by McDonough and colleagues’ observations 

using microCT. Our study provides a unique strategy to detect subtle changes in lung 

parenchyma that may progress to emphysema. This approach to monitoring extent and 

arrangement of Norm and fSAD may offer insight into COPD phenotypes and provide 
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prognostic information that has relevance in clinical care and future clinical trials. Better 

computational strategies must be developed before these topologies can be used to detect 

local emphysema onset. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2023. ; https://doi.org/10.1101/2023.05.26.23290532doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.26.23290532
http://creativecommons.org/licenses/by-nc-nd/4.0/


Funding 

This work was supported by the National Heart, Lung, and Blood Institute of the National 

Institutes of Health Grants R01 HL139690 and R01 HL150023 and by the National Heart, 

Lung, and Blood Institute of the National Institutes of Health Grants U01 HL089897 and U01 

HL089856, which support the COPDGene study. The COPDGene study (NCT00608764) is also 

supported by the COPD Foundation through contributions made to an Industry Advisory 

Committee comprised of AstraZeneca, Bayer Pharmaceuticals, Boehringer-Ingelheim, 

Genentech, GlaxoSmithKline, Novartis, Pfizer and Sunovion. 

 

Conflict of Interest Statement 

W.W.L. reports personal fees from Konica Minolta and Continuing Education Alliance. B.A.H. 

and C.J.G. are co-inventors and patent holders of tPRM, which the University of Michigan has 

licensed to Imbio, LLC. C.J.G. is co-inventor and patent holder of PRM, which the University 

of Michigan has licensed to Imbio, LLC.  B.A.H. and C.J.G. have financial interest in Imbio, 

LLC. C.R.H. is employed by Imbio, LLC. D.A.L. reports funds paid to the institution from the 

NIH, and Boehringer Ingelheim. M.K.H. reports personal fees from GlaxoSmithKline, 

AstraZeneca, Boehringer Ingelheim, Cipla, Chiesi, Novartis, Pulmonx, Teva, Verona, Merck, 

Mylan, Sanofi, DevPro, Aerogen, Polarian, Regeneron, Amgen, UpToDate, Altesa Biopharma, 

Medscape, NACE, MDBriefcase and Integrity. She has received either in kind research support 

or funds paid to the institution from the NIH, Novartis, Sunovion, Nuvaira, Sanofi, 

AstraZeneca, Boehringer Ingelheim, Gala Therapeutics, Biodesix, the COPD Foundation and 

the American Lung Association. She has participated in Data Safety Monitoring Boards for 

Novartis and Medtronic with funds paid to the institution. She has received stock options from 

Meissa Vaccines and Altesa Biopharma. For the remaining authors none were declared.  

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2023. ; https://doi.org/10.1101/2023.05.26.23290532doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.26.23290532
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements 

We acknowledge the COPDGene investigators for their role in the study providing data for this 

project: 

Administrative Center: James D. Crapo, MD (PI); Edwin K. Silverman, MD, PhD (PI); Barry 

J. Make, MD; Elizabeth A. Regan, MD, PhD 

Genetic Analysis Center: Terri Beaty, PhD; Ferdouse Begum, PhD; Peter J. Castaldi, MD, 

MSc; Michael Cho, MD; Dawn L. DeMeo, MD, MPH; Adel R. Boueiz, MD; Marilyn G. Foreman, 

MD, MS; Eitan Halper-Stromberg; Lystra P. Hayden, MD, MMSc; Craig P. Hersh, MD, MPH; 

Jacqueline Hetmanski, MS, MPH; Brian D. Hobbs, MD; John E. Hokanson, MPH, PhD; Nan 

Laird, PhD; Christoph Lange, PhD; Sharon M. Lutz, PhD; Merry-Lynn McDonald, PhD; Margaret 

M. Parker, PhD; Dmitry Prokopenko, Ph.D; Dandi Qiao, PhD; Elizabeth A. Regan, MD, PhD; 

Phuwanat Sakornsakolpat, MD; Edwin K. Silverman, MD, PhD; Emily S. Wan, MD; Sungho 

Won, PhD 

Imaging Center: Juan Pablo Centeno; Jean-Paul Charbonnier, PhD; Harvey O. Coxson, PhD; 

Craig J. Galban, PhD; MeiLan K. Han, MD, MS; Eric A. Hoffman, Stephen Humphries, PhD; 

Francine L. Jacobson, MD, MPH; Philip F. Judy, PhD; Ella A. Kazerooni, MD; Alex Kluiber; 

David A. Lynch, MB; Pietro Nardelli, PhD; John D. Newell, Jr., MD; Aleena Notary; Andrea Oh, 

MD; Elizabeth A. Regan, MD, PhD; James C. Ross, PhD; Raul San Jose Estepar, PhD; Joyce 

Schroeder, MD; Jered Sieren; Berend C. Stoel, PhD; Juerg Tschirren, PhD; Edwin Van Beek, 

MD, PhD; Bram van Ginneken, PhD; Eva van Rikxoort, PhD; Gonzalo Vegas Sanchez-Ferrero, 

PhD; Lucas Veitel; George R. Washko, MD; Carla G. Wilson, MS;  

PFT QA Center, Salt Lake City, UT: Robert Jensen, PhD 

Data Coordinating Center and Biostatistics, National Jewish Health, Denver, CO: 

Douglas Everett, PhD; Jim Crooks, PhD; Katherine Pratte, PhD; Matt Strand, PhD; Carla G. 

Wilson, MS 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2023. ; https://doi.org/10.1101/2023.05.26.23290532doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.26.23290532
http://creativecommons.org/licenses/by-nc-nd/4.0/


Epidemiology Core, University of Colorado Anschutz Medical Campus, Aurora, CO: 

John E. Hokanson, MPH, PhD; Gregory Kinney, MPH, PhD; Sharon M. Lutz, PhD; Kendra A. 

Young, PhD 

Mortality Adjudication Core:  Surya P. Bhatt, MD; Jessica Bon, MD; Alejandro A. Diaz, MD, 

MPH; MeiLan K. Han, MD, MS; Barry Make, MD; Susan Murray, ScD; Elizabeth Regan, MD; 

Xavier Soler, MD; Carla G. Wilson, MS 

Biomarker Core: Russell P. Bowler, MD, PhD; Katerina Kechris, PhD; Farnoush Banaei-

Kashani, Ph.D 

We would also like to acknowledge our copy editor Lee Olsen for her assistance in preparing 

this manuscript.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2023. ; https://doi.org/10.1101/2023.05.26.23290532doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.26.23290532
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 

Barker, B. L., & Brightling, C. E. (2013). Phenotyping the heterogeneity of chronic obstructive 
pulmonary disease. Clin Sci (Lond), 124(6), 371-387. 
https://doi.org/10.1042/CS20120340  

Belloli, E. A., Degtiar, I., Wang, X., Yanik, G. A., Stuckey, L. J., Verleden, S. E., Kazerooni, E. A., 
Ross, B. D., Murray, S., Galbán, C. J., & Lama, V. N. (2016). Parametric Response 
Mapping as an Imaging Biomarker in Lung Transplant Recipients. American Journal of 
Respiratory and Critical Care Medicine, 195(7), 942-952. 
https://doi.org/10.1164/rccm.201604-0732OC  

Bhatt, S. P., Bodduluri, S., Hoffman, E. A., John D. Newell, J., Sieren, J. C., Dransfield, M. T., & 
Reinhardt, J. M. (2017). Computed Tomography Measure of Lung at Risk and Lung 
Function Decline in Chronic Obstructive Pulmonary Disease. American Journal of 
Respiratory and Critical Care Medicine, 196(5), 569-576. 
https://doi.org/10.1164/rccm.201701-0050OC  

Bhatt, S. P., Soler, X., Wang, X., Murray, S., Anzueto, A. R., Beaty, T. H., Boriek, A. M., Casaburi, 
R., Criner, G. J., Diaz, A. A., Dransfield, M. T., Curran-Everett, D., Galbán, C. J., Hoffman, 
E. A., Hogg, J. C., Kazerooni, E. A., Kim, V., Kinney, G. L., Lagstein, A., . . . Han, M. K. 
(2016). Association between Functional Small Airway Disease and FEV1 Decline in 
Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical 
Care Medicine, 194(2), 178-184. https://doi.org/10.1164/rccm.201511-2219OC  

Boes, J. L., Bule, M., Hoff, B. A., Chamberlain, R., Lynch, D. A., Stojanovska, J., Martinez, F. J., 
Han, M. K., Kazerooni, E. A., Ross, B. D., & Galban, C. J. (2015). The Impact of Sources 
of Variability on Parametric Response Mapping of Lung CT Scans. Tomography, 1(1), 69-
77. https://doi.org/10.18383/j.tom.2015.00148  

Boes, J. L., Hoff, B. A., Bule, M., Johnson, T. D., Rehemtulla, A., Chamberlain, R., Hoffman, E. 
A., Kazerooni, E. A., Martinez, F. J., Han, M. K., Ross, B. D., & Galbán, C. J. (2015). 
Parametric Response Mapping Monitors Temporal Changes on Lung CT Scans in the 
Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS). 
Academic Radiology, 22(2), 186-194. https://doi.org/10.1016/j.acra.2014.08.015  

Galbán, C. J., Han, M. K., Boes, J. L., Chughtai, K. A., Meyer, C. R., Johnson, T. D., Galbán, S., 
Rehemtulla, A., Kazerooni, E. A., Martinez, F. J., & Ross, B. D. (2012). Computed 
tomography–based biomarker provides unique signature for diagnosis of COPD 
phenotypes and disease progression. Nature Medicine, 18(11), 1711-1715. 
https://doi.org/10.1038/nm.2971  

Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived 
with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a 
systematic analysis for the Global Burden of Disease Study 2015. (2017). The Lancet. 
Respiratory Medicine, 5(9), 691-706. https://doi.org/10.1016/S2213-2600(17)30293-X  

Han, M. K., Agusti, A., Calverley, P. M., Celli, B. R., Criner, G., Curtis, J. L., Fabbri, L. M., Goldin, 
J. G., Jones, P. W., MacNee, W., Make, B. J., Rabe, K. F., Rennard, S. I., Sciurba, F. C., 
Silverman, E. K., Vestbo, J., Washko, G. R., Wouters, E. F. M., & Martinez, F. J. (2010). 
Chronic Obstructive Pulmonary Disease Phenotypes. American Journal of Respiratory 
and Critical Care Medicine, 182(5), 598-604. https://doi.org/10.1164/rccm.200912-
1843CC  

Hoff, B. A., Pompe, E., Galbán, S., Postma, D. S., Lammers, J.-W. J., ten Hacken, N. H. T., 
Koenderman, L., Johnson, T. D., Verleden, S. E., de Jong, P. A., Mohamed Hoesein, F. 
A. A., van den Berge, M., Ross, B. D., & Galbán, C. J. (2017). CT-Based Local Distribution 
Metric Improves Characterization of COPD. Scientific Reports, 7(1), 2999. 
https://doi.org/10.1038/s41598-017-02871-1  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2023. ; https://doi.org/10.1101/2023.05.26.23290532doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.26.23290532
http://creativecommons.org/licenses/by-nc-nd/4.0/


Labaki, W. W., Gu, T., Murray, S., Hatt, C. R., Galban, C. J., Ross, B. D., Martinez, C. H., Curtis, 
J. L., Hoffman, E. A., Pompe, E., Lynch, D. A., Kazerooni, E. A., Martinez, F. J., & Han, 
M. K. (2019). Voxel-Wise Longitudinal Parametric Response Mapping Analysis of Chest 
Computed Tomography in Smokers. Acad Radiol, 26(2), 217-223. 
https://doi.org/10.1016/j.acra.2018.05.024  

Legland, D., Kiêu, K., & Devaux, M.-F. (2007). COMPUTATION OF MINKOWSKI MEASURES 
ON 2D AND 3D BINARY IMAGES. Image Analysis & Stereology, 26(2), 83-92. 
https://doi.org/10.5566/ias.v26.p83-92  

Mannino, D. M., & Buist, A. S. (2007). Global burden of COPD: risk factors, prevalence, and future 
trends. The Lancet, 370(9589), 765-773. https://doi.org/10.1016/S0140-6736(07)61380-4  

McDonough, J. E., Yuan, R., Suzuki, M., Seyednejad, N., Elliott, W. M., Sanchez, P. G., Wright, 
A. C., Gefter, W. B., Litzky, L., Coxson, H. O., Paré, P. D., Sin, D. D., Pierce, R. A., Woods, 
J. C., McWilliams, A. M., Mayo, J. R., Lam, S. C., Cooper, J. D., & Hogg, J. C. (2011). 
Small-Airway Obstruction and Emphysema in Chronic Obstructive Pulmonary Disease. 
New England Journal of Medicine, 365(17), 1567-1575. 
https://doi.org/10.1056/NEJMoa1106955  

Rabe, K. F., Hurd, S., Anzueto, A., Barnes, P. J., Buist, S. A., Calverley, P., Fukuchi, Y., Jenkins, 
C., Rodriguez-Roisin, R., van Weel, C., & Zielinski, J. (2007). Global Strategy for the 
Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. 
American Journal of Respiratory and Critical Care Medicine, 176(6), 532-555. 
https://doi.org/10.1164/rccm.200703-456SO  

Ram, S., Verleden, S. E., Bell, A. J., Hoff, B. A., Labaki, W. W., Murray, S., Vanaudenaerde, B. 
M., Vos, R., Verleden, G. M., Kazerooni, E. A., Galbán, S., Hatt, C. R., Han, M. K., Lama, 
V. N., & Galbán, C. J. (2022). Quantitative CT Correlates with Local Inflammation in Lung 
of Patients with Subtypes of Chronic Lung Allograft Dysfunction. Cells, 11(4), 699. 
https://www.mdpi.com/2073-4409/11/4/699  

Regan, E. A., Hokanson, J. E., Murphy, J. R., Make, B., Lynch, D. A., Beaty, T. H., Curran-Everett, 
D., Silverman, E. K., & Crapo, J. D. (2011). Genetic Epidemiology of COPD (COPDGene) 
Study Design. COPD: Journal of Chronic Obstructive Pulmonary Disease, 7(1), 32-43. 
https://doi.org/10.3109/15412550903499522  

Wan, E. S., Castaldi, P. J., Cho, M. H., Hokanson, J. E., Regan, E. A., Make, B. J., Beaty, T. H., 
Han, M. K., Curtis, J. L., Curran-Everett, D., Lynch, D. A., DeMeo, D. L., Crapo, J. D., 
Silverman, E. K., & Investigators, C. O. (2014). Epidemiology, genetics, and subtyping of 
preserved ratio impaired spirometry (PRISm) in COPDGene. Respir Res, 15, 89. 
https://doi.org/10.1186/s12931-014-0089-y  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2023. ; https://doi.org/10.1101/2023.05.26.23290532doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.26.23290532
http://creativecommons.org/licenses/by-nc-nd/4.0/

