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Abstract
Polygenic risk scores (PRS) have improved in predictive performance supporting their use in clinical

practice. Reduced predictive performance of PRS in diverse populations can exacerbate existing health

disparities. The NHGRI-funded eMERGE Network is returning a PRS-based genome-informed risk

assessment to 25,000 diverse adults and children. We assessed PRS performance, medical

actionability, and potential clinical utility for 23 conditions. Standardized metrics were considered in the

selection process with additional consideration given to strength of evidence in African and Hispanic

populations. Ten conditions were selected with a range of high-risk thresholds: atrial fibrillation, breast

cancer, chronic kidney disease, coronary heart disease, hypercholesterolemia, prostate cancer,

asthma, type 1 diabetes, obesity, and type 2 diabetes. We developed a pipeline for clinical PRS

implementation, used genetic ancestry to calibrate PRS mean and variance, created a framework for

regulatory compliance, and developed a PRS clinical report. eMERGE’s experience informs the

infrastructure needed to implement PRS-based implementation in diverse clinical settings.

Introduction
Polygenic risk scores (PRS) are being calculated and disseminated at a prodigious rate[1], but

their development and application to clinical care, particularly among ancestrally diverse individuals,

present substantial challenges[2–4]. Incorporation of genomic risk information has the potential to

improve risk estimation and management [3,5], particularly at younger ages [6]. Clinical use of PRS

may ultimately prevent disease or enable its detection at earlier, more treatable stages [6–8]. Improved

estimation of risk may also enable targeting of preventive or therapeutic interventions to those most

likely to benefit from them while avoiding unnecessary testing or over-treatment [9,10].

PRS for individual conditions are typically generated from summary statistics derived from

genome-wide association studies (GWAS), which are themselves derived from populations that are

heavily over-represented by individuals of European ancestry [11]. Such scores have been shown to

have limited prediction accuracy with increasing genetic distance from European populations [11,12].

PRS can be improved if developed and validated using multi-ancestry cohorts [13]. Clinical and

environmental data combined with genomically-derived risk measurements can improve risk prediction

[14]. Approaches for combining genomic and non-genomic information, optimizing models for

genomically diverse populations and across age groups, and conveying this information to clinicians

and patients have yet to be developed and applied in clinical care.

The Electronic Medical Records and Genomics (eMERGE) Network is a multicenter consortium

established in 2007 to conduct genomic research in biobanks with electronic medical records [15,16]. In

2020, eMERGE embarked on a study of genomic risk assessment and management in 5,000 children

and 20,000 adults of diverse ancestry, beginning with efforts to identify and validate published PRS

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2023. ; https://doi.org/10.1101/2023.05.25.23290535doi: medRxiv preprint 

https://paperpile.com/c/Es2g2M/L6zv
https://paperpile.com/c/Es2g2M/X6uo+KSr6+4D6Y
https://paperpile.com/c/Es2g2M/KSr6+wDFG
https://paperpile.com/c/Es2g2M/ICWp
https://paperpile.com/c/Es2g2M/ICWp+I9G9+koEn
https://paperpile.com/c/Es2g2M/lWR7+Ru9R
https://paperpile.com/c/Es2g2M/lXav
https://paperpile.com/c/Es2g2M/lXav+otuX
https://paperpile.com/c/Es2g2M/xMDt
https://paperpile.com/c/Es2g2M/xvYr
https://paperpile.com/c/Es2g2M/h31X+tov1
https://doi.org/10.1101/2023.05.25.23290535
http://creativecommons.org/licenses/by-nc-nd/4.0/


across multiple race-ethnic groups (and inferred genetic ancestries) in 10 common diseases with

complex genetic etiologies. This paper describes identification, selection, and optimization of these

PRS; calibration of ancestry for PRS estimation using a novel method developed for eMERGE; and

development and launch of clinical reporting tools.

Results

PRS Auditing and Evaluation

To select the PRS for clinical implementation, the network conducted a multi-stage process to

evaluate proposed scores (Figure 1). An initial set of 23 conditions was selected based on

considerations including relevance to population health (condition prevalence and heritability), strength

of evidence for PRS performance, clinical expertise in the eMERGE Network, and data availability that

would facilitate validation of the PRS in diverse populations. Network sites completed comprehensive

literature reviews on 23 proposed conditions and the corresponding PRS. A summary of the features of

the PRS for each of the final conditions chosen is shown in Supplemental Table 1. The collated

information included analytic viability - a description of covariates, the age, and ancestry effects of the

original PRS model; feasibility - access to sufficiently diverse validation data sets (race/ethnicity and

age) as well as condition prevalence and relevance to preventative care; potential clinical actionability -

existing screening or treatment strategies, and magnitude (odds ratio) of risk in the high risk group; and

translatability - expected public health impact across diverse populations. Candidate PRS were

restricted to those that were either previously validated and published (journal or pre-print) or for which

there was sufficient access to information to develop and/or optimize new PRS, which could then be

validated.

In auditing and evaluating evidence of PRS performance, the eMERGE Steering Committee

(SC) considered PRS for conditions that could be implemented in pediatric and/or adult populations,

and for diseases with a range of age of onset (0 to >65 years of age). We considered published

SNP-based heritability estimates available for 10 of the 23 conditions, ranging from 3% to 58%. The

majority of PRS under consideration aimed to identify individuals at high risk for disease; however, PRS

to predict disease severity and drug response were also considered. Two of the conditions, breast

cancer and prostate cancer, were only considered for implementation in individuals whose biological

sex was female or male, respectively. As the eMERGE network plans to enroll >50% participants from

underrepresented groups (including racial and ethnic minority groups; people with lower socioeconomic

status (SES); underserved rural communities; sexual and gender minority (SGM) groups) [17] emphasis

was placed on the PRS that were already available for, or could be developed and validated in, diverse

population groups.
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To define population groups, study-level population descriptors were first extracted from

published literature, pre-prints or information shared directly by collaborators on data used to develop

and/or optimize and/or validate PRS. Methods for using population labels across studies ranged from

self-reporting, extraction from health system data, and/or analysis of genetic ancestry. We designated

four population groups; European ancestry (EA) (i.e. study population descriptors included European,

European-American, or other European descent diaspora groups), African (African, African-American

(AA), or other African descent diaspora groups), Hispanic (HL) (i.e. Hispanic, Latina/o/x, or those who

have origins in countries in the Caribbean and Latin America), and Asian (Asn) (i.e. South Asian, East

Asian, South-East Asian, Asian-American or other diaspora Asian groups).

Of the 23 conditions initially selected, six were excluded at the outset (August 2020) due to lack

of diversity in the PRS training or optimization data, lack of access to diverse datasets for validation, or

lack of available clinical expertise in the network (Figure 1). A further four conditions were dropped in

March 2021 due to insufficient confidence in PRS performance or lack of validation datasets.

Conditions not prioritized for implementation continued on a ‘developmental’ pathway for further

refinement. Each of the 12 conditions that were selected to move forward from the March 2021 review

were assigned a ‘lead’ and ‘co-lead’ site which worked together to develop, validate, and transfer the

score to the clinical laboratory for instantiation and CLIA validation. Assignment of leads was based on

site preference, expertise, and distribution of workload.

Selection, optimization, and validation

A systematic framework was developed to evaluate the performance for the remaining 12 PRS,

in accordance with best practices outlined in Wand et al [18]. An in depth evaluation matrix of the 12

chosen conditions can be found in Supplemental Table 2. Clinical use of Eurocentric PRS in diverse

patient samples risks exacerbating existing health disparities[11][19,20]. The Network carefully

considered a variety of strategies to optimize PRS generalizability and portability. The Network

prioritized validation across four ancestries with an emphasis on African and Hispanic ancestry due to

their underrepresentation in genetic research and projected representation within the study cohort. We

determined that a PRS was validated if the genomic predictor was significantly discriminative and the

odds ratios were statistically significant in a minimum of two and up to four ancestral populations:

African/African-American, Asian, European Ancestry; and Hispanic/Latino. The PRS Working Group

members conducted an extensive scoping exercise to identify suitable datasets of multiple ancestries

for disease-specific PRS validation. These included datasets from early phases of eMERGE

(2007-2019) as well as external datasets such as the UK Biobank and Million Veteran Program (MVP).

A standardized set of questions were addressed by the disease leads that included the source of

discovery and validation datasets, the availability of multi-ancestry validation datasets, availability of

cross-ancestry PRS, proposed percentile thresholds for identifying high risk status, model
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discrimination (AUC), and effect sizes (odds ratios) associated with high risk vs. not-high risk status

(Supplemental Table 2). For 7 out of the 12 candidate scores, no further optimization of the original

model was performed. For 5 scores, an additional optimization effort was undertaken to further refine

the score performance in multiple ancestries. Details of the optimization can be found in Supplemental

Table 3. A specific score optimization was applied for CKD. This optimization consisted of adding the

effect of APOL1 risk genotypes to a polygenic component, which has been found to improve risk

predictions in African ancestry cohorts[21].

For final selection, the steering committee considered the score performance summaries

(presented by condition leads) in addition to the actionable and measurable recommendations relevant

for return, for each condition, in the prospective cohort. Two conditions (colorectal cancer (CRC) and

abdominal aortic aneurysm (AAA)) were moved to the developmental pathway (Figure 1). While the

PRS for CRC was not included in the prospective cohort, as several Mendelian genes for Lynch

syndrome were included in the custom panel generated by Invitae, the network decided to include CRC

in the list of conditions returned with the overall risk report (GIRA) and only report on monogenic and

family history risk.

Population-based z-score calibration

In this study, the focus is on integration and implementation of validated PRS in clinical practice

rather than novel PRS development. Ultimately, the Network opted to balance generalizability and

feasibility by validating and returning cross-ancestry PRS. However, even with cross-ancestry scores,

differences remain in the distribution of z-scores across genetic ancestries that can result in

inconsistent categorization of individuals into ‘high’ or ‘not high’ polygenic risk categories for a given

condition [22]. To that end, the Network chose to develop methods to determine each participant's

ancestry and calibrate the distribution of resulting z-scores through a population-based calibration

model[22][23] (see below). An alternative would have been to apply existing PRS in available samples

of different ancestries and derive ancestry-specific effect estimates. However, returning

ancestry-specific risk estimates is challenging in real world implementations as it would require

self-reporting of ancestry by patients (who may not be able to provide this with accuracy) and

developing multiple ancestry-specific reports for each health condition. In addition, such PRS would be

problematic to return to patients of mixed ancestry.

Polygenic risk scores often have different mean and standard deviation for individuals from

different genetic ancestries. While some of these differences could be due to true biological differences

in risk, they also result from allele frequency and linkage disequilibrium (LD) structure differences

between populations [24]. This problem is more acute when a PRS is calculated for an individual whose

ancestry does not match the ancestries used to develop the PRS. A clinically implemented PRS test to

return disease risk estimates, therefore, must be adjusted to account for these differences due to
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ancestral background. A calibration method based on principal component analysis (PCA) which was

initially described by Khera et al. [22] was modified to model both the variance and means of scores as

ancestry dependent, as compared to the previous method, which modeled only the means as

dependent on ancestry. This modification was found to be necessary because some conditions were

found to exhibit highly ancestry-dependent variance (see for example, Figure 3 in Online Methods),

which would have led to many more or fewer participants of certain ancestries receiving a ‘high PRS

risk’ determination than was intended. The model was fit to a portion of the All of Us Research Program

(https://www.researchallofus.org/) cohort genotyping data, which allowed for continuous return of

results to participants without needing to wait for the entire study dataset to be available. More details

can be found in Online Methods.

Transfer and Implementation

Once the final 10 conditions had been selected, condition-leads worked with computational

scientists at the clinical laboratory (Clinical Research Sequencing Platform, LLC at the Broad Institute)

to transfer the PRS models. Condition-specific models were run with outputs from the lab’s genotyping

(Illumina Global Diversity Array), Phasing (Eagle2 [25] https://github.com/poruloh/Eagle), and

imputation (Minimac4 [26] https://genome.sph.umich.edu/wiki/Minimac4) pipelines to assess genomic

site representation (see Online Methods for more information on the architecture and components of

the pipeline). Several rounds of iteration between the clinical laboratory and condition-leads followed in

which any issues with the pipeline were resolved and the effect of genomic site missingness was

assessed (Table 1). The final version of the implemented models was returned to the condition leads to

recalculate effect sizes in the validation cohorts.

Finally, as part of the implementation of the PRS pipelines as a clinical test in a CLIA laboratory,

a validation study was performed (See Online Methods for a detailed description, Table 1 summarizes

some of the results). Briefly, this study leveraged 70 reference cell lines from diverse ancestry groups

(Coriell) where 30X whole genome sequencing data was generated to form a variant truth set from

which the technical accuracy and reproducibility of imputation and PRS calling was assessed. A second

sample set of 20 matched donor blood and saliva specimens was procured to assess the performance

of the pipeline with different input materials. A set of three samples, each with 6 replicates, was run

end-to-end through the wet lab and analytical pipelines as an assessment of reproducibility. As a

verification of the clinical validity of the scores, cohorts of cases for 8 of the 10 conditions were created

using the eMERGE phase III imputed dataset (available on

https://anvil.terra.bio/#workspaces/anvil-datastorage/AnVIL_eMERGE_GWAS/data (registration

required)). PRS performance measures were calculated to confirm associations between scores and

conditions. Due to limitations in the eMERGE phase III imputation (no chromosome X, different

imputation pipeline) the ORs from this analysis were not included in the final reports, rather the ORs
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calculated in the condition-specific validation cohorts (using the final clinical lab pipeline) were used

(Figure 3 and Table 1). A validation report was created for each condition. This report was reviewed

and approved by the Laboratory Director in compliance with CLIA regulations for the development of a

laboratory developed test. Personnel were trained on laboratory and analytical procedures, and

standard operating procedures were implemented. Data review metrics were established, sample

pass/fail criteria were defined, and order and report data transfer pipelines were built as described in

Linder et al. [27]

Creation of report and pipeline for report creation, review, sign-out, release
A software pipeline was built to facilitate data review and clinical report generation in both

document (pdf) and structured data formats (sample report included in Supplementary Material). Logic

was built into the PRS and reporting pipeline to account for differences in return based on age and sex

at birth for certain conditions. For instance, the PRS for breast cancer is only calculated for participants

who report sex at birth as female; similarly prostate cancer scores are only generated for participants

who report sex at birth as male. Age-related restrictions were similarly coded into the pipeline to

account for study policies on return. Data review by an appropriately qualified, trained individual is

required for high complexity clinical testing. In the PRS clinical pipeline this review takes the form of a

set of metrics that are exposed by the pipeline to the reviewer. These include a z-score range for each

condition (passing samples will have a score -5 < z < +5), a PCA plot per batch against a reference

sample set (visual representation of outlier samples), monitoring the z-score range for each control per

condition (one control on each plate; NA12878), and flagging any samples with multiple ‘High Risk’

results for further review.

Each participant’s sample is also run on an orthogonal fingerprinting assay (Fluidigm biomark)

that creates a genotype-based fingerprint for that DNA aliquot. Infinium genotyping data is compared to

this fingerprint as a primary check of sample chain-of-custody fidelity and to preclude sample or plate

swaps during lab processing.

Reviewed and approved data for a participant is processed into a clinical report. The text and format of

this report were created during an iterative review process by consortium work groups. For this

pragmatic clinical implementation study, two results are returned to participants: “High Risk” or “Not

High Risk” based on the PRS [27]. In the clinical report a qualitative framework has been developed to

indicate for which condition(s) a participant has been determined to have a high PRS (if any).

Quantitative values (Z-scores) are not included for any condition in the main results panel. For breast

cancer and CHD, the z-score is presented in another section of the report for inclusion in integrated

score models for those conditions. For breast cancer specifically, the provided z-score is used with the

BOADICEA[28] model to generate an integrated risk that is included in the genome-informed risk

assessment (GIRA) as described in Linder et al.[27]
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Overview of first 2500 clinical samples processed.

Between launch in July 2022 and May 2023, 2500 participants have been processed through the

clinical PRS pipeline (representing ~10% of the proposed cohort). Of the first 2500 participants

processed, 64.5% (1612) indicated sex at birth as female, while 35.5% (886) indicated male. Median

age at sample collection was 51 years (range 3 years to 75 years). Participants self-reported

race/ancestry, with 32.8% (820) identifying as “White (e.g. English, European, French, German, Irish,

Italian, Polish, etc)”; 32.8% (820) identified as “Black, African American, or African (e.g. African

American, Ethiopian, Haitian, Jamaican, Nigerian, Somali, etc.)”; 25.4% (636) identified as “Hispanic,

Latino, or Spanish (e.g. Colombian, Cuban, Dominican, Mexican or Mexican American, Puerto Rican,

Salvadoran, etc.)”; 5% (124) identified as “Asian (e.g. Asian, Indian, Chinese, Filipino, Japanese,

Korean, Vietnamese, etc.)”; 1.5% (38) identified as American Indian or Alaska Native (e.g. Aztec,

Blackfeet Tribe, Mayan, Navajo Nation, Native Village of Barrow (Utqiagvik) Inupiat Traditional

Government, Nome Eskimo Community, etc.); 0.9% (22) identified as Middle Eastern or North African

(e.g. Algerian, Egyptian, Iranian, Lebanese, Moroccan, Syrian, etc.); 0.8% (21) selected “None of these

fully describe [me_or_my_child]”; 0.7% (17) selected “Prefer not to answer”; 0.1% (2) participants had

incomplete data. A summary of the performance of the first 2500 samples and resulting high PRS

metrics are shown in Figure 4. In the first 2500 participants, we identified 515 participants (20.6%) with

a high PRS risk for one of the 10 conditions, 64 participants (2.6%) had high PRS risk for two

conditions, and two participants (0.08%) had a high risk for three conditions. The remaining 1919

participants had no high PRS found. High PRS participants spanned the spectrum of genetic ancestry

when projected onto principal component space (Figure 4).

Discussion
While the predictive performance of PRS has improved significantly in recent years, challenges remain

in ensuring that PRS are applicable and effective in diverse populations. In particular, the vast majority

of GWAS have focused on individuals of European ancestry, and the predictive accuracy of PRS

declines with increasing genetic distance from the discovery population[29][24][4]. This risks

exacerbating existing health disparities, as clinical use of Eurocentric PRS in diverse patient samples

may not accurately reflect disease risk in non-European populations. To address these challenges, the

eMERGE Network has conducted a multi-stage process to evaluate and optimize PRS selection,

development, and validation. The network has prioritized conditions with high prevalence and

heritability, existing literature, clinical actionability, and the potential for health disparities, and has

developed strategies to optimize PRS generalizability and portability across diverse populations. In

particular, the network has emphasized performance across four major ancestry groups (African, Asian,
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European, Hispanic, as reflected by self-identified race/ethnicity) and has developed a pipeline for

clinical PRS implementation, a framework for regulatory compliance, and a PRS clinical report.

The potential impact of PRS-based risk assessment in clinical practice is significant. By enabling

targeted interventions and preventative measures, PRS-based risk assessment has the potential to

reduce the burden of a range of conditions [27]. Moreover, the development of PRS-based risk

assessment in diverse populations has the potential to reduce health disparities by ensuring that clinical

use of PRS accurately reflects disease risk in diverse populations.

However, challenges remain in the successful implementation of PRS-based risk assessment in clinical

practice. These include concerns about genetic determinism, the potential for stigmatization, and the

need for robust regulatory frameworks to ensure that PRS-based risk assessment is deployed safely

and effectively. Additionally, one of the biggest challenges is the implementation of effective disease

prevention strategies after the return of the results. Return of the results won't result in a benefit without

effective disease prevention or early detection strategies. The eMERGE Network's work provides a

promising blueprint for addressing these challenges, but ongoing research and evaluation will be

necessary to ensure that PRS-based risk assessment is implemented in a responsible and effective

manner.

In conclusion, the eMERGE Network's work in PRS development represents a significant step forward

in the implementation of PRS-based risk assessment (in combination with other risk estimates from

monogenic testing and family history) in clinical practice. By leveraging the power of genetics to predict

disease risk and enable targeted interventions, genetically-informed risk assessment has the potential

to revolutionize personalized medicine and usher in a new era of precision health. While challenges

remain in ensuring that PRS are applicable and effective in diverse populations, the eMERGE

Network's work provides a promising foundation for the continued development and evaluation of

PRS-based risk assessment in clinical practice.
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16037; Federally Qualified Health Centers: 75N98019F01202.; Data and Research Center: 1 OT2
OD35404; Biobank: 1 U24 OD023121; The Participant Center: U24 OD023176; Participant Technology
Systems Center: 1 OT2 OD030043; Community Partners: 1 OT2 OD025277; 3 OT2 OD025315; 1 OT2
OD025337; 1 OT2 OD025276.
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Tables and Figures

Figure 1

Figure 1. Timeline and process for selection, evaluation, optimization, transfer, validation, and implementation of the clinical PRS test

pipeline. Dotted lines represent pivotal moments in the progression of the project.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2023. ; https://doi.org/10.1101/2023.05.25.23290535doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.25.23290535
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2

Figure 2. Overview of the eMERGE PRS process. Participant DNA is genotyped using the Illumina Global Diversity Array which

assesses 1.8M sites. Genotyping data is phased and imputed with a reference panel derived from the 1000 Genomes Project. Raw

PRS scores are calculated for each condition. For each condition an ancestry calibration model is applied based on model

parameters derived from the All of Us Research Program. Participants whose adjusted scores cross the pre-defined threshold for

high PRS are identified and a pdf report is generated. The report is electronically signed after data review by a clinical laboratory

director and delivered to the study portal for return to the clinical sites.
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Figure 3

Figure 3. Summary of the ten conditions that were implemented. “High-PRS Threshold” represents the percentile that is deemed to

be the cut-off for a specific condition above which a high PRS result is reported for that condition. The Odds Ratios are the OR of the

implemented scores, 95% confidence interval shown in the whiskers (with the exception of Obesity for which the OR will be published

by the GIANT consortium). “Number of SNPs” represents the range of numbers or sites included in each score. “Age ranges for

return” indicates the participant ages at which a PRS is calculated for a given condition. AFIB= Atrial fibrillation; BC = Breast Cancer;

CKD = Chronic Kidney Disease; CHD = Coronary Heart Disease; HC = Hypercholesterolemia; PC = Prostate Cancer; T2D = Type 2

Diabetes; T1D = Type 1 Diabetes.
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Table 1. Performance measures from the PRS pipeline validation study at the clinical

laboratory.

Table 1 Legend. PRS pipeline accuracy is assessed as the Pearson correlation between scores derived from PCR-free 30X WGS
and those derived from imputed genotyping data (GDA) in the same 70 specimens. Pearson correlation shown in the mean
correlation across all ancestry groups tested. PRS pipeline precision (repeatability) is the measure of concordance in PRS scores
calculated from the same 70 specimens, run through the pipeline 10 times over the course of two weeks. PRS pipeline precision
(reproducibility) is assessed using three samples, each run 6 times end-to-end and then compared in a pairwise manner. The z-score
standard deviation is used as a measure of variability. PRS site missingness is the percentage of genomics sites in the original score
that are missing from the final imputed dataset. Odds Ratios for high PRS vs Not high pRS are derived from the condition-specific
cohorts and calculated by each condition lead group across the ancestries available. Odds ratio information for Obesity/BMI is in
preparation for publication by the GIANT consortium.
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Figure 4 - Summary of first 2500 clinical samples

Figure 4. Upper left - Principal component of ancestry indicating participants with a result of ‘high PRS’ for any condition (red dots) compared to participants who did not have a high

PRS identified (gray dots). Lower Left - summary of number of high risk conditions found per participant. Left - Observed numbers of high risk PRS called per condition. Note not all

participants get scored for every condition based on age and sex at birth filters. AFIB= Atrial fibrillation; BC = Breast Cancer; CKD = Chronic Kidney Disease; CHD = Coronary Heart

Disease; HC = Hypercholesterolemia; PC = Prostate Cancer; T2D = Type 2 Diabetes; T1D = Type 1 Diabetes.
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A. Analytical and Technical Validation Studies

Broad Imputation Pipeline Overview

An imputation pipeline that takes as an input a variant call format (VCF) file generated from a
genotyping microarray and imputes the genotypes at additional sites across the genome was
developed. The pipeline architecture and composition was based on the widely used University
of Michigan Imputation Server which uses a software called Eagle
(https://github.com/poruloh/Eagle) for phasing and Minimac4
(https://genome.sph.umich.edu/wiki/Minimac4) for the imputation. The pipeline uses a curated
version of the 1000 Genomes Project (1KG, www.internationalgenome.org) as the reference
panel. Additional details on the imputation pipeline can be found at
https://broadinstitute.github.io/warp/docs/Pipelines/Imputation_Pipeline/README.

Broad Curated 1KG Reference Panel

During the validation process we determined that some sites in the 1KG reference panel
were incorrectly genotyped compared to the sites in matching whole-genome sequencing data.
In order to increase accuracy of the imputation and PRS scoring, we curated the original panel
by removing sites that were likely incorrectly genotyped based on comparing allele frequencies
to those reported in gnomAD v2 (https://gnomad.broadinstitute.org/). Documentation of this
curation can be found at:
https://broadinstitute.github.io/warp/docs/Pipelines/Imputation_Pipeline/references_overview and
a publicly available version of the panel at:
gs://broad-gotc-test-storage/imputation/1000G_reference_panel/

Selection of a reference panel for imputation as an input to PRS is an important consideration.
Some reference panels (e.g. TOPMed) have more samples than the default used in our pipeline
(i.e. 1KG). This leads to more variants being imputed. The question is whether this would
materially change the PRS calculated from samples imputed with the TOPMED panel. Access
to this panel computationally is restricted (and local download prohibited) so it was deemed
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infeasible to implement in our clinical production environment. The performance of a
non-eMERGE PRS (for CHD, Khera et al.) using the two different reference panels was
determined for 20 GDA saliva specimens and for 42 AoU v1 specimens. The cohort was
imputed both by the Broad imputation pipeline with curated 1KG as the reference panel as well
as on the TOPMed Imputation Server with TOPMed as the reference panel. Imputed arrays
were scored by the PRS pipeline.

The PRS percentiles computed with each method are highly concordant for both cohorts. The
Pearson correlation coefficient is 0.996 for both cohorts, the p-value of the Welch two sample
t-test is equal to 0.93 and 0.85 (indicating no statistical difference between the methods) for
GDA and AoU v1 cohorts, respectively.

Performance verification of the Imputation Pipeline
Imputation accuracy was determined for 42 specimens that were processed through a
genotyping microarray (AoU v1 array - the precursor to the commercial Global Diversity Array)
and imputed with curated 1KG as the reference panel where corresponding deep-coverage
(>30X) PCR-free whole genome sequencing data were used as a truth call set to calculate
sensitivity and specificity. The arrays were also imputed on the Michigan Imputation Server with
1KG as the reference panel.

Within the cohort, four different ancestries were represented - Non-Finnish Europeans (NFE),
East Asians (EAS), South Asian (SAS), African (AFR), together with the results for three arrays
of undetermined ethnicity (NA).
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Broad imputation pipeline sensitivity for SNPs is >97% and INDELs >95% for all ethnicities.
Similarly, specificity for SNPs from the Broad imputation pipeline are above 99% and the
specificity for INDELS is >98%. Results were highly concordant with those returned by the
remote server at Michigan.

Performance evaluation of different input material types.
To assess the performance of specimens derived from both saliva and whole blood a set of 20
matched blood saliva pairs were run through the GDA genotyping process and the resulting
VCFs were imputed using the Broad pipeline to be compared against results for matched blood
derived whole genome data. The Pearson correlation between sensitivity and specificity of
blood and saliva derived samples are equal to 100% and 100%, respectively. For the same
pairs, the Welch two-sample t-test statistic is 0.997 and 0.987, respectively. There is no
significant difference between the different input sample types.

Imputation repeatability and reproducibility
Imputation pipeline repeatability was assessed by repeating imputation of a cohort of 1000 GSA
arrays ten times over the course of two weeks and was found to be 100% concordant.
Imputation pipeline precision (reproducibility) was also tested on technical replicates. Three
individual samples derived from saliva were each genotyped six times, followed by an
imputation in a cohort of all saliva derived samples. In each set of technical replicates all pairs
and variants in each pair were compared (making a total of 45 pairs for which genotypes were
compared). Reproducibility is measured using Jaccard scores. "Reproducibility over variants"
was calculated only over sites where at least one of the two replicates in a pair calls a non
hom-ref genotype and was found to be 99.91% (95CI: 99.89-99.93) for SNPs and 99.87%
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(95CI: 99.85-99.90) for InDels. "Reproducibility over all sites" was calculated over all genotyped
sites, including sites genotyped as hom-ref in both replicates and was found to be 100% (95CI:
100-100) for both SNPs and InDels.

Imputation performance as a function of variant frequency
Because we expect accuracy to be impacted by the frequency of a variant in the population
(rare variants are less likely to be in the reference panel and therefore less accurately imputed)
we further subdivided the performance assessment by allele frequencies on two cohorts: 42
AoU v1 arrays and 20 blood-saliva pairs of GDA arrays. Accuracy of imputation of variants as a
function of population allele frequency performed as expected with rare variants in the
population not being as accurately represented. Imputation is more accurate for variants that
are more frequently observed in the population (≥0.1 allele frequency). This is predicted to have
a low impact on the accuracy of PRS calculations from imputed variants as PRS scores are also
typically derived from common variants.

Impact of genotyping array call rate on imputation performance.
The impact of call rate on the imputation was assessed by generating a downsampled series of
42 arrays, each with call rates of 90%, 95%, 97% and 98%. Pearson correlation values for
SNPs and INDELs were calculated across bins of allele frequencies, assessed against gnomAD
common variants (AF >0.1), for the cohorts with downsampled call rates. Call rates below 95%
were found to produce suboptimal results. At this rate the mean R2 dosage score for sites with
AF ≥0.1 was found to be 0.98% (95CI: 0.98-0.98) for both SNPs and InDels compared to 0.99%
for call rates of 97% and 98%.

Impact of imputation batch size on performance.
Batch size effect of the imputation pipeline was assessed by imputing and analyzing arrays in a
cohort of size 1000 (randomly chosen), ten cohorts of size 100 (non-overlapping subsets of the
1000 cohort), and ten cohorts of size 10 (non-overlapping subsets of one of the 100 cohorts).
Pearson correlations of dosage scores were calculated across bins for allele frequencies
(assessed against gnomAD) for smaller cohorts versus larger cohorts. The data show that
imputation is highly correlated across batch sizes with batches down to as few as 10 samples
producing acceptable performance. The mean R2 correlation of dosage scores for sites with
allele frequency greater or equal to 0.1 is above 0.97 in all cases both for SNPs and INDELs
and increases to 0.98 for the larger studied cohorts. Increasing batch sizes produces very slight
improvements in imputation but these are not significant and the choice of imputation batch size
(above or equal to 10 samples) can be made on practical and operational grounds

Broad PRS Pipeline Overview
The polygenic risk score (PRS) pipeline begins by calculating a raw score using plink2
(https://www.cog-genomics.org/plink/2.0/). For each condition, effect alleles and weights are
defined for a set of genomic sites stored in a weights file. At each site, the effect allele dosage
observed in the imputed vcf is multiplied by the effect weight in the weights file. The raw score is
the sum of these products over all the specified sites.
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Validation of technical and analytical performance of the PRS pipeline.
For each of the 10 conditions chosen by the consortium for clinical return, a validation study was
performed to assess the technical and analytical performance as well as to verify the
association between score and disease risk.

PRS Pipeline Accuracy. Accuracy of the pipeline was determined by calculating the Pearson
correlation between PRS scores calculated from 70 specimens imputed from GDA array data
and PRS scores of corresponding deep-coverage PCR-free whole genome sequencing data
(used as a truth call set).

Input Material Performance. Accuracy of PRS scoring when different sample types (blood or
saliva) are used as inputs was determined by comparing the PRS scores from matched blood
and saliva pairs collected from 20 individuals.

PRS pipeline repeatability. PRS pipeline repeatability was assessed by running the pipeline on
the same dataset of 70 imputed GDA arrays ten times over the course of two weeks (without
call caching). Scores generated from the different processing runs were compared to determine
if there are any differences observed for a given PRS when the pipeline is run at different times.

PRS pipeline reproducibility. PRS pipeline precision (reproducibility) was assessed using three
samples each run 6 times end-to-end and then compared in a pairwise manner. The z-score
standard deviation is used as a measure of variability.

PRS site representation. The SNP weight sites that are not called during genotyping or
imputation were determined. These are sites not present in the intersection of an imputed GDA
array and the reference panel. Ideally, all sites required for PRS calculation are present either as
genotyped or imputed sites; however, in practice a small number of sites are not present due to
differences in the data used to create the score and the specific array and imputation reference
panel used in this study.
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Table 2. Validation measures summary.

Performance verification using eMERGE I-III cohort. A cohort of samples with known phenotypic
information was used to verify the relationship between polygenic risk score as determined by
our pipeline and disease risk. For conditions where cases and controls could be identified in the
eMERGE I-III cohort we determined performance using metrics outlined in the ClinGen working
group recommendations (Wand et al.). Specifically, we determined the PRS distributions for
cases and controls, we examined the impact of ancestry adjustment on the distributions (Fig),
and we examined the relationship between observed and predicted risk. There are some
limitations to this analysis: i) The eMERGE I-III dataset being used for this analysis was
generated from different array platforms and was imputed with a different pipeline including a
different version of 1KG reference panel than the one currently implemented; ii) The eMERGE
I-II-III imputed dataset does not include variants from Chromosomes X or Y. For these reasons,
the PRS disease association analysis represents a verification of the clinical validation
performed by eMERGE IV condition leads rather than the quantitative measure of the impact of
the score on risk. The clinical associations (odd ratios) that are reported on the clinical report for
each condition were independently determined by eMERGE IV disease-specific expert teams.

Validation of pipeline and ancestry adjustment in original case control cohorts. The final pipeline
was made available to computational scientists at each of the eMERGE IV disease-specific
expert teams who had access to appropriate case control cohorts. These groups confirmed the
performance of the final pipeline on their cohorts. The odds ratios for each condition that are
reported on the clinical reports come from these cohorts rather than the eMERGE cohort for the
reasons described above.
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B. PRS Ancestry Calibration Overview

PCA method description
For a polygenic risk score which is a sum of SNP effects (linear weights), the central limit

theorem states that the distribution of scores in a homogenous population will tend towards a
normal distribution as the number of SNPs becomes large. When two different homogenous
populations are randomly mixed, the additive property of prs leads the resulting distribution to
be similarly normally distributed, with mean and variance depending on the mean and variance
of the original homogenous populations. We can therefore model the distribution of prs scores
as being normally distributed, with mean and variance being functions of genetic ancestry.
Practically, we implement this as

𝑃𝑅𝑆
𝑟𝑎𝑤

= 𝑁(µ, σ2)

µ =  α
0 

+  ∑ α
𝑖
𝑃𝐶

𝑖

,σ2 =  𝑒𝑥𝑝( β
0 

+  ∑ β
𝑖
𝑃𝐶

𝑖
)

with genetic ancestry being represented by projection into principal component space. The 𝜶
and β parameters are found by jointly fitting them to a cohort of training data. This fit is
performed by minimizing the negative log likelihood:

− 𝑙𝑜𝑔 𝐿 =
𝑖

∑ 𝑙𝑜𝑔 σ
𝑖

+ 1/2(
𝑝𝑟𝑠

𝑖
− µ

𝑖

σ
𝑖

)2 

where runs over the individuals in the training cohort, is the i’th individuals raw prs score,ι 𝑝𝑟𝑠
𝑖
 

and and are calculated using Eq X by projecting the i’th individual into PC space. Note that,µ
𝑖
 σ

𝑖

due to the simplicity of the model, overfitting is unlikely to be a problem, and so no regularization
or other overfitting avoidance technique is implemented. An individual’s PRS z-score can then
be calculated as

,𝑧 − 𝑠𝑐𝑜𝑟𝑒 =  ( 𝑝𝑟𝑠 − µ
σ )

where and have again been calculated based on the specific individuals projection into PCµ σ

space. In this way, once the model has been trained, the z-score calculation is fully defined by
the fitted model parameters, and z-scores can be calculated without needing additional access
to the original training cohort.

Generating trained models from All of Us data
Generating the trained models consisted of three steps: 1. Selecting the training cohort.

2. Imputation of the training cohort. 3. Training the models on the training cohort. A test cohort
was also generated in order to test the performance of the training.

Ancestry balanced training and test cohorts were generated by subsampling from an
initial cohort of around 100,000 All of Us samples. For the purposes of balancing the cohort,
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each sample was assigned to one of the five 1KG Super Populations. Principal component
analysis was first performed on a random subset of 20,000 samples. 1KG samples were
projected onto these principal components, and a support vector machine (SVM) was trained on
1KG to predict ancestry. The SVM was then used to assign 108,000 AoU samples to one of the
five 1KG Super Populations. A balanced training cohort was selected based on these predicted
ancestries, and principal components were recalculated using this balanced training cohort. A
similarly balanced test cohort was selected based on ancestries estimated from projection on
the training set PCs. The resulting breakdown of the cohorts by estimated ancestry is shown in
Table 3.

Training Cohort Test Cohort

AMR 1817 1500

AFR 1664 1500

EAS 1137 1436

EUR 1823 1500

SAS 444 654

TOTAL 6885 6590
Table 3

Both the training and testing cohorts include a number of individuals with highly admixed
ancestry. Admixture was quantified using the tool Admixture (Alexander et al. PMID: 19648217)
with 5 ancestral populations. The resulting admixtures of each cohort are shown in Figure 1,
and the most common admixed ancestries in each cohort are summarized in Table 4.

Each cohort was imputed using the imputation pipeline described above, with 1KG as
the reference panel. By keeping the imputation pipeline identical to the pipeline used for the
eMERGE dataset, and because the AoU dataset uses the same GDA array as the eMERGE
dataset, any potential biases resulting from differing data production and processing methods
were removed. The training cohort was scored for each of the ten conditions, and model
parameters were fit by minimizing the negative log likelihood as described. The test cohort was
then used to evaluate the generalizability of these model parameters.
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Figure 1

Admixed Ancestry Training Cohort Test Cohort

AFR-EUR 590 556

AMR-EUR 1238 883

EAS-EUR 236 102

EUR-SAS 191 229

Table 4. Admixed ancestries are defined as ancestries for which an individual's admixture
fraction is greater than 20%. For example, an individual who is indicated by admixture to be
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45% AFR, 37% EUR, 12 % AMR, 5% EAS, 1% SAS would be included in the AFR-EUR row of
this table.

Performance on Test Cohort
Figure 2 the distribution of calibrated z-scores in the test cohort using the parameters fit in the
training cohort. As can be seen, all ancestries show the intended standard normal distribution of
calibrated scores.

Figure 2

One of the main improvements of this method over previous methods is the inclusion of an
ancestry dependent variance in addition to the ancestry dependent mean. The importance of
this is shown for the Hypercholesterolemia PRS in Figure X below. As can be seen, the variance
of this score differs significantly across ancestries, so that a method which only fits the mean of
the distribution as ancestry dependent can result in z-score distributions which have been
attenuated towards zero or expanded away from zero for some ancesties. By also treating
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variance as ancestry dependent, this method results in z-score distributions which are more
standardized across ancestries.

Figure 3. Hypercholesterolemia PRS calibrated z-scores of training cohort. Note the
improvement when an ancestry dependent variance is used over a constant variance method.

In addition to improving calibration across ancestries, this method can improve calibration within
ancestries, particularly for highly admixed individuals. An example of this can be seen in Figure
4. As can be seen, because no ancestry group is homogenous, when individuals are compared
directly to other individuals in their assigned population group, a dependence between
admixture fraction and PRS score can result. This dependence is removed by the described
PCA calibration method, and the resulting calibrated PRS scores are independent of admixture
fraction.
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Figure 4. PRS z-score as a function of African Admixture Fraction, for individuals of African
ancestry. In the “Bucketing” method, a z-score is calculated by comparing to the mean and
variance of all individuals of African ancestry in the cohort. The “PCA Calibrated” method is the
method described above. Note the dependence on admixture fraction in the “Bucketing”
method, which has been removed in the “PCA Calibrated” method.
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Abdominal 
Aortic 

Aneurysm

Age-Related 
Macular 

Degeneration
Asthma Atopic 

Dermatitis
Atrial 

Fibrillation
Bone Mineral 

Density Breast Cancer Crohn's Disease Chronic Kidney 
Disease

Colorectal 
cancer

Coronary Heart 
Disease Depression Hypercholestero

lemia Hypertension Ischemic Stroke Lupus
Nonalcoholic 
Fatty Liver 

Disease
Obesity Primary open 

angle glaucoma Prostate Cancer Rheumatoid 
Arthritis Type I Diabetes Type II Diabetes

What does PRS predict? Case status Disease severity 
and progression Case status Not developed Case status Case status Case status Case status; 

drug response Not developed Case status Case status Case status Case status Not developed Case status Not developed Not developed Case status  Case status Case status Case status Not developed Case status

Validated PRS available? Yes Yes No Not developed Yes No Yes Yes Not developed Yes Yes No Yes Not developed Yes Not developed No Yes Yes Yes Yes Not developed Yes
Validation populations EU, AA EU EU Not developed EU NP EU, AA, HL, Asn EU Not developed EU, AA, HL, Asn EU, AA, HL, Asn NP NP Not developed EU, Asn, HL Not developed NA EU, AA, HL, Asn EU, AA, HL, Asn EA EU Not developed EU, AA, HL, Asn

Number of SNPs 29 - 3699 52 15 Not developed 30-6 million NP 34-290,000 10,799-909,763 Not developed 1.2 million 12 - 6.6 million NP 223 Not developed NP Not developed NA NP 1250 25-110 NP Not developed >100,000
Age range adults adults 9-28 years Not developed NP NP adults NP Not developed NP adults NP adults Not developed adults Not developed all ages pediatrics adults adults adults Not developed adults

AUC or R^2, not asked for in 2 pager Not published 
(NP) 0.72-0.82 NP Not developed NP NP 0.51-0.69 0.69 Not developed 0.654 0.81 NP NP Not developed NP Not developed NA 0.55-0.69 0.77 NP NP Not developed 0.66

Analytical Viability - 
future PRS 

development
GWAS availability for PRS development and optimization Yes PRS already 

developed Numerous 11 GWAS; 1 with 
African ancestry Numerous Yes Yes Yes Yes Numerous Numerous Numerous Numerous Numerous Numerous Numerous Numerous Numerous numerous PRS already 

developed Numerous Numerous NP

Phenotype definition Yes Yes NP NP Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Family-based heritability NP NP NP 0.75 NP 0.5-0.8 NP NP 0.32-0.43 NP 0.4-0.6 NP 0.22-0.61 NP NP NP 0.4-1.0 NP NP

34% with 28.4% 
from common 
variants, 6% 

from rare

NP NP NP

SNP-based heritability NP 0.3-0.58 0.82 NP As high as 0.22 NP 0.18-0.41 0.48 > 0.07 . 0.07 0.22 0.09 - 0.11 NP NP NP NP NP NP 0.03 NP NP NP 0.15

Datasets for independent validation eMERGE III Three GWAS - 
AS and EU

eMERGE III + 
institutional 

dataset

eMERGE III + 
institutional 

dataset

eMERGE III + 
additional GWAS BioVU Numerous Numerous

UK Biobank, 
eMERGE III, 
institutional 
datasets

Numerous Numerous Numerous Numerous Numerous Numerous, with limited data 
in AA Numerous NP Numerous Numerous eMERGE III

Numerous in EU, 
with limited data 
sets for other 

ancestries

Numerous Numerous

Age of disease onset > 65 > 50 < 18 < 18 NP > 60 > 18 NP NP NP > 20 NP < 18 NP NP >20 0-99 0-99 >50 years > 55 NP < 18 varies; > 50

Population based prevalence

1.3% in males 45-
54 y to 12.5% in 
males 75-84 y. 

For females, the 
prevalence 

ranges from 0% 
in the youngest 
to 5.2% in the 

oldest age 
groups

2.6%-15.0% 
based on 

economic status 
of country

5-12% in 
children; 

disproportionatel
y affects AA

10-20% of 
children. AD
especially is

very common in 
those with

asthma in which 
up to 50% may

be affected

In those over 65 
yrs, 15% 

prevalence in 
Whites, 11% 
prevalence in 

Blacks

In the US, over 
10 million people 
are afflicted and 

another 43.4 
million are 

considered at 
risk with low 
bone mass

Breast cancer is 
the most 

common cancer 
and the second 
leading cause of 
cancer-related 
death among 
women in the 

U.S.

CD has a 
prevalence of 
100 to 300 per 
100,000 people 

in Western 
Europe and 

North America

In the United 
States, an 

estimated 13.6% 
of adults have 

CKD

Lifetime risk in 
general USA 
population is 

~5%.

Based on 
NHANES 2013-
2016 data, 18.2 

million Americans 
≥20 y have CHD 

(prevalence 
6.7%).

10.4% past-year 
and 20.6% 

lifetime 
prevalence 

estimated in a 
nationally 

representative 
survey of US 

adults

Approximately 
7% of US adults 

have severe 
hypercholesterol
emia (untreated 
LDL-C >= 190 
mg/dL), the 

majority of whom 
do not harbor a 
monogenic FH-

associated 
variant

Decades of scientific evidence 
implicate elevated blood 

pressure (BP) in the etiology of 
cardiovascular disease, 
including coronary artery 

disease, peripheral arterial 
disease, and stroke, as well as 

renal and ocular damage. 
Elevated BP accounts for at 
least 13% of annual deaths 

worldwide.

Stroke affects an estimated 
7 million people (2.7% EA, 

4.1% AA) each year
NP

Global 
prevalence is 
approximately 

25%

NP 5-13% at age 80

2nd most 
common cancer 
in men – 96.7 
diagnoses per 
100k EA men, 

163.8 for 
Black/AA men

1.3-1.5 million 
people affected NP NP

Timing of intervention NP NP Pediatrics Pediatrics Adults Al ages Adults NP NP 40 years old Pediatrics NP Pediatrics Adults NP NP All participants Pediatrics NP Adults NP Pediatrics Adults

Actionability/Intervention
Abdominal 

ultrasonography 
(USG)

Supplements to 
slow progression 

(vitamin C, 
vitamin E, beta 
carotene, zinc); 
VEGF inhibitors 
for late disease.

Parental 
education and 

guidelines such 
as avoiding 

newborn babies 
from asthma 
triggers, and 
making sure 

child maintain a 
healthy weight 
are part of our 

goals.

Emollients in the 
neonatal period 

appear to reduce 
the incidence of 

atopic dermatitis.

Anticoagulation 
to reduce stroke 
risk, medication 
to control heart 
rhythm & rate, 

ablation

Calcium / vitamin 
D 

supplementation, 
regular exercise

Enhanced 
screening 

(breast MRI 
alternating with 
mammogram); 
risk reducing 
mastectomy, 
reproductive, 
breast feeding 

decisions, 
avoidance of 
HRT; lifestyle 

factors

Colonoscopy

Serum Cr and 
urine 

microalbumin 
checks, dietary 
intervention (low 
salt), smoking 
cessation, BP 

control

Colonoscopy; 
Removal of 

polyps during 
screening can 
reduce risk for 

CRC.

Screening tests 
such as exercise 

stress testing 
and coronary 
calcium scan. 

Blood to assess 
need for statin 

therapy.

Cognitive-
behavioral 
treatments, 

psychopharmaco
logical options, 

mood monitoring, 
lifestyle changes

Measurement of 
lipid levels; 
initiation or 

optimization of 
lipid-lowering 
therapy as 
appropriate

Earlier or more intense anti-
hypertensive treatment, 

lifestyle interventions, home 
and clinical BP monitoring

Aspirin recommended in (1) 
patients with 10-year ASCVD 

risk >10% (2) women, 
including those with diabetes, 

in which benefit outweighs 
risk (3) considered in 

patients with CKD (NOT 
stage 4 or 5); cilostazol 

recommended in patients with 
peripheral artery disease.24

Treating early with milder 
therapies (e.g., 

hydroxychloroquine) that have 
been established to prevent 
the progression in disease 
severity in untreated SLE 

patients. Avoiding sun-bathing 
and attending to unexplained 

rashes, will help prevent 
disease and help diagnose the 

onset of SLE at its earliest 
stages.

to be determined

Alerting 
individuals to the 
risk may provide 

them with 
sufficient time to 

modify their 
behavior / 

lifestyle to avoid 
excessive weight 

gain.

If detected by 
pressure 

measurement 
(tonometry), 

increased IOP 
can be treated 
with eye drops, 

laser surgery, or 
microsurgery, 

preventing visual 
loss

GRS guides 
entry into 
existing, 
common 

guidelines for 
PrCa 

surveillance via 
PSA testing. 

Identifying those 
at low genetic 

risk could 
improve PSA 
over-testing.

Dependent upon 
age and other 

clinical findings

Measure 
autoantibodies, 

A1C, fasting 
blood sugar

Lifestyle 
change/weight 

loss

Other known predictors of risk

Age (especially 
≥65), male sex, 

cigarette 
smoking, 

atherosclerosis, 
hypertension, 

and 
hyperlipidemia

Family history, 
age, smoking, 
hypertension, 
night vision

family history, 
maternal 

smoking history, 
living location, 

coexisting 
chronic 

respiratory 
infection, 

presence of 
allergy, atopy 
and obesity

Asthma, family 
history, 

gestational 
diabetes

BMI, 
hypertension, 
tobacco use, 

diabetes 
mellitus, history 
of myocardial 
infarction and 
heart failure

Age, sex, BMI, 
metabolic health, 
smoking, alcohol 

use, 
race/ethnicity

BMI, hormone 
replacement 

therapy (HRT), 
alcohol 

consumption, 
physical activity, 

diet, breast 
density, atypical 

hyperplasia, 
breast 

inflammatory 
disease, and 

parity

Environmental 
factors

Age, sex, 
diabetes, 

hypertension, 
smoking, family 

history of kidney 
disease

BMI, sex, diet, 
smoking, age, 
family history, 

alcohol, 
diabetes, 
hormone 

replacement 
therapy, 
exercise, 

education, 
NSAID use

Age, male sex, 
hyperlipidemia, 

obesity, 
hypertension, 

diabetes, 
cigarette 

smoking, and 
family history of 

CHD.

Stressful life 
events; race; 

socioeconomic 
factors; 

sex/gender; 
family history of 

psychiatric 
illness

NP

Race, age, sex, and BMI are 
well-known factors that are 

addressed in our default 
models. Additionally, smoking, 
alcohol, diet, stress, diabetes, 
kidney disease, sleep apnea, 

and family history are known to 
be associated with increased 

BP.

Non-modifiable: age >55, 
gender, race, low birth weight 

(≤5 lbs) Modifiable: 
hypertension, cardiovascular 

disease, diabetes, 
dyslipidemia, lifestyle 

(alcohol, smoking, 
sedentary), medications 

(hormones, oral 
contraceptives) Other 

potentially modifiable: sleep 
apnea, sickle cell disease, 

drug & alcohol abuse, 
hyperhomocysteinemia, 

inflammatory and infectious 
disease, migraine.

Sex, ancestry

ALT levels, fatty 
liver index uses 

BMI, waist 
circumference, 

serum 
triglycerides and 

GGT

NP

Cardiovascular 
disease, 
diabetes, 

hypertension, 
smoking, 

alcohol, sex, 
age, African 

ethnicity, family 
history, myopia

NP NP NP Ancestry

Public Health and medical impact

Ruptured AAAs 
have a mortality 

estimated at 
81%.

Leading cause of 
irreversible 
blindness in 

adults over 50 
years old with 11 
million individuals 

affected in the 
United States

Asthma is the 
most common 

chronic disease 
among children, 
which affects 
more than 330 
million people 

worldwide. 
Ashtma is the 
third leading 

cause of 
hospitalization in 
United States.

Atopic dermatitis 
(AD) is a 

chronically 
relapsing skin 

disorder with an 
immunologic 
basis that 
occurs in 

approximately 10-
20% of children.

Most common 
cardiac 

arrhythmia, 
affects over 3 

million Americans 
and 33 million 

people 
worldwide. AF 

causes 
increased risk of 

stroke, the 
leading cause of 

serious, long-
term disability in 

the US; heart 
failure, dementia 

and death

Osteoporosis is 
the most 
prevalent 

metabolic bone 
disease in the 
United States 
with over 10 

million people 
afflicted and 
another 43.4 

million 
considered at 
risk with low 
bone mass.

Breast cancer is 
the most 

common cancer 
and the second 
leading cause of 
cancer-related 
death among 
women in the 

U.S.

NP

CKD is 
associated with 
a high burden of 

comorbidities 
and increased 

mortality. CKD is 
frequently under-
recognized and 
under-treated; 

patient 
awareness is 

less than 10% 
for those with 

stages 1-3 CKD, 
and 52% in 

patients with 
severe CKD 

(stage 4+). In 
addition to early 
CKD detection, 

genetic risk may 
play an important 
role in selection 
of living kidney 

donors.

CRC is the 3rd 
most deadly 
cancer in the 

world.

The annual 
incidence of 
myocardial 

infarction in the 
United States is 

580,000.

Depression is 
the leading 
cause of 

disability in the 
US and globally, 
and associated 

with poor 
outcomes 

including suicide 
and a broad 

range of 
downstream 

medical 
comorbidities

ASCVD remains 
the leading 
cause of 

morbidity and 
mortality in the 

U.S., and 
improvements in 
cardiovascular 
outcomes have 
not been shared 
equally across 

populations

A substantial proportion of 
deaths and morbidity worldwide 

are due to effects of 
hypertension.

Stroke accounts for an 
estimated $34 billion in costs 

each year.

Mortality is high with 
accounting for one of the 
highest death rates of any 

disease in the USA in the 25 
to 35-year old female 

population

Given its high 
correlation with 
obesity, NAFLD 
is skyrocketing 
in prevalence 

worldwide, and a 
recent estimate 

of the global 
prevalence is 
approximately 

25%

NP

Glaucoma is the 
second highest 

cause of 
blindness, after 

cataract;

Prostate Cancer 
is the 2nd most 
common cancer 
in the US. PSA 

surveillance 
guided by 

genetic risk 
could have a 

large impact on 
potentially 

harmful PSA 
over-testing in 

the broader 
population

RA accounts for 
accounting for 
an estimated > 
$30 billion in 
health care 

costs.

NP

T2D is one of 
this centuries 

greatest chronic, 
non-

communicable 
health scourges.

Health disparities Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes NP NP Yes

Reason for phenotype 
was moved to 

Development pathway 
before June 2021

PRS only 
validated in EU 

and AA. 
Inability to pull 

major risk 
factor 

(smoking) from 
EHR. Low 
disease 

prevalence in 
AS and HA 
populations.

Less common 
disease 

prevalence in 
EU ancestry.  
Genetic tests 

are being used 
to assess 

progression 
not 

case/control 
status.

Clinical 
Pathway

Limited 
multiancestry 
GWAS and 

lack of 
immediate 
access to 
validation 
datasets.

Clinical 
Pathway

No validated 
phenotype 

EHR 
algorithum; 
phenotype 

requires DEXA 
scan. No 
genetic 

association 
found to date 
in HA and AA 
populations.

Clinical 
Pathway

Lack of 
multiancestral 
validation and 

reliance of 
avalible PRS 

on 
ImmunoChIP.

Clinical 
Pathway

The PRS 
development 
and validation 

was not 
complete for all 

ancestral 
groups in June 

2021.

Clinical 
Pathway

The PRS 
development 
and validation 

was not on 
track for clinical 
implementaton 
by June 2021.

Clinical 
Pathway

PRS had a relatively low 
predictive value and the 

value of return was 
questioned relative to other 

phenotypes.

The PRS development 
and validation was not on 

track for clinical 
implementaton by June 

2021.

Low population 
prevalence; ethical 

considerations of returning 
results for rare disease with 
substantial false positives. 
Lack of timely access to 

validation data sets. Lack 
of clinically validated 

preventative strategies.

Performance of 
PRS in March 
2021 was not 

predictive 
across 

ancestral 
groupus.

Clinical 
Pathway

Deprioritized 
based on 
avalible 

expertise at 
site that 

proposed the 
phenotype.

Clinical 
Pathway

Lack of data in 
subjects of AA 

ancestry to 
support 

Development 
and Validation 

of PRS.

Clinical 
Pathway

Clinical 
Pathway

Moved to 
Developmental 

Pathway
June 2021 Aug 2020 Aug 2020 Aug 2020 Aug 2020 June 2021 March 2021 March 2021 March 2021 March 2021 March 2021 Aug 2020 Aug 2020

Analytical Viability - 
existing PRS

Feasibility

Actionability

Translatability and 
Development 

potential
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Condition # case:control in validation cohort(s)
Is the score cross-ancestry, if so, for which 
populations? (European (EA), African (AA), 
Hispanic (HL), Asian (Asn))

Was validation analysis 
restricted to specific age 
range? if yes, list

Odds ratio per SD Estimate of model discrimination (AUC) with CI of genomic predictor 
only

Estimate of model discrimination (AUC) with 
CI for non-genetic covariates only

Estimate of model discrimination (AUC) with CI of the full model  
(i.e. with genomic predictor and non-genetic covariates)

Does the 
model include 
covariates 
beyond Age & 
Sex? If yes, 
list

Proposed high 
risk cut off

Odds ratio & CI of proposed high risk cut off 
compared to rest P value of OR Sensitivity and specificity at cut off 

(SN:SP)
Positive predictive value and negative 
predictive value at cut off (PPV:NPV)

Are all sites 
genotyped or imputed 
on Global Diversity 
array? If not, #/total

Does the model use a standard sites 
and weights only format? If no, what 
are the additional 
components/variables that will need to 
be evaluated for implementation 
feasibility?

Abdominal 
Aortic 
Aneurysm

European: 4,165:42,843
African: 42:4,492
Hispanic: N/A
Asian: N/A

No 18+

Overall: 1.63 (1.51, 1.74)
European: 1.49 (1.38, 1.62)
African: 1.62 (1.25, 1.90)
Hispanic:  N/A
Asian: N/A

European: 0.60
African: 0.59
Hispanic: N/A
Asian: N/A

European: 0.74
African: 0.80
Hispanic: N/A
Asian: N/A

European: 0.75
African: 0.82
Hispanic: N/A
Asian: N/A

Age, BMI, 10 
PCs

5%

European: 2.21 (2.04-2.37)
African: 3.34 (2.53-4.14)         
Hispanic: N/A
Asian: N/A

European: p<2.00E-16
African:p=0.0033       
Hispanic: N/A
Asian: N/A

European: 0.08:0.94
African: 0.17:0.94
Youden cutoff: European: 0.78:0.62
African: 0.85:0.68

European: 0.057:0.96
African: 0.028:0.99
Youden cutoff: European: 0.079:0.98
African:  0.026:0.822

Yes

PRS is only sites and weights; the 
genome informed risk assesment (GIRA) 
includes age, sex, bmi and smoking 
status

Asthma

European: 3,835/43,531; ped 1,048/7,416
African: 1,373/ 6,013; ped 1,404/2152
Hispanic: 476/3,049; ped 106/535
Asian: 132/2,637; ped 70/542

No Pediatric only - less than 18 
years old

European: 1.26 (1.18, 1.35)
African: 1.27 (1.17, 1.39)
Hispanic: 1.60 (1.16, 2.20)
Asian: 1.48 (1.15, 1.91)

European: 0.55 (0.53, 0.57)
African: 0.58 (0.56, 0.59)
Hispanic: 0.67 (0.61, 0.72)
Asian: 0.61 (0.54, 0.68)

European: 0.59 (0.57-0.61)
African: 0.57 (0.55-0.59)
Hispanic: 0.67 (0.62-0.72)
Asian: 0.63 (0.57-0.70)

European:0.61 (0.60-0.62)
African: 0.59 (0.57-0.61)
Hispanic: 0.70 (0.65-0.76)
Asian: 0.65 (0.58-0.71)

Yes + first 3 
PCs, based on 
scree plot

5%

European: 1.97 (1.54, 2.51)
African: 1.45 (1.07, 1.95)
Hispanic: 2.43 (1.12, 5.29)
Asian: 2.02 (0.79, 5.13)

European: p<0.0001
African: p=0.01
Hispanic: p=0.02
Asian/: p=0.13

European: 0.08:0.96
African: 0.06:0.96
Hispanic: 0.09:0.96
Asian: 0.08:0.96

European: 0.17:0.90
African: 0.19:0.86
Hispanic:0.29:0.86
Asian: 0.18:0.90 

Only variants overlap 
with 1000G  and 
discovery cohort will be 
used.

Yes

Breast Cancer

European: 3,939:28,860
African: #1: 274:3,527, #2:  9241:10,193, #3: 246:4,376
Hispanic: 147:2,049
Asian: #1: 45:431, #2: 15755: 16,483 

No age ≥ 18 years old and 
females only

European: 1.37 (1.33, 1.42)
African: #1: 1.15 (1.01, 1.3), #2:  (1.27), #3: (1.25 )
Hispanic: 1.27 (1.11, 1,40)
Asian: #1: 1.45 (1.04, 2.01)), #2: 1.52 (1.49,1.56) 

European: 0.59 (0.58, 0.60)
African: #1: 0.53 (0.50, 0.57), #2: 0.57 (0.56, 0.58), #3 0.56 (0.52, 0.6)
Hispanic: 0.53 (0.48, 0.58)
Asian: #1: 0.61 (0.52, 0.69), #2: (0.61)

European: 0.66 (0.64,0.65)
African: #1: 0.70 (0.67, 0.73), #2: NA, #3: 
0.69 (0.67,0.72)
Hispanic: 0.70 (0.67, 0.74)
Asian: #1: 0.69 (0.62,0.75)), #2: NA

European:  0.67 (0.66,0.68)
African: #1: 0.70 (0.67, 0.73)), #2 N/A, #3 .71 (0.68, 0.74)
Hispanic: 0.70 (0.67, 0.74))
Asian: #1: 0.70 (0.63, 0.77)), #2: N/A 

yes, top 3 PCs 
and eMERGE 
site (females 
only - sex not 
included)

5%

European: #1: 2.12 (1.87, 2.4)), #2: (2.47 (2.20, 
2.77))
African: #1:1.3 (0.77, 2.22), #2: 1.61 (1.38, 1.87), 
#3: 1.84 (1.1, 2.94)
Hispanic: 2.05 (1.1, 3.83)
Asian: #1: 2.75 (0.85, 8.89), #2: 2.22 (1.99-2.47)

European: p=8.90E-32
African: #1: p=0.33, #2 p=1.32E-09, #3: 
p=1.42e-2
Hispanic: p=0.02
Asian: p=0.091 #2: N/A 

European: 0.09:0.96
African: #1: 0.06:0.95, #2: N/A, #3: 
0.08:0.95
Hispanic:0.09:0.95
Asian:  #1: 0.09:0.95, #2:  N/A 

European: 0.23:0.88
African: #1: 0.15:0.88, #2: N/A, #3: 
0.18:0.88
Hispanic: 0.17:0.90
Asian: 0.18:0.90, #2: N/A

305/313 Yes

Atrial fibrillation

European: 8,613:26,900
African: 338:2,392 ;  VU: 502:3,408 
Hispanic: 132:933
Asian: 45:400

No ≥40 years old

European: 1.44 (1.4, 1.47)
African: #1: 1.29 (1.15, 1.45), #2: 1.25 (1.14, 1.38)
Hispanic: 1.39 (1.14, 1.69)
Asian: 1.64 (1.1, 2.46)

European: 0.56 (0.59, 0.60)
African: #1: 0.57 (0.54, 0.61), #2: 0.56 (0.54, 0.59) 
Hispanic: 0.568 (0.51, 0.62)
Asian: 0.62 (0.53, 0.70)

European: 0.62 (0.62, 0.63)
African: #1: 0.64 (0.61, 0.68), #2: 0.65 (0.63, 
0.68)
Hispanic: 0.67 (0.62, 0.71)
Asian: 0.64 (0.56, 0.72)

European: 0.660 (0.65, 0.66)
African: #10.65 (0.62-0.68), #2: 0.67 (0.64, 0.69)
Hispanic: 0.67 (0.62, 0.72)
Asian: 0.680 (0.60, 0.76)

PCs 1-4 3%

European:  2.46 (2.18, 2.78) 
African: #1: 1.75 (1.02, 3.01), #2: 2.19 (1.38, 3.38)
Hispanic: 2.88 (1.16, 7.17)
Asian: 4.61 (1.28, 16.67)

European: p=1.33E-47
African: p=0.042  
Hispanic: p=0.023
Asian: p=0.020

European: 0.057:0.975
African: 0.053:0.970  ;  VU: 0.06:0.97
Hispanic: 0.053:0.975
Asian: 0.089:0.98

European: 0.051:0.978
African: #1: 0.027:0.985,  #2: 0.03:0.99
Hispanic:0.021:0.990
Asian:0.030:0.993

162/166 (98%) Yes

Chronic Kidney 
Disease

European: 23,364:117,883 
African: 5,235:16,467 
Hispanic: 1,492:2,984 
Asian: 1,030:9,896 

Yes - EA, AA, HL, Asn ≥40 years old

European: 1.50 (1.49, 1.52)
African (meta-validation): 1.29 (1.25, 1.32)
Hispanic (meta-validation): 1.42 (1.33, 1.51)
Asian (meta-validation): 1.60 (1.52, 1.67)

European: #1: 0.61 (0.61, 0.62), #2: 0.60 (0.59, 0.60), #3: 0.65
African: #1: 0.54 (0.52, 0.56); #2: 0.57 (0.55, 0.59), #3: 0.57 (0.51, 
0.63); #4: 0.562 (0.54, 0.58), #5 0.61 (0.59, 0.63), #6: 0.55 (0.49, 0.61), 
#7: 0.57
Hispanic: #1: 0.57 (0.54, 0.60), #2: 0.63
Asian: #1: 0.59 (0.52, 0.66), #2: 0.61 (0.59, 0.63); #3: 0.56 (0.48, 0.64); 
#4: 0.57           

European: #1: 0.69 (0.69,0.70), #2: 0.76 (0.75, 
0.76); #3: NA
African: #1: 0.69 (0.67, 0.70), #2: 0.78 (0.76, 
0.79); #3: 0.76 (0.71, 0.81); #4: 0.77 (0.76, 
0.79), #5: 0.73 (0.71,0.75), #6: 0.70 (0.65, 
0.75); #7: NA
Hispanic: E-III 0.86 (0.84-0.88); BioMe: NA
Asian: UKBB-E.Asian: 0.86 (0.82-89), UKBB-SW 
Asian: 0.73 (0.70-0.74); E-III: 0.91 (0.87-0.95); 
BioMe: NA

European: #1: 0.72 (0.72, 0.73); #2: 0.77 (0.76, 0.78); #3: 0.91
African: #1: 0.69 (0.67, 0.71); #2: 0.79 (0.77, 0.80); #3: 0.77 
(0.72, 0.82); #4: 0.78 (0.76, 0.79), #5: 0.75 (0.73, 0.77); #6: 0.71 
(0.66, 0.76); #7: 0.81
Hispanic: #1: 0.87 (0.85, 0.89); #2: 0.89
Asian: #1: 0.86 (0.83, 0.90), #2: 0.75 (0.73, 0.77); #3: 0.92 (0.88, 
0.96); #4: 0.92

Yes, diabetes 
and PCs

2%

European: 3.41 (3.31, 3.52)
African: 2.33 (2.12, 2.54) 
Hispanic: 4.44 (3.78, 5.10)
Asian: 3.59 (3.31, 3.88)

European: p=3.1E-117 (meta 3 cohorts)
African: p=6.6E-16 (meta 7 cohorts)
Hispanic: p=9.1E-06 (meta 2 cohorts)
Asian: p=1.7E-09 (meta 4 cohorts)

European (3 cohort meta-analysis): 
0.54:0.96 
African (7 cohort meta-analysis): 
0.16:0.97
Hispanic (2 cohort meta-analysis): 
0.74:0.87
Asian (4 cohort meta-analysis): 0.48:0.99

European (3 cohort meta-analysis): 
0.66:0.93 
African (7 cohort meta-analysis): 0.51:0.85
Hispanic (2 cohort meta-analysis): 0.45:0.95
Asian (4 cohort meta-analysis): 0.88:0.93

Yes Yes

Colorectal 
cancer

European: #1: 1,311/53,722 ; #2:  573/37,641
African: #1: 56/2,409 ; #2: 42/4,067
Hispanic: #1: 70/5,221 ; #2: 8/1,042
Asian:  #1: 96/5,758 ; #2: 3/375

Yes - EA, Asn > 18

 European: #1: 1.7(1.6, 1.8) ; #2: 1.6 (1.6, 1.7)
African: #1: 1.1(0.9, 1.5) ; #2: 1.4 (1.1, 1.8)
Hispanic: #1: 1.6(1.6, 1.8) ; #2:  1.9 (1.3, 2.6)
Asian: #1: 1.43(1.2, 1.8) ; #2: 2.7 (1.5, 4.0)

European: #1: 0.67 (0.66, 0.69); #2: 0.64 (0.6, 0.7)
African: #1: 0.57 (0.54, 0.65); #2: 0.59 (0.5, 0.7)
Hispanic: #1: 0.63 (0.56, 0.70); #2: 0.7 (0.4, 0.96)
Asian: #1: 0.65 (0.60, 0.71); #2: 0.78 (N/A)

Does not include non-genetic covariates Does not include non-genetic covariates

No. We do not 
incllude age, 
sex or other 
non-gentic 
covariates. 

7%

European: #1 2.9(2.5, 3.1) ;#2: 2.4 (2.1, 2.6)
African: #1: 1.2(0.4-3.3), #2: 1.9 (0.9,2.97)
Hispanic: #1: 1.7(0.7-3.9), #2: 4.2 (2.6,5.8)
Asian: #1: 2.32 (1.3-4.2), #2: N/A 

European: #1: p=8.9e-72; #2p=5e-13
African: #1 p=0.28; #2 p=0.2
Hispanic: #1 p=0.0003; #2 p=0.08
Asian: #1 p=0.00038; #2: N/A

European: #1: 0.17:0.93, #2: 0.03:0.99
African: #1: 0.1:0.93, #2: 0.02:0.99
Hispanic: #1: 0.08:0.93), #2: 0.03:0.99
Asian: #1: 0.16:0.93; #2: 0.5:0.99

European: #1: 0.02:0.99; #2: 0.02:0.99
African: #1: 0.01:0.99; #2: 0.02:0.99
Hispanic: #1: 0.01:0.99; #2: 0.04:0.99
Asian: #1: 0.02:0.99; #2: 0.37:0.99

1017562/1020292 
(99.7%)

Yes

Coronary heart 
disease

European: 5,970:53,171
African: 1,427:16,290
Hispanic: 337:6,809
Asian: 32:690

Yes - EA, AA, HL, Asn Yes, >= 18 years old

European: 1.51 (1.46, 1.55)
African: 1.23 (1.17, 1.30)
Hispanic: 1.31 (1.17, 1.47)
East Asian: 1.91 (1.32, 2.77)

European: 0.600 (0.59, 0.61)
African:  0.556 (0.54, 0.57)
Hispanic: 0.587 (0.57, 0.62)
East Asian: 0.655 (0.55, 0.76)

European: 0.689 (0.68, 0.70)
African: 0.640 (0.62, 0.66)
Hispanic: 0.71 (0.68, 0.73)
East Asian: 0.72 (0.65, 0.80)

European: 0.73 (0.71, 0.72)
African: 0.65 (0.64, 0.67)
Hispanic: 0.72 (0.70, 0.75)
East Asian: 0.76 (0.68, 0.84)

No, just age 
and sex

5%

European: 2.36 (2.12, 2.62)
African: 1.76 (1.41, 2.19)
Hispanic: 2.23 (1.51, 3.29)
East Asian: 2.67 (0.74, 9.61)

European: p=5.63E-57
African:  p=3.75E-07
Hispanic: p=5.69E-05
East Asian:  p=0.13

European: 0.085 : 0.956 
African: 0.080 : 0.955 
Hispanic: 0.092 : 0.952 
East Asian: 0.094 : 0.952 

European 0.20:0.89
African 0.16:0.91 
Hispanic 0.13:0.93
East Asian 0.11:0.94

539,986/542,218  
(99.6%)

Yes

Hypercholester
olemia

European: 323:4,810
African: 422:3,741
Hispanic: 539:5,780
Asian: 25:618

Yes; EA, AA, HL, Asn Yes, >= 18 years old

European: 1.96 (1.73, 2.23)
African: 2.1 (1.86, 2.37)
Hispanic: 2.03 (1.83, 2.27)
Asian: 1.76 (1.15, 2.77)

European: 0.67 (0.64, 0.70)
African: 0.68 (0.66, 0.71)
Hispanic: 0.65 (0.62, 0.67)
Asian: 0.66 (0.56, 0.76)

European: 0.56 (0.53, 0.59)
African: 0.59 (0.56, 0.61)
Hispanic: 0.65 (0.62, 0.67)
Asian: 0.63 (0.54, 0.72)

European: 0.68 (0.65, 0.71)
African: 0.7 (0.68, 0.73)
Hispanic: 0.72 (0.70, 0.74)
Asian: 0.71 (0.62, 0.80)

Yes,  + top 10 
PCs

3%

European: 4.43 (2.89, 6.60)
African: 2.98 (1.88, 4.60)
Hispanic: 3.89 (2.68, 5.55)
Asian: N/A

European: p=1.31E-12
African: p=1.73E-06
Hispanic: p=2.02E-13
Asian: N/A

European: 0.10:0.97
African: 0.07:0.97
Hispanic: 0.08:0.98
Asian: N/A

European: 0.20:0.93
African: 0.15:0.93
Hispanic: 0.23:0.93
Asian: N/A

8996/9009 (99.9%) Yes

Obesity/BMI

European: 1,226:6,134
African: 1,396:3,215
Hispanic: 1821:4,710
East/South-East Asian: 123:724
South Asian: 159:575

Yes - EA, AA, HL, Asn Yes, >= 18 years old info redacted for publication by GIANT consortium info redacted for publication by GIANT consortium info redacted for publication by GIANT 
consortium

info redacted for publication by GIANT consortium

Yes, + top 4 
PCs (across 
columns P-R 
only not 
included in P)

3% info redacted for publication by GIANT consortium info redacted for publication by GIANT 
consortium

info redacted for publication by GIANT 
consortium

info redacted for publication by GIANT 
consortium

Yes Yes

Prostate 
cancer

European: 3,529:27,729African: 260:3,035Hispanic: 
62:1,528Asian: 10:337

Yes - EA, AA, HL, Asn yes, age 35+

European: 1.94 (1.90, 1.98)
African: 1.79 (1.64, 1.93)
Hispanic: 1.68 (1.39,1.98)
Asian: N/A

European: 0.663 (0.65, 0.67)   
African: 0.646 (0.61, 0.68) 
Hispanic: 0.67 (0.60, 0.73) 
Asian: 0.640 (0.50, 0.78)

European: 0.71 (0.70, 0.71) 
African: 0.83 (0.80, 0.85) 
Hispanic: 0.90 (0.86, 0.93) 
Asian: 0.91 (0.84 - 0.98)

European: 0.77 (0.76, 0.77) 
African: 0.85 (0.83, 0.87) 
Hispanic: 0.91(0.88, 0.94) 
Asian: 0.84 (0.74, 0.93)

yes, top 10 
PCS and 
eMERGE site 
(males only - 
sex not 
included)

10%

European: 3.67 (3.57, 3.76)
African: 2.952 (2.60, 3.30)
Hispanic: 2.367 (1.70, 3.04)
Asian: N/A

European: p=1.961e-162
African: p=0.77e-09
Hispanic: p=0.012
Asian: N/A

European: 0.26:0.90
African: 0.17:0.93
Hispanic: 0.09:0.97
Asian: N/A

European: 0.06:0.99
African: 0.063:0.98
Hispanic: 0.034:0.99
Asian: N/A

264/269 (98.1%) Yes

Type 1 
Diabetes

European: 361:1,944
African: 168:1,371
Hispanic: N/A
Asian: N/A

No Yes. =< 21 years old

European: 3.79 (3.27, 4.38)
African: 3.48 (3.15, 3.85)
Hispanic: N/A
Asian: N/A

European: 0.84 (0.82, 0.85)
African: 0.82 (0.80, 0.85)
Hispanic: N/A
Asian: N/A

European: 0.55 (0.52, 0.58)
African: 0.52 (0.48, 0.57)
Hispanic: N/A
Asian: N/A

European: 0.84 (0.82,.86)
African: 0.82 (0.79,0.85)
Hispanic: N/A
Asian: N/A

Yes + top 3 
PCs

3%

European: 12.19 (7.29, 20.4)
African: 20.45 (10.77, 38.82)
Hispanic: N/A
Asian: N/A

European: p=2.54E-32
African: p=1.08E-35
Hispanic: N/A
Asian: N/A

European: 0.13:0.98
African: 0.18:0.98
Hispanic: N/A
Asian: N/A

European: 0.09:0.99
African: 0.15:0.99
Hispanic:  N/A
Asian:  N/A

Yes SNPs & Weight + SNP2HLA imputation

Type 2 
Diabetes

European: 2,460:22,818 
African: #1:1,659:5,086; #2 2,776:2,722; #3 401/1,494; #4 352/422   
Hispanic:N/A 
Asian: N/A

Yes - EA, AA, HL, Asn No

European: 1.98 (1.89, 2.07) 
African: #1: 1.69 (1.55, 1.83); #2: 1.78 (1.63, 1.95); #3: 1.53 
(1.32, 1.76); #4: 1.34 (1.10, 1.64) 
Hispanic: N/A
Asian: N/A

European:  0.67 (0.66, 0.68)
African: #1: 0.59 (0.57, 0.60); #2: 0.59 (0.57, 0.60); #3: 0.57 (0.54, 
0.60); #4: 0.56 (0.52, 0.61) 
Hispanic: N/A
Asian: N/A

European: 0.70 (0.69, 0.71)
African: #1 0.57 (0.56, 0.59), #2: 0.58 (0.55, 
0.59), #3: 0.72 (0.70, 0.75), #4: 0.60 (0.56, 
0.64) 
Hispanic: N/A
Asian: N/A

European: 0.76 (0.75, 0.77)
African: #1 0.62 (0.61,0.64); #2 0.62 (0.61,0.64); #3 0.74 
(0.71,0.76); #4 0.63 (0.58,0.67)
Hispanic: N/A
Asian: N/A

eMERGE: Yes 
+ top 20- PCs 
+ site; MGB 
Biobank Yes +
top 20 PCs;
UAB cohorts: 
Yes + top 10
PCs

2%

European:  4.44 (3.60, 5.49)
African: #1: 1.88 (1.32,2.69); #2: 2.35 (1.54,3.60); 
#3: 1.76 (0.84,3.68); #4: 1.88 (0.60,5.97)
Hispanic: N/A
Asian: N/A

European:  p=1.94E-43
African: #1: p<0.0001, #2: p<0.0001; #3: 
p<0.0001; #4: p=3.7E-03 
Hispanic: N/A
Asian: N/A

European: 0.06:0.98
African: #1: 0.03:0.98; #2: 0.03:0.99; 
#3: 0.03:0.98; #4: 0.02:0.98 
Hispanic: N/A
Asian: N/A

European:  0.23:0.93
African: #1 0.13:0.91; #2: 0.24:0.91; #3: 
0.13:0.91; #4: 0.09:0.91
Hispanic: N/A
Asian: N/A

99% Yes

Datasource: Data generated by eMERGE sites, stadardized metrics defined and reported on PRS Grid and PRS grid instructions

Performance metrics of PRS validation model Feasibility in pipeline
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de novo PRS 
generation % female age 

(median; range)

Ancestry definitions 
(self-reported, genetic 

ancestry, or both)
% female

Ancestry definitions (self-
reported, genetic ancestry, 

or both)

Atrial Fibrillation No PMID:30061737 ~54% genetic P+T Meta-analyses effects from 
multiple ancestries

PCs, age, and sex

Breast Cancer No PMID: 30554720 100% both PMID: 30554720 Meta-analyses effects from 
multiple ancestries

PCs, age

Coronary Heart Disease No PMID: 35915156 52-60% genetic PRS-CSx Meta-analyses effects from 
multiple ancestries

PCs, age, and sex

Hypercholesterolemia No PMID: 34887591 ~63% both P+T
Trans-ancestral meta-

analysis and reference 
panel

PCs, age, and sex

Obesity/BMI * No
To be described in 
upcoming (currently 
embargoed) paper

54-65% self-reported PRS-CS
Trans-ancestral meta-

analysis and reference 
panel

PCs, age, and sex

Prostate Cancer No PMID: 33398198 0% genetic PMID: 33398198
Meta-analyses effects from 

multiple ancestries
PCs, age, substudy

Type II Diabetes * No PMIDs: 30297969, 34594039, 
25102180

N/A N/A 49-63% both PRS-CSx
PMID: 35513724

Yes- PRS-CSx jointly 
models GWAS summary 

statistics from multiple 
populations

PCs, age, sex, and study site

Abdominal Aortic Aneurysm Yes PMID: 32981348 + FinnGen N/A 1% 76.2 (+/- 8.4) Both MEGA HRC N/A 23% both PRS-CS + P-value 
thresholding

none PCs, age, sex, smoking, and 
bmi

Asthma * Yes PMID=29273806 N/A 52% 12.82 (1-19) Both Illumina_Affymetrix Minimac3 and IMPUTE4 
for the two cohorts

N/A 52% both Bayesian none PCs, age, and sex

Chronic Kidney Disease Yes PMID:31152163 N/A 54% 56.65 (37-73) Genetic Illumina_Affymetrix IMPUTE4
Meta-analyses effects 

from multiple ancestries 
(PMID=31152163)

46-60% both P+T none PCs, age, sex, and diabetes

Colorectal Cancer Yes PMID:30510241
PMID: 32758450 

was further 
optimized

56-61% 64 (19-95) Genetic Affymetrix Axiom 1000 Genome Meta-analyses effects 
from multiple ancestries

52-72% genetic LDPred rho=0.03 none
PCs, age, and sex are included 

as confounders (not as 
covariates) 

Type I Diabetes * Yes PMIDs: 19956093, 30305743, 
30655379

PMID: 30655379 
was further 
optimized

~50% 13 (8-17) Both Illumina 550k SNP array

Hidden Markov Model, 
Minimac4, TOPMed 
Imputation Server, 

TOPMed (Version R2 on 
GRC38) Reference Panel

AA and EA cross-
ancestry used local 

ancestry specific LD to 
prioritize SNPs

48% genetic

Beta shrinkage, LD 
approach, BOLT-LMM, 

Plink, 
https://github.com/huiqi-

qu/GRS2

AA and EA cross-ancestry 
used local ancestry specific 

LD to prioritize SNPs
PCs and sex

* pediatric conditions

PRS-CSx was used without further model development and optimization 

Cross-ancestry 
approach (fine-

mapping/algorithmic/no
ne)

Condition

Starting point Development and Optimization Multiancestral Validation

GWAS Existing Validated 
PRS

Demographics Demographics

Statistical method

Cross-ancestry approach 
(fine-

mapping/algorithmic/none
)

Covariants included in modelGenotype array
SNP Imputation strategy 

(method, populations 
(1000 genomes etc...)
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