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30 Abstract

31 The purpose of this study was to evaluate the reliability and validity of the raw 

32 accelerometry output from research-grade and consumer wearable devices compared to 

33 accelerations produced by a mechanical shaker table. Raw accelerometry data from a total of 40 

34 devices (i.e., n=10 ActiGraph wGT3X-BT, n=10 Apple Watch Series 7, n=10 Garmin 

35 Vivoactive 4S, and n=10 Fitbit Sense) were compared to the criterion accelerations produced by 

36 an orbital shaker table at speeds ranging from 0.6 Hz (4.4 milligravity-mg) to 3.2 Hz (124.7mg). 

37 For reliability testing, identical devices were oscillated at 0.6 and 3.2 Hz for 5 trials that lasted 2 

38 minutes each. For validity testing, devices were oscillated for 1 trial across 7 speeds that lasted 2 

39 minutes each. The intraclass correlation coefficient (ICC) was calculated to test inter-device 

40 reliability. Pearson product moment, Lin’s concordance correlation coefficient (CCC), absolute 

41 error, and mean bias were calculated to assess the validity between the raw estimates from the 

42 devices and the criterion metric. Estimates produced by the raw accelerometry data from Apple 

43 and ActiGraph were more reliable ICCs=0.99 and 0.97 than Garmin and Fitbit ICCs=0.88 and 

44 0.88, respectively. Estimates from ActiGraph, Apple, and Fitbit devices exhibited excellent 

45 concordance with the criterion CCCs=0.88, 0.83, and 0.85, respectively, while estimates from 

46 Garmin exhibited moderate concordance CCC=0.59 based on the mean aggregation method. 

47 ActiGraph, Apple, and Fitbit produced similar absolute errors=16.9mg, 21.6mg, and 22.0mg, 

48 respectively, while Garmin produced higher absolute error=32.5mg compared to the criterion 

49 based on the mean aggregation method. ActiGraph produced the lowest mean bias 0.0mg 

50 (95%CI=-40.0, 41.0) based on the mean aggregation method. Raw accelerometry data collected 

51 from Apple and Fitbit are comparable to ActiGraph. However, raw accelerometry data from 
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52 Garmin appears to be different. Future studies may be able to develop algorithms using device-

53 agnostic methods for estimating physical activity from consumer wearables. 
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54 Introduction

55 Over the past 20 years, the objective assessment of physical activity has improved due to 

56 the introduction of wearable monitors, such as accelerometers. Wearable monitors provide 

57 objective estimates of movement and overcome recall and desirability bias that may hamper self-

58 reported measures of physical activity [1, 2]. Best practice recommendations for using 

59 accelerometers have shifted over the last decade from traditional activity counts (accelerations per 

60 a given epoch) [3] to using raw accelerometry data from accelerometers (i.e., x-, y-, and z-axis 

61 accelerometry data in ɡ’s typically collected multiple times per second) to estimate physical 

62 activity [4].

63 Consumer wearables (e.g., Apple Watch, Fitbit, Garmin) are increasingly popular 

64 measurement tools for assessing physical activity. Not only are these devices equipped with 

65 accelerometers to capture movement, but they are also unobtrusive and designed to be worn on the 

66 wrist, targeted for comfort and style, affordable for consumers, rechargeable, waterproof, and can 

67 be designed for children [5-8]. Technological advances allow consumer wearables to also 

68 frequently have extended battery life (i.e., up to 54 days) [9] and remote data capture and 

69 monitoring. For these reasons, there has been a multitude of measurement studies that have 

70 explored the validity of physical activity estimates produced by consumer wearables [10, 11].  

71 However, these studies are limited because they rely on estimates of physical activity that 

72 are derived from proprietary algorithms developed by the companies that produce these devices 

73 (e.g., Apple, Garmin, Fitbit, etc.). This is a key limitation because these algorithms are unavailable 

74 for review by researchers [12]. The drawbacks of estimating physical activity based on proprietary 

75 algorithms are that it is unclear whether best practice recommendations were used to develop these 
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76 algorithms, and the algorithms could be updated by these companies at any time unbeknownst to 

77 the user. Thus, estimates of physical activity collected from the same device across time may 

78 provide different estimates of activity due solely to changes in the underlying algorithms that 

79 produce these metrics.

80 An alternative, device-agnostic or monitor-independent approach may address these 

81 limitations by enabling data from any device to be processed using the same algorithm or 

82 processing methodology [13, 14]. A device-agnostic approach is a realistic possibility as consumer 

83 wearables have released application programming interfaces (API) that allow access to the raw 

84 accelerometry data (i.e., x, y, z axis readings collected by these devices [15]. This has the potential 

85 to increase the comparability of physical activity estimates across time and between different 

86 consumer wearables and research-grade devices. 

87 A necessary first step to applying a device-agnostic approach to raw accelerometry data 

88 collected by consumer wearables is to conduct calibration studies that explore the reliability and 

89 validity of the underlying acceleration output produced by these devices [16]. This testing will 

90 provide insight into the reliability and validity of the raw acceleration output from consumer 

91 wearables in a controlled environment, prior to evaluating how human variation impacts the raw 

92 acceleration estimates from these devices [16]. Therefore, this study will evaluate the between-

93 device reliability and validity of the raw acceleration output from research-grade and consumer 

94 wearable devices, compared to accelerations produced by a mechanical shaker table at various 

95 speeds as the criterion measure. It is important to include research-grade devices in this study 

96 because it allows us to evaluate if the raw accelerometry estimates from consumer wearables are 

97 comparable to the raw accelerometry estimates of research-grade devices when compared to more 

98 direct estimates of acceleration from a mechanical shaker table. While studies have previously 
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99 examined the ActiGraph with this methodology [17, 18], this is the first study that we are aware 

100 of to report shaker table outcomes with consumer-grade devices.

101 Methods

102 Raw accelerometry data from a total of 40 devices were evaluated in this study. The 

103 research-grade devices included n=10 ActiGraph wGT3X-BT (ActiGraph; ActiGraph LLC 

104 Pensacola, FL). The consumer wearable devices included n=10 Apple Watch Series 7 (Apple; 

105 Apple Technology Company, Cupertino, CA), n=10 Garmin Viovactive 4S (Garmin; Garmin Ltd., 

106 Olathe, KS), and n=10 Fitbit Sense (Fitbit; Google LLC, San Francisco, CA). Inter-device 

107 reliability and validity of raw accelerations for all devices were tested, with accelerations produced 

108 by a mechanical shaker table (Scientific Industries, Bohemia, NY; Mini-300 Orbital-Genie, Model 

109 1500) as the criterion. Each device was securely mounted directly to the twin ratcheting clamps of 

110 a mechanical shaker table (Fig 1) that produces controlled oscillations at frequencies between 

111 approximately 𝑓𝑠ℎ𝑎𝑘𝑒𝑟=0.6 and 5 Hertz (Hz). We converted 𝑓𝑠ℎ𝑎𝑘𝑒𝑟 in Hz to acceleration using the 

112 expression for centripetal acceleration, 𝑎𝑜𝑟𝑏𝑖𝑡𝑎𝑙 = 𝑣2/𝑟𝑜𝑟𝑏𝑖𝑡𝑎𝑙 [19], where 𝑟𝑜𝑟𝑏𝑖𝑡𝑎𝑙 is the radius of 

113 rotation for the orbital shaker 𝑟𝑜𝑟𝑏𝑖𝑡𝑎𝑙. From the manual for this particular shaker (supplementary 

114 https://cdn.shopify.com/s/files/1/0489/6990/8374/files/SI-M1600_Manual.pdf?v=1617998279), 

115 the specified diameter of the orbit is 2𝑟𝑜𝑟𝑏𝑖𝑡𝑎𝑙=1.9cm and the rotational speed is given by 𝑣 = 2𝜋

116 𝑟𝑜𝑟𝑏𝑖𝑡𝑎𝑙𝑓𝑠ℎ𝑎𝑘𝑒𝑟, since for each complete cycle of 2𝜋 radians, the table traverses a distance of 

117 circumference 2𝜋𝑟𝑜𝑟𝑏𝑖𝑡𝑎𝑙 in time 1/𝑓𝑠ℎ𝑎𝑘𝑒𝑟. In other words:

118 𝑎𝑜𝑟𝑏𝑖𝑡𝑎𝑙(𝑐𝑚/𝑠2) = 4𝜋2𝑟𝑜𝑟𝑏𝑖𝑡𝑎𝑙𝑓2
𝑠ℎ𝑎𝑘𝑒𝑟

119 to convert this acceleration to units of earth’s gravity (g’s), divide 𝑎𝑜𝑟𝑏𝑖𝑡𝑎𝑙 by 9.81cm/s2. 
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120 A total of five devices were placed on the shaker table at once. Serial number/device ID and 

121 position of devices (numbered 1 to 5 from left to right) were recorded for all devices. Prior to each 

122 trial, the shaker table was placed on a level surface (i.e., floor); time from each device was recorded 

123 at the second level.

124 Figure 1. Orbital mechanical shaker used for shaker testing.

125 Device software 

126 ActiGraphs were initialized to provide output from each directional axis using ActiLife 

127 software (version 6.13.4; ActiGraph LLC, Pensacola, FL). Garmin devices were initialized, and 

128 data were recorded in RawLogger (version 1.0.20211201a) and exported through Garmin Connect 

129 softwareTM. Apple devices were initialized, and data were recorded in SensorLog (version 5.2) and 

130 exported into comma-separated values (CSV) files via Health Auto Export (version 6.3). 

131 RawLogger and SensorLog are user-written apps that leverage the device-specific Application 

132 Programming Interface (API) to collect the underlying sensor data on the respective devices. 

133 RawLogger is available for download through the Connect IQTM store on the Garmin ConnectTM 

134 app, and SensorLog and Health Auto Export are available for download through the App Store. 

135 The research team developed a custom Fitbit app (Slog) leveraging the Fitbit API for the same 

136 purpose, and Fitbit devices were initialized, and data were recorded and exported through this app. 

137 The GitHub code for the custom Fitbit app is available at 

138 https://github.com/ntindallUSC/Slog/tree/main. Sampling frequencies from 25 Hz to 100 Hz were 

139 recorded based on the capabilities of the ActiGraph (100 Hz), Apple (100 Hz), Garmin (25 Hz), 

140 and Fitbit (50 Hz).

141 Reliability testing
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142 Reliability testing included five identical devices mounted side-by-side (e.g., 5 ActiGraph 

143 devices) positioned 1-5. Each device was tested for five 2-minute trials at 0.6 Hz and 3.2 Hz for a 

144 total of 10 trials until all devices were tested. A 15-second rest period took place at the beginning 

145 and end of each trial. Thus, it took ten minutes and 30 seconds to test 5 devices at one speed. The 

146 time of the 15-second rest periods and the trial start and end time were recorded based on device 

147 time. A minimum of 20 trials were conducted for each device brand, totaling 80 trials. Trials with 

148 missing data due to device malfunction: Apple (n=20) and Fitbit (n=10) were repeated to ensure 

149 that raw acceleration data from all devices could be analyzed; no trials had to be repeated for 

150 ActiGraph and Garmin devices. 

151 Validity testing

152 For validity testing, five identical devices were mounted side-by-side until all devices were 

153 run through the validity trials. The trials lasted 14 minutes and 30 seconds. Consistent with past 

154 validation studies [18, 20], each trial began with a 15-second rest period (i.e., no movement) 

155 followed by a standardized series of oscillations at seven frequencies (i.e., 3.2 Hz, 2.8 Hz, 2.4 Hz, 

156 1.9 Hz, 1.5 Hz, 1.0 Hz, 0.6 Hz) lasting two minutes each. These frequencies were chosen because 

157 they are consistent with human movement ranging from 1.5 to 16 mph [21]. The start and stop 

158 times were noted at each frequency for both research-grade and consumer wearable devices. Each 

159 trial ended with another 15-second rest period. A minimum of 2 trials were conducted for each 

160 device brand, totaling 8 trials. Trials/devices with missing data due to device malfunction: Apple 

161 (n=4) and Fitbit (n=1) or shaker table malfunction (n=1) were repeated to minimize missing data; 

162 no trials had to be repeated for ActiGraph or Garmin devices. Following all testing, raw 

163 acceleration data for both research-grade and consumer wearable devices were downloaded and 
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164 converted to a CSV file using ActiLife software and the device-specific user-written apps, 

165 respectively.

166 Data processing

167  Raw acceleration data from all devices (i.e., ActiGraph, Apple, Garmin, and Fitbit) were 

168 extracted from the middle minute of each 2-minute oscillation frequency. Consistent with past 

169 research, Euclidean Norm Minus One (ENMO) was calculated [4, 5]. All values were multiplied 

170 by 1000 (milligravity-mg) to be consistent with published intensity thresholds based on the GGIR 

171 package for accelerometry in R statistical software [22]. Data were aggregated to the second level 

172 by extracting the mean and root mean square (RMS) value for each second for all devices for 

173 ENMO. Both mean and RMS were calculated as both methods have been calculated previously, 

174 which suggests that there is no consensus on how raw accelerometry data should be aggregated 

175 [18, 20, 23]. 

176 Correlation coefficients

177  To test reliability, a single, absolute intraclass correlation coefficient (ICC) was calculated 

178 for all devices. ICC values less than 0.50 were defined as poor reliability, between 0.50 and 0.75 

179 as moderate reliability, between 0.75 and 0.90 as good reliability, and greater than 0.90 as excellent 

180 reliability [24]. Prior to statistical analyses for validity testing, descriptive means and standard 

181 deviations for the mean and RMS were calculated across devices for each speed ranging from 0.6 

182 to 3.2 Hz.  For the validity testing, Pearson product moment (r) and Lin’s concordance correlation 

183 coefficient (CCC) were calculated to assess correlation and agreement of raw acceleration data 

184 from ActiGraph and consumer wearable devices compared to the criterion (i.e., acceleration from 

185 the shaker table) [25]. Pearson product moment interpretations were defined based on Dancey and 
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186 Reidy [26], and Lin’s concordance correlation coefficient was defined similarly based on 

187 recommendations from Altman (1991), with coefficients less than 0.20 as poor and greater than 

188 0.80 as excellent [27]. 

189 Discrepancy analyses 

190 An absolute error was calculated to assess the magnitude of the error between the criterion 

191 metrics and the raw acceleration data from ActiGraph and consumer wearable devices. The mean 

192 bias was also calculated to assess whether the raw acceleration output from ActiGraph and 

193 consumer wearable devices over- or underestimated acceleration output compared to the criterion 

194 metric. Raw acceleration data from one ActiGraph (ID=210) was eliminated because the device 

195 was faulty and provided implausible acceleration values (all ENMO values were below 0). Thus, 

196 there were (N=3,780) observations for ActiGraph, whereas Apple and Garmin devices contributed 

197 (N=4,200) observations. Missing data were present across all Fitbit devices except two, which 

198 contributed to (N=3,975) observations for Fitbit.

199 Results
200 For reliability, ICCs (95% confidence intervals) are presented for the raw acceleration data 

201 from all devices for both aggregation methods (i.e., mean and RMS) for all devices in Table 1. 

202 The ICCs for ActiGraph were 0.97 (0.92, 0.99) and 0.97 (0.93, 0.98) for the mean and RMS 

203 aggregation methods, respectively. The ICCs for Apple were 0.99 (0.99, 0.99) and 0.99 (0.99, 

204 1.00) for the mean and RMS, respectively. The ICCs for Garmin were 0.88 (0.82, 0.92) and 0.90 

205 (0.85, 0.93) for the mean and RMS aggregation methods, respectively. The ICCs for Fitbit were 

206 0.88 (0.86, 0.89) and 0.87 (0.85, 0.88) for the mean and RMS aggregation methods, respectively.
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207 Table 1. Summary of Intraclass Correlation Coefficients for All Devices Aggregated based 

208 on the Mean and Root Mean Square.

Device Mean 95CI RMS 95CI

ActiGraph 0.97 (0.92, 0.99) 0.97 (0.93, 0.98)

Apple 0.99 (0.99, 0.99) 0.99 (0.99, 1.00)

Garmin 0.88 (0.82, 0.92) 0.90 (0.85, 0.93)

Fitbit 0.88 (0.86, 0.89) 0.87 (0.85, 0.88)

209 a95CI = 95% confidence interval; RMS = root mean square

210 For validity, a summary table of outcomes based on the raw acceleration data from all devices is 

211 presented in Table 2. Fig 2 shows the concordance of the raw acceleration data from all devices 

212 compared to the criterion metric. Fig 3 shows the absolute error of the raw acceleration data from 

213 all devices compared to the criterion metric. Fig 4 shows the mean bias of the raw acceleration 

214 data from all devices compared to the criterion metric.

Table 2. Summary of Validity Outcomes for All Devices Aggregated based on the Mean 

and Root Mean Square.

Devices ActiGraph Apple Garmin Fitbit

Observations 3,780 4,200 4,200 3,975

Mean (mg) 54.4 32.7 23.8 46.1

SD (mg) 41.5 41.0 34.1 57.4
Mean

Pearson's r 0.88 0.94 0.79 0.91

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2023. ; https://doi.org/10.1101/2023.05.25.23290556doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.25.23290556
http://creativecommons.org/licenses/by/4.0/


12

Observations 3,780 4,200 4,200 3,975

Mean (mg) 58.1 41.8 29.0 58.8

SD (mg) 45.0 48.9 37.9 71.8
Root Mean Square

Pearson's r 0.89 0.94 0.84 0.92

215 aSD = standard deviation; mg = milligravity

216 Fig 2. Lin’s Concordance Correlation Coefficient of the Raw Acceleration Data from all 

217 Devices Compared to the Accelerations Produced by a Mechanical Shaker Table. 

218 Fig 3. Absolute Error of the Raw Acceleration Data from all Devices Compared to the 

219 Accelerations Produced by a Mechanical Shaker Table.

220 Fig 4. Mean Bias of the Raw Acceleration Data from all Devices Compared to the 

221 Accelerations Produced by a Mechanical Shaker Table. 

222 Pearson product moment correlations between raw accelerometry estimates for ActiGraph 

223 and the criterion metric were r=0.88 and r=0.89 for the mean and RMS aggregation methods, 

224 respectively. CCCs (95% confidence intervals) when compared to the shaker table were rc=0.88 

225 (0.87, 0.80) and rc=0.88 (0.88, 0.89) for the mean and RMS aggregation methods, respectively. 

226 Mean bias (95% confidence intervals) was 0.0mg (-40.0, 41.0) and 4.0mg (-36.0, 44.0), and 

227 absolute error was 16.9mg and 16.7mg for the mean and RMS aggregation methods, respectively. 

228 Pearson product moment correlations between raw accelerometry estimates for Apple and 

229 the criterion metric were r=0.94 and r=0.94 for the mean and RMS aggregation methods, 

230 respectively. CCCs when compared to the shaker table were rc=0.83 (0.82, 0.83) and rc=0.90 (0.89, 

231 0.90) for the mean and RMS aggregation methods, respectively. Mean bias (95% confidence 
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232 intervals) was -21.0mg (-50.0, 7.0) and -12.0mg (-45.0, 21.0), and absolute error was 21.6mg and 

233 18.0mg for the mean and RMS aggregation methods, respectively. 

234 Pearson product moment correlations between raw accelerometry estimates for Garmin and 

235 the criterion metric were r=0.79 and r=0.84 for the mean and RMS aggregation methods, 

236 respectively. CCCs when compared to the shaker table were rc=0.59 (0.58, 0.60) and rc=0.70 (0.69, 

237 0.71) for the mean and RMS aggregation methods, respectively. Mean bias (95% confidence 

238 intervals) was -30.0mg (-80.0, 19.0) and -25.0mg (-69.0, 19.0), and absolute error was 32.5mg and 

239 28.1mg for the mean and RMS aggregation methods, respectively. 

240 Pearson product moment correlations between raw accelerometry estimates for Fitbit and 

241 the criterion metric were r=0.91 and r=0.92 for the mean and RMS aggregation methods, 

242 respectively. CCCs when compared to the shaker table were rc=0.85 (0.84, 0.86) and rc=0.79 

243 (0.78,0.80) for the mean and RMS aggregation methods, respectively. Mean bias (95% confidence 

244 intervals) was -8.0mg and 5.0mg, and absolute error was 22.0mg and 24.2mg for the mean and 

245 RMS aggregation methods, respectively.

246 Discussion

247 The aim of this study was to evaluate the between-device reliability and validity of the raw 

248 acceleration output from research-grade (i.e., ActiGraph wGT3X-BT) and consumer wearable 

249 devices (i.e., Apple Watch Series 7, Garmin Vivoactive 4S, and Fitbit Sense) compared to 

250 accelerations produced by a mechanical shaker table. The raw acceleration data collected from all 

251 devices exhibited good-to-excellent between-device reliability based on the mean and RMS 

252 aggregation methods. For validity, the raw acceleration data from all devices exhibited a strong 

253 positive correlation to the criterion metric with moderate-to-excellent concordance no matter the 
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254 aggregation method. Except for Garmin, the raw acceleration data collected from consumer 

255 wearables demonstrated absolute errors that were consistent with ActiGraph. Moreover, the raw 

256 acceleration data collected from consumer wearables underestimated acceleration output to a 

257 greater degree than ActiGraph when compared to the accelerations produced by the mechanical 

258 shaker table. Overall, the raw acceleration data for all devices differed when data were aggregated 

259 based on the mean and RMS for each second, with values generally being more reliable and 

260 accurate based on the RMS aggregation method. 

261 A key finding of this study is that the reliability for Apple, Garmin, and Fitbit was similar 

262 to ActiGraph. In fact, consumer wearables exhibited moderate-to-excellent ICC values, with Apple 

263 demonstrating nearly perfect reliability with an ICC of 0.99. These findings are similar to other 

264 studies evaluating the between-device reliability of research-grade devices using a mechanical 

265 shaker table. For instance, Powell et al. [28] reported an ICC of 0.99 between 23 RT3 

266 accelerometers and Santos-Lozano et al. [17] reported an ICC of 0.97 between 10 ActiGraph 

267 GT3X accelerometers. More recently, studies have explored within-device reliability of various 

268 accelerometers and have reported ICCs ranging from 0.77 to 1.00 [29, 30]. Thus, ICCs based on 

269 the raw acceleration data collected from consumer wearables in the present study support their use 

270 as a reliable tool to assess physical activity. 

271 In the present study, it is also important to note that raw accelerometry estimates collected 

272 from Apple and Fitbit exhibited correlation and concordance with the criterion metric that was 

273 consistent with ActiGraph. On the other hand, raw acceleration data collected from Garmin 

274 exhibited less correlation and concordance with the criterion metric than ActiGraph. Our findings 

275 for Apple and Fitbit correlation are more consistent with a previous study that reported an excellent 

276 Pearson correlation (r=0.97) for accelerations produced by GENEA accelerometers and a 
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277 mechanical shaker table [23]. These findings suggest that raw acceleration data from Apple and 

278 Fitbit may produce comparable estimates of activity than raw acceleration data from ActiGraph. 

279 More information is needed to determine whether the raw acceleration data from Garmin could be 

280 used to accurately estimate physical activity. These findings could be due to the hardware 

281 differences between devices. For example, the dynamic accelerometer range of the ActiGraph is 

282 ±8g [31], while the default accelerometer range for Fitbit is ±4g [32]. The dynamic accelerometer 

283 range is an estimate of the greatest amount of acceleration that a device can accurately assess, and 

284 thus the relatively smaller accelerometer range of Garmin and Fitbit compared to ActiGraph could 

285 have led to more error in Garmin and Fitbit raw accelerometry estimates at greater frequencies (S 

286 Fig 1 and 2). Differences in the raw acceleration output collected from ActiGraph and the 

287 consumer wearables could also be due to the post-processing of the raw data, which has been 

288 described previously [18].

289 Further evidence revealed that, compared to the criterion metric, raw acceleration estimates 

290 from Apple and Fitbit exhibited absolute errors similar to the raw acceleration estimates from 

291 ActiGraph, while raw acceleration estimates from Garmin exhibited larger absolute errors relative 

292 to the raw acceleration estimates from ActiGraph. It is also important to note that raw acceleration 

293 data from Apple and Garmin underestimated acceleration output by more than 20mg and 30mg, 

294 respectively, compared to raw acceleration estimates from ActiGraph. This evidence is concerning 

295 for Garmin, considering that published intensity thresholds derived from ActiGraph worn on the 

296 non-dominant wrist indicates that sedentary thresholds for children (7-11yrs) are under 35.6mg 

297 [33, 34]. Based on these intensity thresholds, it would be difficult to distinguish between sedentary 

298 and light intensity thresholds for children using raw acceleration output from Garmin. This may 

299 suggest that we need to move away from cut-points, especially since a device-agnostic approach 
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300 may allow for increased comparability of physical activity estimates across time and between 

301 consumer wearables and research-grade devices. However, more work is needed, specifically with 

302 Garmin. A device-agnostic approach using raw accelerometry data from Garmin could lead to 

303 different estimates of activity because the raw accelerometry output is different from ActiGraph, 

304 Apple, and Fitbit. 

305 Overall, the findings suggest that the raw acceleration output from Apple and Fitbit is 

306 comparable to the raw acceleration output from ActiGraph. However, limitations with 

307 accelerometry are well-documented for distinguishing between sedentary and light activity. For 

308 instance, a study using 2-regression models to estimate energy expenditure derived from 

309 ActiGraph counts observed mean absolute percent error values that ranged from 32.5% to 39.4% 

310 and 14.5% to 42.9% for sedentary and light activities, respectively, in children 7-13yrs [35]. A 

311 similar study reported that research-grade accelerometers (i.e., ActiGraph, Actical, and AMP-331) 

312 tended to overestimate sedentary and light activities in adults [36]. Though most of the evidence 

313 on the associations of objectively assessed sedentary behavior and health is based on 

314 accelerometers that infer sedentary time from a lack of movement, this can lead to misclassification 

315 of low-movement, non-sedentary behaviors as sedentary behaviors [37]. The absolute errors of 

316 ActiGraph, Apple, and Fitbit (~20mg) compared to the criterion metrics suggest that the relatively 

317 small window for sedentary behavior (under 35.6mg) may pose an issue for estimating physical 

318 activity outcomes from accelerometry [22]. Therefore, additional metrics (i.e., heart rate) may need 

319 to be combined with accelerometry to improve estimates of these outcomes. An advantage of 

320 consumer wearables is their ability to collect acceleration and heart rate data simultaneously. Thus, 

321 it may be possible to leverage the raw acceleration and heart rate data from consumer wearables 
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322 (i.e., Apple and Fitbit) to overcome limitations with accelerometry alone for estimating physical 

323 activity outcomes.

324 There were several strengths of the present study. The first strength is that accelerations 

325 produced by a mechanical shaker table served as the criterion to assess the reliability and validity 

326 of accelerations produced by various accelerometers. This method allowed for a highly controlled, 

327 repeatable evaluation of underlying accelerations produced by various accelerometers shaken in 

328 orbital motion at known frequencies. Another strength is that the raw accelerations from devices 

329 were evaluated, allowing for between-monitor comparisons of accelerations through elimination 

330 of proprietary signal processing that has traditionally been used to derive activity counts from 

331 research-grade devices [18]. Additionally, this study evaluated the raw accelerations from 

332 consumer wearables, addressing concerns about the proprietary signal processing of these devices 

333 [38]. By evaluating the raw accelerations for both research-grade and consumer wearable devices, 

334 we were able to compare acceleration estimates from the devices based on the same metric (mg). 

335 Lastly, we calculated Lin’s CCC, absolute error, and mean bias to assess the agreement of the raw 

336 accelerometry data from research-grade and consumer wearable devices compared to accelerations 

337 produced by the shaker table. This allowed us to evaluate the agreement of the accelerations 

338 between proxy and criterion, the overall error of the raw acceleration estimates, and the direction 

339 of the average error of the raw acceleration estimates from all devices, whereas other studies used 

340 Pearson correlation to assess validity [20, 23]. 

341 Pearson correlation merely measures the covariance between two variables, not the 

342 agreement or error. Using these statistics, we were also able to compare the validity metrics 

343 produced by the raw acceleration estimates from consumer wearables to the validity metrics 

344 produced by the raw acceleration estimates from a research-grade device. This provided 
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345 preliminary evidence for using the raw acceleration output of consumer wearables to estimate 

346 physical activity outcomes. However, the raw acceleration output from consumer wearables needs 

347 to be evaluated in settings that resemble free-living activities for children.

348 The limitations of the present study also need to be acknowledged. One limitation may be 

349 the technological advances that have occurred in the consumer wearables evaluated during the 

350 project. For instance, the Apple Watch Series 8 was released during the project. However, most of 

351 the technological advancements between the Apple Watch Series 7 and the Apple Watch Series 8 

352 are centered on the dual-core processor and the addition of a temperature sensor [39], and thus 

353 may not impact accelerometer estimates between devices. Yet, information about the hardware of 

354 accelerometers used in consumer wearable devices is largely proprietary. Another limitation may 

355 be the post-processing of the raw acceleration data for all devices [18]. The post-processing of the 

356 raw acceleration data for all devices is proprietary, so the acceleration data is not truly raw. It is 

357 also unclear why missing data were present across all Fitbit devices except two. This may have 

358 been due to software malfunction with the custom Fitbit app (Slog) that was used to leverage the 

359 Fitbit Application Programming Interface.

360 Conclusions

361 Findings from this study suggest that raw accelerometry data from Apple, Garmin, and 

362 Fitbit are reliable and provide estimates of raw accelerometry that are similar to ActiGraph. 

363 Additionally, raw accelerometry estimates for Apple and Fitbit are comparable to raw 

364 accelerometry estimates from ActiGraph, while raw accelerometry estimates from Garmin differ 

365 from estimates from ActiGraph. Yet, limitations with accelerometry are well-documented for 

366 distinguishing between sedentary and light activity. Consumer wearables’ ability to capture both 
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367 accelerometry and heart rate could improve estimates of activity, especially sedentary and light 

368 activity. Future studies should explore using a device-agnostic approach for estimating physical 

369 activity from raw accelerometry data produced by Apple and Fitbit in settings that resemble free-

370 living activities for children. 
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