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Abstract 

 

Postural instability as a symptom of progressing Parkinson’s disease (PD) greatly reduces 

quality of life. Hence, early detection of postural impairments is crucial to facilitate 

interventions. Our aim was to use a convolutional neural network (CNN) to differentiate 

people with early to mid-stage PD from healthy age-matched individuals based on 

spectrogram images obtained from their body movement. We hypothesized the time-

frequency content of body sway to be predictive of PD, even when impairments are not yet 

manifested in day-to-day postural control. We tracked their center of pressure (COP) using a 

Wii Balance Board and their full-body motion using a Microsoft Kinect, out of which we 

calculated the trajectory of their center of mass (COM). We used 30 s-snippets of motion data 

from which we acquired wavelet-based time-frequency spectrograms that were fed into a 

custom-built CNN as labeled images. We used binary classification to have the network 

differentiate between individuals with PD and controls (n=15, respectively). Classification 

performance was best when the medio-lateral motion of the COM was considered. Here, our 

network reached an average predictive accuracy of 98.45 % with a receiver operating 

characteristic area under the curve of 1.0. Moreover, an explainable AI approach revealed 

high frequencies in the postural sway data to be most distinct between both groups. Our 

findings suggest a CNN classifier based on cost-effective and conveniently obtainable 

posturographic data to be a promising approach to detect postural impairments in early to 

mid-stage PD and to gain novel insight into the subtle characteristics of impairments at this 

stage of the disease. 
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Introduction 

 

With the ongoing demographic transition towards an increasingly elderly population in 

western industrialized countries, neurodegenerative diseases, typically occurring with old 

age, are becoming increasingly common.  Second only to Alzheimer’s, Parkinson’s disease 

(PD) currently affects around 1% of the population over 60 (Elbaz et al., 2016; Tysnes & 

Storstein, 2017) and is predicted to affect around 3% of the world population over 65 by 2030 

(Palakurthi & Burugupally, 2019). Postural instability is considered one of the most disabling 

features of PD and at later stages highly increases the risk of falls, thereby strongly reducing 

the quality of life of those affected (Benatru et al., 2008; Bloem, 1992; Doná et al., 2016; 

Grimbergen et al., 2009; Horak, 2006; Hwang et al., 2016; Kim et al., 2013). There is still no 

cure for the disease, which makes it important to detect and predict impending balance 

impairments as early as possible. This would allow for timely countermeasures to facilitate 

treatment and decelerate symptoms, as there is evidence for positive effects of exercise and 

specific balance training on postural control (Allen et al., 2022), and it has also been shown 

that neuroprotective and neuromodulatory therapies may have the potential to delay disease 

progression in the future (Holford & Nutt, 2008; Sarkar et al., 2016). 

Most of the symptoms are to this date evaluated in simple gold-standard clinical tests, 

performed by a clinician with the help of reference frameworks like the Movement Disorder 

Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) (Goetz et al., 2008; Landers et 

al., 2008; Siderowf et al., 2002) and the Hoehn and Yahr scale (Hoehn & Yahr, 1967). Even 

though scales like the UPDRS score have been attested a good test-retest reliability (Siderowf 

et al., 2002), most clinical balance ratings within these frameworks remain (semi-)subjective 

and might be biased by various outside circumstances that do not reflect the current state of 

the disease (Evers et al., 2019; Liu et al., 2022). For instance, common clinical balance tests 

have been shown to be insensitive to mild impairments (Ebersbach et al., 2006) and to have 

a poor sensitivity as well as trial-to-trial stability (Dibble & Lange, 2006; Luque-Casado et al., 

2021). In addition, motor symptoms visible to a clinician during these tests typically occur at 

later stages of the disease, while it has been suggested that postural impairments might 

already be present in the early motor phase and that they might bear the potential as a pre-

diagnostic tool to detect the disease (Beuter et al., 2008; Chastan et al., 2008). Hence, there 
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is a strong need for objective and easy to obtain measures of postural control to assist clinical 

testing of PD (Palakurthi & Burugupally, 2019). 

This is why in recent years many studies were trying to find objective static and dynamic 

measures of postural control that distinguish individuals with PD from healthy controls (HC). 

However, results thus far have been contradictory, which has mainly been attributed to the 

wide heterogeneity of affected individuals and wide variety of study designs (Kamieniarz et 

al., 2018). A further limitation in the case of static balance control remains that most studies 

so far only investigated spatiotemporal aspects of posturographic balance measures in clinical 

populations (Kamieniarz et al., 2018). Though, a few recent studies successfully distinguished 

between individuals with PD at various stages and HC as well as between PD subtypes based 

on the frequency content of their COP trajectories during quiet stance (Kamieniarz et al., 

2021; Rezvanian et al., 2018; Rocchi et al., 2006). This makes evaluation of the frequency 

domain of body sway signals during static balance control a promising candidate to detect 

features of static posturography that are unique to PD.  

There has been a recent rise in using machine learning techniques to evaluate various aspects 

of PD. In a recent review, Mei and colleagues surveyed 209 studies within the machine 

learning literature focusing on classification of PD. The most used data types were voice 

recordings, gait patterns, hand writings and MRI imaging, resulting in prediction accuracies 

between 80% and 100% (Mei et al., 2021). In terms of static balance assessments, different 

machine learning algorithms have been compared on various features of COP sway recorded 

during quiet standing, leading to prediction accuracies between 64% and 83.9% (Fadil et al., 

2021; Li et al., 2020). Recent studies have also used deep learning approaches, where 

computational models are composed of multiple processing layers to learn representations 

of data with multiple levels of abstraction (Lecun et al., 2015). Convolutional neural networks 

(CNN) constitute a widely established deep learning algorithm for image classification, with 

an architecture somewhat similar to the ventral cortical stream of the human visual system 

and consist of various layers that use learnable filters for feature extraction (Krizhevsky et al., 

2017; Lecun et al., 2015). CNN approaches have been used in the context of PD based on brain 

imaging data like SPECT, MRI, and PET, but also successfully on physiological data like gait 

patterns, handwritings, and speech (Loh, Hong, et al., 2021). CNNs also show great potential 

when being used on spectrogram data based on time-frequency representations of 

spatiotemporal signals. This has been applied to audio signals (Dayal et al., 2022), speech 
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recognition (Badshah et al., 2017), but even in the context of gait classification (Jung et al., 

2019). In clinical contexts with PD, recent studies have used this approach on EEG data (Khare 

et al., 2021; Loh, Ooi, et al., 2021). 

Taken together, these studies prove a wide range of potential applications of machine 

learning to determine biomarkers of PD from diagnostic data. However, the majority utilized 

data obtained in laboratory experiments which require expensive hardware and trained 

experts performing elaborate protocols, resources most often not available to general 

practitioners or medical practitioners, especially in disenfranchised countries (Dotchin & 

Walker, 2012). Hence, there remains demand for a high-performing approach which is based 

on easily and quickly obtainable data that does not require elaborate experimental setups. 

Given the persisting lack of suitable objective measures to assist clinical balance assessment 

in PD and the promising application of machine learning methods to various aspects of the 

disease, the aim of our study was to develop a CNN classifier trained on short excerpts of 

static posturographic data that will be able to generalize for new subjects based on a quick 

and easy assessment. For this purpose, we recorded the COP and COM trajectories of 

individuals with PD and age-matched HC during quiet standing using mobile and cost-effective 

devices (Engel, Schwenk, et al., 2021; Engel, Student, et al., 2021; Student et al., 2022) and 

trained a custom-built CNN to distinguish both groups based on the time-frequency content 

represented as spectrogram images. Moreover, along the urgent need of explainable AI, we 

used a GradCAM approach (Selvaraju et al., 2020) to understand which frequencies in the 

postural sway data were vital to the classifier’s decision. We hypothesized that a CNN trained 

on time-frequency spectrogram images acquired during short episodes of quiet stance can 

reliably distinguish individuals with early to mid-stage PD from age-matched HC subjects and 

thus bears great potential not only for future clinical applications, but also for a better 

understanding of standing posture in PD. 
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Results 

 

Prediction Performance 

 

Table 1 displays the prediction performance of our network for the COP and COM measures 

in the anterior-posterior (a-p) and medio-lateral (m-l) directions, respectively, averaged over 

250 training sessions with randomized train- and test set assignments of individual subjects 

(see Methods). While the network was able to achieve high accuracies in single training 

sessions when trained on the COP data, average test accuracy reached about 75 % for the m-

l direction and only around 70 % for the a-p direction, with a large heterogeneity in 

performance showing in the high standard deviations (SD) of 11.3 % and 14.3 %, respectively. 

The receiver operating characteristics area under the curves (ROC AUC) reached values of 0.8 

and 0.75, respectively, again with large variability (Table 1). The network performed 

significantly better when trained on the COM data. Here, average test accuracy was 90.2 % 

for data obtained from the a-p direction, however, again with a high SD of 10.2 %, indicating 

large variability in performance. In this direction, ROC AUC was 0.95 with a SD of 0.09.  When 

trained on the COM data obtained from the m-l direction, the network’s performance was by 

far best, reaching an average test accuracy of 98.5 % with a small SD of 3.6 %, indicating an 

excellent predictive performance which proved to be consistent across training sessions. 

Here, the ROC AUC was 0.995 on average, with a small SD of 0.026, again indicating highly 

reliable performance. Figure 1 shows our network’s performance based on the medio-lateral 

COM data during training. Evaluation on both the training and test sets shows a monotonous 

decrease of the loss function after about 200 training epochs. For the test set, containing 

images that the network has never seen before, this indicates robust training without 

overfitting on the training data. On average, training and test accuracies start increasing after 

about 50-100 training epochs, both reaching a plateau of maximum performance after about 

600 epochs (Fig. 1A). Remarkably, our network's performance was almost identical between 

the train and the test set. This indicates that it performs as well on novel data as it does on 

data it has been trained with. Panel B of Figure 1 shows the receiver operating characteristic 

curves of the five best-performing models. These revealed that our network can reach 

excellent sensitivity for all thresholds of false negative rates, indicating close to perfect skill 

in the decision process. 
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To ascertain that our network’s performance was based on an actual difference in the data 

between both groups, we created additional data sets with shuffled labels on which we 

trained another 250 models, again each time with random assignment of participants to the 

train and test set. The performance of the models trained with randomly labeled data is 

compared to the performance when trained on actual data in Figure 1C. Without label 

information, test accuracy after 1000 epochs of training remained around chance level. There 

was a significant difference in test accuracy across 250 models between the actual and 

shuffled data sets (p < 0.0001). 

 

Gradient class activation maps (GradCAM) 

 

Since our network reached excellent performance on the spectrograms obtained from medio-

lateral sway of the COM, we applied gradient-based class activation maps (GradCAM) to 

obtain insight into the decision process of the network, i.e., to understand which sections of 

the spectrograms were relevant for the network’s decision whether data came from an 

individual with PD or a HC. We calculated the GradCAMs for the five best-performing models 

(test accuracies of 100%). For each model, we used the complete batch of test set images 

(between 402 and 474 depending on the model, due to some trials being discarded, see 

Methods) and averaged them over each decoded class. The results can be seen in Figure 2. 

As all models show, in cases where the image was classified to come from an individual with 

PD (Fig. 2, right column), most pixels representing the higher frequency bands between about 

0.5 Hz and 5 Hz were given the largest weights. Three of the models (#51, #119, #148) had 

their largest weights around 1 Hz, whereas the remaining two (#79, #183) had the largest 

gradients at frequencies above 2 Hz. Noteworthy, weights remained consistent over time in 

all models. When the models classified a control subject (Fig. 2, left column), weights were 

on average much lower and more evenly distributed across the spectrograms. However, here, 

all models shared a narrow band of highest gradients at around 2.5 Hz. 
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Discussion 

 

In our study, we developed a CNN classifier trained on short (5s) excerpts of static 

posturographic data obtained from individuals with PD and healthy age-matched control 

subjects with mobile and cost-effective equipment. We used a custom-built network to 

distinguish between individuals of both groups based on the time-frequency content of their 

COP and COM trajectories during quiet stance, represented as spectrogram images. 

Moreover, we used GradCAMs as an explainable AI approach to investigate which sections of 

the spectrograms were vital for each model’s decision. We found our network to reach 

excellent classification performance when trained on medio-lateral body sway data obtained 

from participants’ COM. Our best-performing models exhibited a test accuracy of 100 % with 

a ROC AUC of 1.0. This made us confirm our hypothesis that there are differences in the 

frequency content of body sway signals between both groups that are reliably detectable with 

a computer vision approach. Besides, applying the GradCAM technique allowed us to obtain 

interpretable insight into the network’s decision process by revealing that frequency bands 

between 0.5 Hz and 5 Hz were most predictive for individuals with PD. 

We tested our network on postural sway data during quiet standing analyzed at two common 

postural sway parameters, the COP and COM. This revealed that decision performance was 

by far best when based on the COM data in the medio-lateral direction (Table 1). The fact that 

our network performed best on data obtained from medio-lateral body sway appears 

plausible as PD motor symptoms are lateralized, especially in early disease stages (Djaldetti 

et al., 2006; Riederer et al., 2018). This finding indicates a larger difference in the time-

frequency spectrograms between the groups and confirms various studies in the literature 

that used conventional analyses in the spatiotemporal realm. For instance, it has been found 

that individuals with PD show increased postural sway and stochastic activity in their medio-

lateral postural sway in static balance assessments (Błaszczyk et al., 2007; Błaszczyk & 

Orawiec, 2011; Chastan et al., 2008; Mitchell et al., 1995; Stylianou et al., 2011), which lead 

to the suggestion that lateral instability may be an important posturographic marker of 

functional balance impairment in PD (Błaszczyk et al., 2007; Mitchell et al., 1995; Rocchi et 

al., 2006). This has been confirmed in a recent study using spatiotemporal analyses, where it 

was found that investigation of the medio-lateral direction of postural sway was best suited 

to differentiate between individuals with PD and HC (Sebastia-Amat et al., 2023). Moreover, 
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as all people with PD who participated in our study received L-dopa at the time of testing, 

there is evidence that L-dopa has negative effects on medio-lateral stability more so than on 

anterior-posterior stability, possibly increasing distinguishability for our deep learning models 

(e.g., Rocchi et al., 2006). 

Our GradCAMs (Fig. 2) revealed that, on average, our models ‘looked’ at different areas in the 

spectrograms each time they classified a healthy subject, but that they ‘looked’ at very similar 

areas each time they classified a person with PD, which indicates that the latter share a 

common postural trait. This postural trait seems to be reflected in the higher frequency 

components of their postural sway during quiet stance. Biomechanically, higher frequencies 

have been associated with increased stiffness around the ankle joint (Warnica et al., 2014), 

that might be explained by the increased rigidity commonly associated with PD (Chastan et 

al., 2008; Engel, Student, et al., 2021). In terms of central-nervous processing of balance 

control, three frequency bands are usually associated with involvement of specific neuronal 

loops: 0 - 0.5 Hz for visuo-vestibular regulation, 0.5 - 2 Hz for cerebellar participation, and 2 - 

20 Hz for proprioceptive participation (Fadil et al., 2021; Paillard & Noé, 2015). Since our 

models detected differences between individuals with PD and HC mostly in the frequency 

bands between 0.5 Hz and 5 Hz, this might reflect impairments in the latter two central-

nervous loops: The lower range of the most distinctive frequency bands might represent 

altered cerebellar activity in PD, which has been suggested to be pathological or 

compensatory (Mirdamadi, 2016; Wu & Hallett, 2013). The higher range of the most 

distinctive frequency bands, on the other hand, might reflect impaired proprioceptive 

processing, which is also commonly associated with PD (Abbruzzese & Berardelli, 2003; 

Benatru et al., 2008; Jacobs & Horak, 2006). Noteworthy, our wavelet-based frequency 

spectrograms were only calculated up to 5 Hz. Since the largest gradients in some GradCAMs 

seem to exceed this range (Fig. 2), future investigation inspecting higher frequencies might 

show stronger correlations also with those frequencies. The frequency bands revealed by our 

GradCAMs have a slight overlap with those of the slow resting-tremor commonly associated 

with PD, which manifests between 4 – 7 Hz (Rivlin-Etzion et al., 2006). However, only two of 

our five best-performing models (#79, #183) had their largest gradients within this frequency 

range. Moreover, we checked for tremor frequencies in the hand motion of all participants. 

This revealed that two of the individuals with PD exhibited a tremor, one of them in only one 

hand. In both cases, the tremor frequency was around 5 Hz, as reported in the literature. 
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Thus, since only two out of 18 participants with PD exhibited a tremor, which in addition was 

located at the outer frequency limit of our spectrograms, we exclude tremor as potential 

cause for the high gradients in the individuals with PD. This suggests the selectivity for those 

frequency bands to stem from postural motion. Another trait that is shared between all 

GradCAMs constitutes the weight consistency across time. On average, there seems to be no 

relevant temporal information in the spectrograms for the network’s decision process. On the 

physiological side, this means that the frequency content of postural sway during quiet stance 

seems to remain stable over time, for individuals with PD and healthy adults alike. In terms 

of classification, in our case, this means that simpler classifiers trained on 1-D frequency data 

might be sufficient, with the additional advantage of even larger sample sizes, since singular 

time points could be used.  

Our study was mostly limited due to the small number of participants. Even though the 

heterogeneity in our group of people with PD regarding their age, disease progression and 

dose of medication reflected the general population with early to mid-stage PD, our small 

sample size might have introduced biases. For instance, as can be seen in Table 1, even when 

based on medio-lateral COM data, classification performance of our models occasionally 

dropped below 70 %. This indicates that there were participants who shared characteristics 

across groups. However, given our generally robust results and the consistent imagery 

obtained from the GradCAMs, this shows that our methods were able to capture common 

traits that were unique to people with PD. If these results can be confirmed in large-scale 

studies, our deep learning model has the potential to reliably detect postural impairments in 

PD in the general population. Another limitation constitutes that all subjects with PD who 

participated in our study have already been diagnosed for a longer time and were already 

receiving treatment. If our model was able to find differences in people with de-novo PD, this 

would mark a large step towards assisting clinicians in initial assessments. In addition, 

distinguishability between the groups might be enhanced by having participants close their 

eyes during the recording or standing on non-firm ground, since due to their reduced 

proprioception, individuals with PD have been found to have increased reliance on vision 

(Abbruzzese & Berardelli, 2003; Benatru et al., 2008; Keijsers et al., 2005). Large-cohort 

studies with recently diagnosed individuals under more challenging conditions are currently 

in planning. 
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Lastly, there is evidence that dynamic balance control, e.g., in response to external stimuli, is 

better suited for distinction of people with PD from healthy controls (Benatru et al., 2008; 

Nardone & Schieppati, 2006). However, investigating dynamic balance scenarios usually 

requires much higher technical and experimental effort. Our models were not better at 

distinguishing between the groups based on data taken from the dynamic conditions of our 

previous studies (Engel, Student, et al., 2021; Student et al., 2022). This is remarkable, since 

it renders the bulk of the setup obsolete. Obtaining the trajectory of the COM during quiet 

standing only requires the Kinect, a single, cost-effective device. This means, our deep 

learning approach is able to classify individuals with PD from healthy controls with 

significantly reduced experimental effort when compared to conventional methods, requiring 

only 30 s or less of data recording.  

 

Conclusion 

 

Using a convolutional neural network to classify individuals with early to mid-stage PD based 

on the frequency content of their body sway during quiet standing allowed us not only to 

predict postural instability in PD with excellent accuracy, but also revealed that postural 

impairments are reflected in specific frequency bands. Since these findings are backed by the 

literature, this proves our explainable AI approach (GradCAM) to provide meaningful insight 

into posturographic data. As our results can be achieved with short recording times and 

minimal experimental effort, this study design can easily and conveniently be applied on large 

scales. Overcoming current limitations, our method thus bears large potential to deepen our 

understanding of postural instability in PD and to facilitate clinical evaluation of the disease. 
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Methods 

 

Participants 

We assessed a group of 18 individuals with PD (age: range: [42-76]; mean ± standard 

deviation: 58.10 ± 8.66) in early to moderate disease stages (Hoehn and Yahr: ([1-3]; 1.94 ± 

0.70 (Hoehn & Yahr, 1967) with a mean disease duration of 4.8 years ([0-15]; 4.79 ± 4.71)) 

who were diagnosed according to the Movement Disorder Society diagnostic criteria 

(Postuma et al., 2015). To be included into the study, individuals with PD had to be able to 

walk without any assistance and not have more than one reported fall in the year prior to the 

study. Also, no Freezing of Gait was to occur neither in the preliminary clinical examinations 

nor during the measurement. All individuals with PD were measured while being “on” their 

regular dose of dopaminergic medication (Levodopa Equivalent Daily Dose (LEDD): [105-

1980]; 651.63 ± 529.97). Detailed information on the individuals recruited for our PD group 

can be found in our previous work (Student et al., 2022). For the control group (healthy 

controls, HC), we recruited fifteen age-matched healthy adults (age: [49-70]; 59.80 ± 6.45). 

General exclusion criteria were any existing neurological (e.g., neuropathies, epilepsy, 

multiple sclerosis, schizophrenia, severe, depression, dementia etc.) disorders or orthopedic 

conditions that might affect upright stance and balance control (e.g., hip, spine, knee, etc.).  

Potential cognitive impairment was evaluated prior to the study based on the Montreal 

Cognitive Assessment with a cut-off score of 24 point (Ciesielska et al., 2016). All subjects had 

normal or corrected to normal vision. All participants gave written informed consent prior to 

the experiment, including about the storage and processing of their data. Experimental 

procedures involving healthy individuals were approved by the Ethics Committee of the 

Psychology Department, University of Marburg. Research including individuals with PD was 

approved by the Ethics Committee of the Faculty of Medicine, University of Marburg (Case 

77/19). All research was conducted in accordance with the Declaration of Helsinki. 

 

Experimental Setup 

Experimental data for this study was acquired as part of two previous studies (Engel, Student, 

et al., 2021; Student et al., 2022). Participants stood on a Wii Balance board (WiiBB, Nintendo, 

Kyoto, Japan) to track their COP. Wearing no shoes, they were instructed to position their 

feet about shoulder width apart, about parallel on the ground. In one experimental condition, 

participants were to stand quietly with eyes open in a virtual 3-D environment, which 
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consisted of a tunnel stretching in the anterior-posterior direction. During trials, they were 

instructed to stand relaxed with their arms hanging loosely at their sides. They had to fixate 

a target in the center of the far end of the tunnel to ensure their gaze remained straight 

ahead. In this manner, this condition simulated quiet standing in a natural environment with 

eyes open. One trial of measurement lasted for 30 seconds and was preceded and followed 

by resting periods where participants could relax and stretch as long as they needed. Each 

participant performed a total of 10 trials. To track their body motion, we used a Kinect v2 

video-based motion tracking system (Microsoft, Redmond, WA, USA) which recorded the 3D-

positions of 25 different ‘body joints’ as determined by an internal algorithm. The camera was 

located 210 cm in front of the participants and fixed at a height of 140 cm. The visual 

environment was presented through a head-mounted virtual reality headset (HTC Vive, HTC, 

New Taipei City, Taiwan). The frame rate was 90 Hz. The field of view extended over 110° in 

the vertical as well as in horizontal direction. Participants were secured by a harness which 

was attached to the ceiling. We ensured that the harness guaranteed subjects’ safety but was 

not providing lift during trials. For a more detailed description and depictions of the technical 

setup and experimental protocol, please refer to our previous work (Engel, Student, et al., 

2021; Student et al., 2022). 

 

Data processing, architecture, and evaluation 

Out of the WiiBB sensor data, we calculated the anterior-posterior (a-p) and medio-lateral 

(m-l) COP trajectories for each trial. The respective trajectories of the center of mass (COM) 

from the Kinect data were obtained based on the interpolated center positions of relevant 

body segments along with their attributed mass contributions, which were taken from 

anthropometric tables (Winter, 2009). Hence, our spatiotemporal data set consisted of two 

postural parameters, the COP and COM, with two spatial directions per parameter, the a-p 

and m-l directions of body sway, respectively. Data of each parameter and direction was 

resampled to 50 Hz using a custom-written Gaussian moving average filter with a symmetric 

window (sigma = 1/60 s), resulting in 1500 time points per 30 s-trial. We then performed a 

wavelet decomposition (generalized Morse wavelets, gamma: 3; 10 voices per octave; 

frequency range: [0.11 Hz - 5 Hz]) on all trajectory data to acquire time-frequency 

spectrograms for each trial. Subsequently, to obtain more data samples, the spectrograms 

were cut into 5 s-segments (250 time points), resulting in a total of 60 wavelet-based time-
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frequency spectrograms per subject (composed of 10 trials * 6 time segments) for each 

parameter and direction. Each spectrogram contained 2-D data (250 time points * 56 

frequency bands) with one energy value associated with each time-frequency point, 

representing the respective frequency power. The resulting spectrograms thus resembled 

56x250 px grayscale images with the energy values represented as pixel values (Fig. 3).  

Network training using the previously acquired spectrogram images was performed for each 

parameter (COP, COM) and direction (a-l, m-l) separately. Since one of our aims was to 

establish a system that can classify new subjects, the spectrograms from each group were 

split into train and validation sets on a per-subject basis.  Hence, all 60 spectrogram images 

of each participant were assigned either entirely to the train or validation set, respectively. 

Due to technical issues, 10% of the total trials in the PD group and 3% of the total trials in the 

HC group needed to be discarded, resulting in some participants providing less than 60 

samples (PD: n=7, HC: n=3). To avoid biases due to unequal group sizes, for each model we 

trained, only 15 out of the 18 subjects with PD were randomly selected, resulting in 15 

subjects in both groups. Subject data was labeled binarily regarding group. Subsequently, 11 

subjects from each group were assigned to the training set, while the remaining 4 subjects 

were assigned to the validation set (Fig. 4). Once assigned to the train and test sets, the pixel 

values of the spectrograms were normalized according to mean and standard deviation across 

all subjects. Importantly, the normalization coefficients obtained from the training set were 

applied to both train and test set. For cross-validation purposes and to facilitate 

generalizability, the per-subject assignment to each set was randomized before a new model 

was trained, resulting in different subjects in the respective train and test sets of each model 

we trained. 

We built a custom CNN using the PyTorch framework (Paszke et al., 2019). The feature 

extractor network consisted of three convolutional and three pooling layers, the classifier 

consisted of three dense layers ending in a binary classification between PD and HC (Fig. 4). 

Each model was trained on full data batches over 1000 epochs with a learning rate of 0.0001 

and slight regularization (weight decay = 0.001). We used an ADAM optimizer with cross-

entropy-loss. For each parameter and direction, we trained a total of 250 models, each time 

with newly assigned subjects in the test and validation set. We then evaluated the models on 

peak and average performance for each parameter and direction. Evaluation criteria were 

predictive accuracy on test set data as well as corresponding receiver operating 
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characteristics (ROC) curves with area under the curve (AUC) as performance measure. We 

also created a baseline performance to check whether the actual network performance was 

based on a true difference in the spectrograms between the groups.  For this purpose, we 

also trained 250 models with randomly assigned labels and performed the same evaluation 

as with the correctly labeled data sets. Network performance was compared with the baseline 

performance using t-tests on the test set accuracy after 1000 epochs of training across all 250 

models, respectively. We considered a p-value < 0.05 to reject the hypothesis that model 

performances between the shuffled and actual data sets came from the same distribution.  

To gain insight into the decision process of the trained models, we employed an explainable 

AI approach utilizing Gradient-weighted Class Activation Mapping (GradCAM, Selvaraju et al., 

2020). GradCAMs identify the gradient information flow into the decision layer for the 

decoded class from each pixel of the input. The output can be visualized by heatmaps of the 

same size as the input image. These heatmaps indicate areas on which the model is focusing 

for classification, identifying which parts of the input image contribute the most to the class 

decision in the decision layer. 
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Figures 

 

 

 

 

 
 
Fig. 1: Network performance on medio-lateral COM data. Panel A: Network performance indicated by total loss 

and classification accuracy evaluated on the train and test sets over 1000 epochs of training. Solid lines represent 

the average across 250 models with different subjects assigned to the train and test sets in each case. Shaded 

areas indicate standard error. Panel B: ROC curves of the 5 best-performing models evaluated after 1000 epochs. 

Panel C: Test accuracy after 1000 epochs of training. Results from 250 models trained with correctly labeled data 

versus shuffled labels. Each model trained with different subjects in the train and test set. Grey dots indicate 

single samples. Red crosses indicate outliers. 
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Fig. 2 Gradient class activation maps (GradCAM) of the last convolutional layer in the five best-performing 

models trained on medio-lateral COM data. Left panels show average GradCAMs for HC, right panels show 

GradCAMs for individuals with PD. Consistent across models, when an individual with PD was classified, large 

weights were given to the higher frequencies between 0.5 Hz and 5 Hz. When a HC was classified, average 

weights were much lower and more evenly distributed across the spectrograms. 
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Fig. 3 Data preprocessing. The time-course signals of the COP and COM trajectories underwent wavelet 

decomposition, resulting in spectrogram images with frequency power as a function of time and frequency. 

These spectrograms were then treated as grayscale images. Subsequently, each image was cut into six sections. 

The final samples constituted grayscale images with a size of 59x250 px. 

 
 

 

 

 

 

 
 

 

Fig. 4 Data pipeline and architecture. Data was split into train and test sets on a randomized per-subject basis. 

For each model that we trained, data from 11 participants out of each group, consisting of the corresponding 

60 sample images per participant, went into the training set. The remaining data went into the test set. The 

model was then trained and evaluated for 1000 epochs. We built a CNN with three convolutional and three 

pooling layers, feeding into a classifier network consisting of three fully-connected layers. 
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Tables 

 

 

 
Test Accuracy 

Average + SD 

Test Accuracy 

Best 

Test Accuracy 

Worst 

ROC AUC 

Average + SD 

ROC AUC 

Best 

ROC AUC 

Worst 

COPml 74.57 +/- 11.30 % 98.54 % 53.75 % 
0.7947 +/- 

0.1261 
0.9995 0.5297 

COPap 70.25 +/- 14.25 % 98.13 % 46.46 % 
0.7466 +/- 

0.1559 
0.9995 0.4379 

COMml 98.45 +/- 3.61 % 100 % 62.45 % 
0.9954 +/- 

0.0259 
1 0.6777 

COMap 90.21 +/- 10.22 % 100 % 58.11 % 
0.9455 +/- 

0.0865 
1 0.6171 

 
Table 1: CNN performance on data from each postural parameter and corresponding direction. Data based on 

250 models, each trained with data from different subjects in the train and test sets. 
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