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Abstract

Background. If patients could utilise scientific research about modifiable risk factors there is a potential
to prevent disease and promote health. Mobile applications can automatically adjust what and how
information is presented based on a user's profile, creating opportunities for conveying scientific health
information in a simpler and more intuitive way. We aimed to demonstrate this principle by developing a
complex statistical model of the relationship between self-rated-health (SRH) and lifestyle-related factors,
and designing an app that utilises user data to translate the statistical model into a user-centred
visualisation that is easy to understand.

Methods. Using data from the 6th (n=12 981, 53.4% women and 46.6% men) and 7th (n=21 083, 52.5%
women and 47.5% men) iteration of the Tromse population survey, we modelled the association between
SRH on a 4-point scale and self-reported intensity and frequency of physical activity, BMI, mental health
symptoms (HSCL-10), smoking, support from friends, and diabetes (HbA 1c>6.5%) using a mixed-effects
linear-regression model (SRH was treated as a continuous variable) adjusted for socio-economic factors
and comorbidity. The app registers relevant user information, and inputs the information into the
SRH-model to translate present status into suggestions for lifestyle changes with estimated health effects.

Results. SRH was strongly related to modifiable health factors. The strongest modifiable predictors of
SRH were HSCL-10 and physical activity levels. In the fully adjusted model, on a scale ranging from 1 to
4, a 10-HSCL index>3 was associated with a reduction in SRH of 0.948 (CI: 0.89, 1.00), and vigorous
physical activity (exercising to exhaustion >4 days/week vs sedentary) was associated with an SRH
increase of 0.643 (0.56-0.73). Physical activity intensity and frequency interacted positively in their effect
on SRH, with large PA-volume (frequency X intensity) being particularly predictive of high SRH.

Conclusions. Apps that adjust the presentation of information based on the user's profile can simplify and
potentially improve communication of research-based scientific models, and could play an important role
in making health research more accessible to the general public. Such technology could improve health
education if implemented in websites or mobile apps that focus on improving health behaviours.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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Background

Unhealthy behaviours are related to increased risk of physical illness, mental distress, and reduced
health-related quality of life (1-5). Healthcare services cannot meet the epidemic of lifestyle-related
diseases such as cardiovascular disease, obesity, and diabetes, which stresses the importance of
facilitating individual adherence to healthy behaviours (6—8). By following basic health
recommendations such as smoking cessation, following a healthy diet, getting sufficient physical
exercise, and moderating alcohol consumption, it has been estimated that 70-90% of all lifestyle-related
diseases can be treated or prevented, and life expectancy can be increased by more than ten years (9-11).
Although healthy habits are in many cases highly effective at improving health outcomes, most
individuals are unable to adhere to them in the long term without external support or coaching (12—14).
Assisting individuals in developing healthy habits is, therefore, a central element of nearly all disease
rehabilitation and management programs (15—17). The effectiveness of these programs have been well
documented, but they are not scalable due to resource limitations and the need for long term follow up, as
patients tend to relapse into old habits after follow-up is ended (18).

Mobile applications for assisting lifestyle modification have been considered as a supplement or
alternative to centre-based rehabilitation programmes, and offer several advantages. Personalised mobile
health applications are widely available, can improve communication between healthcare providers and
patients, increase uptake by removing obstacles associated with centre-based rehabilitation sessions (e.g.,
long travel distance), and provide real-time support and guidance (18-20). Several studies suggest that
mobile health applications can facilitate effective disease management and long-term adherence to healthy
behaviours (21-31).

A downside to current lifestyle-oriented mobile applications is that very few provide guidance that is
adapted to the individual user characteristics, such as age, mental health status, and sex (32). This is a
missed opportunity, because the optimal strategy for pursuing health can be highly individual, and a
personalised experience is an important factor in successful long-term adherence (14). A mobile app
informed by user data can be designed to modify what and how information is presented so that it offers a
more individually tailored experience. Other limitations in current lifestyle apps is that they typically
focus on one aspect of lifestyle in isolation, such as physical activity (PA) or weight loss, and tend to lack
a proper scientific basis (33).

Epidemiological studies often form the basis for public health recommendations on lifestyle, and could
serve as a knowledge base for such an app, offering a broad perspective that considers the joint health
impact of multiple factors. Communicating the implications of such models to a general audience can be
challenging however, especially when the models are complex. The limitations of static means of
communication that do not adapt to the individual, i.e. standardised guidelines, become apparent in such
situations.
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In this study, we aim to demonstrate that apps informed by user data can present scientific findings on
health and lifestyle in a simpler and more intuitive way, and remove the tradeoff between model
complexity and ease of communication. We call this method of presenting information Individually
Adjusted Presentation of Health Information, IAPHI. To develop a proof-of-concept, we first develop a
statistical model of health based on large scale population data, and develop an app which integrates the
model and uses it to offer user-tailored feedback on health and lifestyle. The envisioned end goal is an app
that allows the user to compare, on the basis of scientific models of health, the health impact of health
factors covering all major domains of health, thereby making it easier for them to form a strategy for
improving their health and decide which aspects to prioritise first. We model population data from the 6th
and 7th iteration of the Tromse study - a large scale population survey that draws representative samples
from the municipality of Tromse, Norway, approximately every 7 years - to develop a model of overall
health as a function of lifestyle factors. The lifestyle factors considered are intensity and frequency of PA,
body mass index (BMI), smoking, Diabetes, symptoms of psychological distress, and social support. We
assess the association of these variables with overall health status using a linear mixed-effects regression
model fitted to population data from the Tromseg6 and Tromse7 surveys. Health status is measured using
self-rated health (SRH), a simple one-item instrument that asks a person to rate their health, for example
on a 5-level scale ranging from poor to excellent. SRH has been shown to have cross-cultural validity, is
simple to understand, can easily be collected digitally on a large scale, and is a strong independent
predictor of mortality, even after controlling for a broad range of illnesses and lifestyle factors (34—37).

The health and lifestyle app we develop presents the SRH-model in terms of estimated health impact
associated with achievement of various goals related to health and lifestyle. It sets the user in his or her
current state as the baseline, and presents model effects in terms of expected change to their SRH
following deviations from this baseline status. This way of communicating scientific information could
benefit health education by helping individuals understand how the results of a study applies to them
specifically and highlight the personal relevance of the results. Our primary aim is to develop a
proof-of-concept on conveying complex population-level health research to a general audience by using
technology that automatically tailors the presentation to the user. We discuss the advantages and
limitations of such automated methods for communication, and how the limitations might be overcome.

Methods

Study design

The Tromse study is a cohort study initiated in 1974 that invites large representative samples of the
municipality of Tromsg, Norway (38). In this study, we use data from the last two iterations, Tromsg6
(2007-08, n=12 981, 53.4% women and 46.6% men) and Tromsg7 (2015-16, n=21 083, 52.5% women
and 47.5% men). In the Tromse7 study, all residents of Tromse aged >40 years were invited. In Tromse6,
different age-groups were randomly sampled for invitation, with 10% of the youngest age group (30-39
years) invited, and everyone within the oldest age group (60-87 years) invited. In Tromse7, 65.0%
invitees participated, and ages ranged from 40 to 99 years. In Troms@6, 65,7% of the invitees of Tromsa6
participated, and the ages ranged from 30 to 87 years. Questionnaires were sent to the participants by
email, and physical examinations were carried out for those who physically attended the study.
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Independent variable and predictors

The independent variable of the model is SRH, which is a person's response to the question “How do you,
in general, consider your health to be?” with possible answers being 1. very poor, 2. poor, 3. not so
good, 4. good, 5. excellent. The “poor” category had low prevalence (0.37%, likely due to the difficulty
for those with severe health problems to participate in surveys), and was merged with the “not so good”
category. The new categories were relabelled to 1. “very bad”, 2. “bad”, 3. “good”, and 4. “very good”.
Although SRH only takes discrete values, it reflects underlying states and processes which are
continuous, which motivated us to model it as a continuous normally distributed variable. The predictors
of SRH considered are the following lifestyle-related factors: physical activity (PA) frequency and
intensity, body mass index (BMI, categorized into underweight, normal weight, overweight and obese
using cut-off values 18.5, 25, and 30 kg/m”2), mental health symptoms (10 item version of Hopkins
symptoms checklist, HSCL), social support (Do you have enough friends who can give you help and
support when you need it?), Diabetes (HbA1¢>6.5%), and smoking status (Do you smoke currently?
yes/previously/no). These factors can be modified through behavioural changes or therapeutic treatment,
and are therefore referred to hereafter as modifiable lifestyle factors. As confounders, we included age,
sex, education level (completed upper secondary education, completed high school diploma, or having
attended college/university), household status (do you live with a partner/spouse?), and comorbid disease
burden (using the comorbidity index described below). After excluding samples with missing data on one
or more model variables, 10 247 samples (78.9%) remained in the Tromse6 dataset and 17 748 samples
(84.2%) in the Tromse 7 dataset. In total, 8 906 individuals participated in both the Tromsg6 and Tromse7
survey, of which 6 264 (70.3%) had complete (for our purposes) data in both surveys.

Comorbid disease burden was measured using the health impact index (HII) proposed by Lorem et al.
(39), which considers both the joint effect and severity of 11 illnesses, such as Cerebrovascular stroke,
Migraine, Myocardial infarction, and Asthma. The presence or history of a condition is measured with
questionnaire items of the form “Do you have or have you had....?”. The index is a weighted sum where
each term represents the impact on SRH of a medical condition, and the weights have been calibrated
based on their association with SRH. For example, the HII of someone who has had a Myocardial
infarction (weight=2) and suffers or has suffered from migraines (weight=1) is 3. The scale ranges from 0
to 22. In Tromseg7, 5.24% had a HII>3.

PA levels were measured using self-reported PA frequency (“How often do you exercise?”’) and intensity (
“If you exercise - how hard do you exercise?”). The PA frequency item had responses 1. Never, 2. Less
than once a week, 3. Once a week, 4. 2-3 times a week, 5. Approximately every day. The PA intensity item
had responses 1. Easy - you do not become short-winded or sweaty, 2. You become short-winded and
sweaty, 3. Hard - you become exhausted. We merged the “never” category into the “less than once per
week” category to reduce the number of PA frequency categories and simplify the model. PA frequency
and intensity thus had 4 and 3 levels respectively, and there were 12 PA subgroups defined by the
combination of PA frequency and intensity.

Mental health status was measured using a 10-item version of the HSCL (40), denoted HSCL-10. HSCL
is a well-validated clinical questionnaire for quantifying mental health symptoms that have been
developed using factor analysis (41). Each item has responses 1. No complaint, 2. Little complaint, 3.
Pretty much, 4. Very much. The numerical values corresponding to the responses are averaged to produce
a summary of the individual's mental health status. HSCL-10 ranges on a scale from 1 to 4, with a high
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index indicating psychological distress. If fewer than seven questions were answered, the HSCL was
defined as missing, and the participant's data were excluded from further analysis.

Model presentation algorithm

The algorithm takes the fitted SRH-model and user data (required to produce the model covariates) and
outputs a visual representation of the most relevant health goals and their estimated health effects. User
data is registered via drop-down menus in a Matlab app we designed using Matlab’s built-in app designer.
Aside from HII, the covariates are generated from raw inputs, e.g., weight and height are converted to
BMI. Modifiable variables for which there is room for improvement are identified, their impacts are
computed by estimating and comparing SRH at the current and optimal variable level, and the variables
are rank-ordered accordingly. Some factors, like PA, have a dose-response relationship with SRH, and a
choice has to be made regarding which goals and effects should represent their health impact. In these
cases, for simplicity and relevance, we hardcoded the suggested goals that we considered to be most
relevant given the users status, but always included the effect of reaching the optimal goal in order to
show the potential room for health improvement associated with that variable. Alternative approaches are
to present all variable-related goals that are associated with improved SRH, or using some fully
automated rule for selecting a sub-sample of potential goals. Finally, the selected health-related goals are
presented in terms of estimated effects on SRH associated with achievement of each respective goal. The
goals are grouped by which modifiable health factor they correspond to, and the groups are presented in
order of their maximum impact, i.e., the effect of reaching the theoretically ideal level. See Figure 6 and 7
for example of the app's output.

Statistical methods

To account for dependency due to some individuals having multiple data points, we use a mixed-effects
model, with participant ID set as the grouping variable which, in effect, assumes each participant has a
randomly assigned baseline SRH. We include interaction terms to test for interactions between covariates
and group-specific effects. Age, HSCL-10 and HII were modelled as continuous variables, and to select
which powers to include to model non-linearities, we separately fitted univariate polynomial models up to
degree 4 and removed the terms with p-values lower than 0.05. Age (divided by ten before entering the
model, for interpretability) was represented with a second-degree term only, and HII and HSCL were
modelled respectively with a second and third degree polynomial. The effects of covariates are primarily
reported in terms of associated change to SRH on a continuous scale, so an effect of 1.0 corresponds to
increasing SRH by one level on a 4-point scale, e.g., from good to very good or bad to good. To
summarise the overall impact of a covariate, we compare expected SRH between the levels corresponding
to the highest and lowest SRH-values, and refer to this value as the maximal impact for that predictor. For
continuous covariates, the strength of association with SRH is also reported in terms of their linear
correlation with SRH. Uncertainties are reported with p-values and 95% confidence intervals, with
p-values below 0.05 considered significant.

The relationship between several of the model covariates, such as PA, BMI, mental distress, and
comorbid disease burden, is complicated, and the choice of which predictors to include is not obvious. We
therefore assessed the sensitivity of our results to this somewhat subjective choice. Specifically, we
calculated the model impact of BMI (average SRH of normal BMI relative to obese BMI) and PA
(average SRH of most vigorous group relative to most sedentary group) respectively across a sequence of
nested models, each adding one covariate at a time.
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To test our assumption that SRH follows a normal distribution, we fit a normal distribution to SRH, use
the fitted distribution to compute theoretical rates for each SRH level by splitting the number line into
four bins with endpoints [-o0, 1.5, 2.5, 3.5, oo]. We then compute the model's probability mass over each
bin, and compare these probabilities against corresponding empirical values. The goodness of fit was
assessed by comparing theoretical (using the fitted normal distribution) and empirical cumulative
probabilities, such as P(SRH < 2). For model comparison and evaluation we calculate the proportion of
explained variance using the R-squared value. To test for overfitting, we set aside a test set of 200
Tromse7 participants that did not participate in Tromse6, and compared the prediction accuracy between
the test set and the set used to fit the model.
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Table 1. Prevalences and averages after stratification based on self-rated health. The Tromso7 study

2015.

Variable

Bad or very bad SRH

Good or very good SRH

Age [average]

Female [%]

Lives with spouse [%]
Education

Upper secondary [%]

High school [%]
University/College (attended) [%]
Comorbid disease

Multiple illnesses® [%]

PA average weekly sessions
Less than once per week [%]
1 time per week [%]

2-3 times per week [%]

4 or more times per week [%]
PA average intensity

Mild (brisk walk) [%]
Moderate (out of breath or sweaty) [%]
High (become exhausted) [%]
Body Mass Index”
Underweight [%]

Normal [%]

Overweight [%]

Obese [%]

Mental health

Significant symptoms of distress® [%]
Social support

Has support from friends [%]
Smoking

Current smoker [%]
Diabetes

HbA1c>6.5% [%]

Note.
“ Health Impact Index > 3.

59.2 (58.9-59.5)
53.3 (52.1-54.5)
72.3 (71.2-73.5)

33.5(32.4-34.7)
30.5 (29.4-31.7)
36.0 (34.8-37.1)

9.95 (9.23-10.7)

17.7 (16.7-18.6)
25.2(24.1-26.2)
36.5 (35.3-37.6)
20.7 (19.7-21.7)

54.6 (53.3-55.8)
43.6 (42.3-44.9)
1.83 (1.49-2.18)

0.913 (0.683-1.14)

23.5(22.4-24.5)
41.1 (39.9-42.3)
34.5(33.3-35.6)
18.4 (17.5-19.4)
82.2 (81-83)

20.1 (19.1-21.1)

10.4 (9.7-11.2)

b BMI cut-off values are 18.0, 25.0, and 30.0 kg/m"2.
¢ Significant mental health symptoms are defined as Hopkins Symptom Checklist score > 1.835.

56.4 (56.2-56.6)
52 (51.2-52.8)
79 (78.3-79.7)

18.3 (17.6-18.9)
26.6 (25.9-27.3)
55.1 (54.3-56)

3.05 (2.77-3.33)

9.19 (8.71-9.66)
16.1 (15.5-16.7)
43.8 (43-44.7)

30.9 (30.1-31.6)

32.4 (31.6-33.2)
62.3 (61.5-63.1)
5.27 (4.9-5.65)
0.406 (0.302-0.511)
35.9 (35.1-36.6)
44.8 (44-45.7)

18.9 (18.3-19.5)
5.24 (4.87-5.61)
92.6 (92-93)

11.1 (10.5-11.6)

3.83 (3.52-4.15)
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Table 2. Prevalence of low SRH stratified by the number of modifiable unhealthy lifestyle factors.
Tromso7 study 2015.

The number of Prevalence of bad or Count
unhealthy factors very bad SRH [%]

0 14.5 (13.4-15.5) 4249 (20.2%)
1 26.1 (25.2-27.0) 9642 (45.7%)
2 44.0 (42.5-45.5) 4254 (20.2%)
3 57.9 (55.3-60.6) 1331 (6.3%)
>4 79.6 (75.1-84.0) 318 (1.5%)

Note. Lifestyle factors defined as unhealthy are Diabetes, being overweight or obese, being sedentary

(exercising less than once per week), smoking, symptoms of mental health issues (HSCL>1.85), and not
having sufficient support from friends.
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Table 3: Results of the Mixed Effects Model showing association with Self-Rated Health. Tromso7 study.

Term Coefficient estimate (95% CI)
Age™2 -0.0029 (-0.0037, -0.0022)
Male -0.096 (-0.11, -0.079)

Upper secondary education -0.18 (-0.2, -0.15)

High school diploma -0.11 (-0.13, -0.096)

HII -0.12 (-0.14, -0.11)

HII"2 0.0069 (0.0029, 0.011)

BMI normal 0.11 (0.095, 0.13)

BMI obese -0.21 (-0.23, -0.18)

Diabetes -0.21 (-0.24, -0.17)

Current smoker

Mild PA<1/week

Mild PA 1/week

Mild PA 2-3/week
Mild PA > 4/week
Moderate PA < 1/week
Moderate PA 1/week
Moderate PA > 4/week
Intense PA < 1/week
Intense PA 1/week
Intense PA 2-3/week
Intense PA > 4/week
HSCL

HSCL"™2

HSCL"3

Lack friend support

Age>65:intense PA > 4/week

Age>65:BMI normal
Age>65:BMI obese

-0.12 (-0.14, -0.099)
-0.26 (-0.29, -0.23)
-0.19 (-0.22, -0.17)
-0.22 (-0.25,-0.2)
-0.13 (-0.15, -0.1)
-0.15 (-0.18, -0.11)
-0.087 (-0.11, -0.06)
0.089 (0.066, 0.11)
-0.25 (-0.44, -0.056)
-0.06 (-0.17, 0.048)
0.19 (0.15, 0.24)
0.38 (0.3, 0.46)

1.9 (2.2, -1.5)
0.56 (0.37, 0.75)
-0.063 (-0.095, -0.032)
-0.12 (-0.14, -0.091)
-0.24 (-0.47, -0.02)
-0.073 (-0.11, -0.04)
0.11 (0.074, 0.15)

Note. Self-rated health is modelled as a continuous variable, with a unit change representing a one-level
increase on the 4-level SHR scale (e.g., from “very bad” to “bad”). Interaction is denoted with “:” (the
bottom three rows). Age is represented on a scale of decades. Reference categories are: moderate PA
intensity, exercising 2-3 times per week with moderate intensity, overweight BMI, University (attended)
level education, and Age<65. HII, HSCL and Age are modelled as continuous variables with polynomial
functions, and the coefficients for the power terms are presented.
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Figure 1: Effects on Self-Rated Health (SRH) in the fully adjusted mixed effects model. SRH is
modelled as a continuous variable, with one unit increase representing a one-level change on the 4-level
SHR scale, such as from “very bad” to “bad” or “good” to “very good”. Interaction effects are denoted
with “:” (the three parameters furthest to the right). Reference categories are mild PA; PA <I time per
week; overweight, college/university level education. HII, HSCL, and age are modelled as continuous
variables. Their effects are sampled at various points with baseline values being 0 (HII), 0 (HSCL), and
30 years of age, respectively. The recommended cut-off for significant mental health symptoms is
HSCL=1.85. Examples of combinations of comorbidities that correspond to Hll-levels 2, 4, and 6,
respectively, are 1. Heart attack, 2. Heart attack and Cerebrovascular stroke, and 3. Heart attack,
Cerebrovascular stroke, and Asthma.

Results

Baseline characteristics

Table 1 shows the prevalence of various conditions and health-related behaviours in two disjoint subsets
of the Tromsga 7 cohort: those who rated their health as bad or very bad and good or very good,
respectively. Comorbid disease burden had the highest prevalence ratio (“bad or very bad” relative to
“good or very good”) of the confounders: 3.26 (presence of multiple illnesses; HII>3). Education also
differed significantly between the groups, with higher education being 1.53 times more prevalent for
those with good or very good SRH. Mental health symptoms (HSCL-10>1.85) had a prevalence ratio of
3.51, which was the highest amongst the modifiable health factors. There were also large group
differences for exercising with high intensity (2.88) and obese BMI (1.83).

Table 2 shows the prevalence of bad or very bad SRH in subgroups that have been grouped by the
participant’s number of unhealthy modifiable health factors. The unhealthy categories are defined as high
blood-sugar, overweight or obesity, being sedentary, smoking, poor mental health status (HSCL>1.85),
and not having sufficient support from friends. The majority, 65.9%, had 0-1 unhealthy factors.
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Model results

Table 3 shows the estimated model parameters, represented in terms of impact on SRH, and 95%
confidence intervals. The reference category for PA is moderate exercise 2-3 times per week. To provide a
visual overview of the model parameters and effects, Figure 1 shows the model effects (vertical lines)
together with 95% confidence intervals.

The R-squared value for the fitted model was 0.631, and the root-mean-squared-error of the model was
0.632. The strongest predictors of SRH were HSCL, PA, and HII. The estimated effect of symptoms of
psychological distress (HSCL=1.85) relative to no symptoms (HSCL=1) was -0.588, and the maximal
impact (HSCL=4 vs HSCL=1) was -1.27. A move from the category with the lowest to the highest
PA-volume was associated with an increase in SRH of 0.643. The estimated impact of serious comorbid
illness, defined as HII=6 (e.g., a combined history of Myocardial infarction, Cerebrovascular stroke, and
Migraine), was -0.42. Assessing the estimated effect of multiple changes simultaneously, we found that
reducing weight from obese to normal, increasing PA from from the least to most active level, and
reducing the HSCL-10 index from level 3 to level 1, was associated with an SRH increase of 1.9.

To assess the impact of HSCL relative to HII, we fitted two reduced models, one without HSCL and one
without HII, and compared the reduction in explained variance. The mode that excluded HII had an
R-squared value of 0.671, and the model that excluded HSCL had an R-squared value of 0.642. Testing
the hypothesis that the mean of the squared errors differed between the models, we obtained a
p-value<0.0001, indicating that HSCL had a larger model impact than HII in terms of explained variance.
HSCL also correlated more strongly with SRH than HII; -0.33 (-0.34, -0.32) versus -0.24 (-0.25, -0.23)
(Troms@7 cohort).

Interaction effects

No interaction effects were observed between sex and other covariates. We included an age>65 years
category to investigate age related interaction effects. We observed significant positive interactions
between age>65 and BMI, reflecting a reduced difference in average SRH between normal and
overweight BMI and overweight and obese BMI, and an overall weaker association between BMI
reduction and positive change to SRH. We found a negative interaction between age>65 and underweight,
but the effect was not significant after adjusting for other covariates (especially HSCL). We observed a
negative interaction (-0.253, p=0.0264) between Age>65 and the most vigorous level of exercise (>4
times per week of intense exercise). PA frequency and intensity interacted positively in their effect on
SRH. Figure 4b shows the model-estimated effect of increasing PA frequency while holding PA intensity
fixed, and it is evident that increasing PA frequency is associated with larger increases in SRH when the
intensity is fixed at higher levels. Visually, this interaction effect is represented by steeper slopes within
the higher intensity subgroups. Figure 4a shows similar information, but there each combination of
intensity and frequency is compared against the same sedentary baseline level (<1 time per week with
mild intensity). Surprisingly, in the mild PA subcohort, the average SRH is lower in the subgroup that
exercises 1-3 times per week than in the subgroup that exercised only once per week. This finding is
discussed in the supplementary materials.

Sensitivity analysis: the impact of adding model covariates
Figure 3 shows the adjusted impact of vigorous PA (highest intensity and frequency) compared to the
least physically active group (left panel) and overweight compared to BMI in the recommended range
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across a sequence of nested models that add one more covariate in each model. In both cases, the base
model controls for sex, age, education level, and smoking, but the base-model for BMI also adjusts for
PA. The adjusted impact of vigorous PA in the base model is 0.745 (0.66-0.83). In the model that controls
for mental health and comorbid disease burden, the adjusted impact of vigorous PA is reduced to 0.646
(0.57-0.72), which is a reduction in estimated impact by 13.3%. The adjusted impact of vigorous BMI
in the base model is 0.315 (0.29-0.34), whereas, in the model that adjusts for hypertension, Diabetes, and
HII, the impact is 0.226 (0.23-0.27), which is a reduction in the estimated impact of 20.6%.

Test set predictions

Figure 4 shows model predictions of SRH on a test set consisting of 200 participants who participated in
Tromse7 but not Tromse6 (to ensure independence between training and test set). The linear correlation
between predicted and actual SRH was 0.588 on the test set and 0.544 on the set used for fitting the
model. As test performance did not indicate overfitting, we used the training set as the basis for model
testing and analysis. To further test the predictive power of the model, we discretized the SRH predictions
by rounding them to the nearest integer and then computed the rate that the model predicted the exact
level of SRH. We also dichotomised SRH into a “low” and “high” subgroup, with low merging bad and
very bad and high merging good and very good, and computed the accuracy with which the model
separated these two levels. The model predicted the exact SRH level with an accuracy of 58.6%
(58.0-59.1%). The detection rate was 90.5% (90.1- 91.0%) for the high-SRH group, and 43.6%
(42.5-44.7%) for the low-SRH group. The model discriminated between the high and low SRH subgroups
with an accuracy of 76.7% (76.2-77.2%).

Goodness of fit

In Figure S, in the leftmost panels, we have plotted the theoretical (after fitting a normal distribution to
Tromse7 and using it to compute theoretical rates) and empirical distributions, and in the rightmost
panels, we have plotted the theoretical and empirical cumulative probabilities for each SRH level. The
plots show that the SRH-distribution is well approximated by a normal distribution.

Visualisation in matlab app

The upper panel of Figure 6 shows the algorithm output for a 68 year old man who smokes, has Diabetes,
a BMI of 27.4 kg/m”2, and exercises once per week with mild intensity. The algorithm has accounted for
his older age by predicting that the optimal PA-schedule is exercise with high intensity only 1-3 times per
week, and by assigning lower importance of weight loss. The lower panel in Figure 6 shows the
algorithm's model-based suggestions for health targets for a simulated 32 year old woman who
experiences psychological distress, exercises less than once per week, and has a BMI of 27.0 kg/m”"2. The
algorithm's feedback suggests that mental health is the aspect of health that has the largest potential for
improving her health, followed by increasing the volume of PA. BMI reduction, by contrast, is given
lower priority. The expected SRH of someone with her profile is estimated to be intermediate between
bad and good, but improving her psychological wellbeing is predicted to potentially increase her SRH to a
level between good and very good.
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Figure 2: Joint effect of Physical Activity Frequency and Intensity on SRH in the adjusted model. The
figures show average SRH (in the fully adjusted model) for different PA subgroups relative to different
reference groups. In panel (a), all effects are presented with the least physically active group (mild
intensity <l per week) as the reference group. In Panel (b), the effect on SRH of exercising with intensity i
and frequency f'is represented relative to those that exercise with with intensity i <I per week, so tracing
each interpolating line shows the effect of increasing exercise frequency from the lowest frequency (<1
per week) to the frequency specified on the x-axis whilst holding the exercise intensity fixed at the level
specified by the colour.
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Figure 3: Effect on model parameters of adjusting for confounders and other covariates. Note that the
bars show the adjusted impact of PA (left panel) and BMI (right panel), respectively, on SRH across
models that adjust for increasingly more variables. The effect of PA is summarised with the difference
between those who exercise intensely >4 times per week and those who exercise <I time per week with
mild intensity. The effect of BMI is summarised with the difference between the obese and the normal
category. The effects are shown together with 95% confidence intervals. The models are nested and
increasing in size going left to right. Both baseline models control for sex, age, current smoking, and

education level. The BMI baseline model also controls for PA.
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Figure 4: Test-set predictions of SRH vs actual SRH values for 200 Tromso 7 participants. Only
participants who participated in Tromsa7, but not Tromso6, were included in the test set to ensure
independence. Random values have been added to the x-coordinates for visual clarity. The intervals are
95% confidence intervals for the mean of each set of predictions.
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Figure 5: Theoretical vs fitted normal distribution of SRH in Tromso 6 and Tromse 7. The theoretical
probabilities for each of the 4 SRH levels were defined as the probability mass over the four bins defined
by the bin-boundaries 1.5, 2.5, and 3.5. The right-hand figures are probability-probability plots showing
the empirically vs theoretically estimated probabilities of SRH< for i=1, 2, 3 and 4.
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Figure 6: Examples of user tailored presentations of the SRH-model effects using the Matlab app.
Predicted SRH associated with achievement of each goal is plotted along the x-axis. The dotted line
shows the predicted SRH given the user's current status. The upper panel corresponds to a fictional 68
year old man who exercises with mild intensity once per week, has no symptoms of mental distress aside
from some slight sleep issues, smokes, has high blood sugar levels, and a BMI of 27.5 kg/m”™2. The
fictional user for the lower panel is a 32 year old woman who exercises with moderate intensity less than
once per week, is experiencing severe psychological distress, and has a BMI of 27.0 kg/m”"2.

Discussion

Our model uses statistical methods to describe and analyse the relationship between modifiable risk
factors and SRH. The model was fitted to a large representative sample of the general population of
Tromse which allows us to fit a complex model that can reliably model the relationship between SRH and
lifestyle factors across a broad range of subgroups. The app we developed identifies lifestyle factors that
can be modified from the user input, predicts their probable effect on SRH trajectories, and prioritises
these factors according to effect size. It thus applies general findings in a particular/individual setting
which offers an applied knowledge base that a patient can use to strategize on how to improve their
health. The examples in Figure 6 illustrate how the presentation is kept simple despite the inclusion of
interaction effects and non-linear relationships, and highlights an advantage of IAPHI; it removes the
need for a statistical model to be simple in order to be communicable. Thus, models that provide high
resolution maps of the relationship between health and lifestyle can be developed without concern for the
challenge of conveying them to the general public. This is an increasingly relevant point due to the
current trend towards larger and more complex datasets, increasing computer processing power, and
larger and more flexible mathematical models that are capable of discerning more complex associations
than classical models.

By presenting a simple and organised overview of the impact of the most relevant lifestyle factors, the
app can make it easier to decide which goals a person should prioritise. It also allows the user to see and
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understand scientific results more directly, without relying on a “middle-man” to interpret them, which
might facilitate adherence, as seeing a less altered or interpreted form of a result could make a person
more inclined to believe in that result. IAPHI can also facilitate patient-focused care, as the patient can
see - without the ambiguity or bias that can be introduced in the translation of numerical results into
words - the association between lifestyle change and health reward, and decide for themselves which
investments seem most worthwhile. This would give the patient a more active role in improving their
health, and doctor-patient communication could benefit from such technology, as they would have a
simple-to-understand visual to refer to when discussing strategies for improving the patients' health.

Self-rated health

In our analysis, we used SRH as a proxy measure of overall health. The relationship between SRH and
lifestyle factors is suitable for developing a model to improve general health and quality of life, as SRH
incorporates both subjective and objective aspects of health, and is highly predictive of long term
objective health outcomes. The subjective component of SRH is especially relevant for motivating
adherence to healthy behaviours as it represents a reward that is achievable on a much shorter time scale
compared to other health goals, such as reducing risk of various age-related illnesses. The relationship
between SRH and lifestyle factors can also be motivating due to how strongly SRH seems to be
influenced by lifestyle factors. Indeed, Table 2 shows that the prevalence of poor SRH increases steeply
with increasing numbers of unhealthy modifiable risk factors, with the prevalence of bad to very bad SRH
being 5.49 times higher for those who reported 0 and >4 unhealthy factors respectively. Similarly, when
we use the fully adjusted model to estimate the joint impact of simultaneously improving PA-levels, body
weight, and mental health, we found that this corresponded to an increase in SRH equivalent to improving
SRH by approximately two levels, e.g. from bad to very good.

Comparison with clinical care

Using data-driven apps to guide patients on lifestyle change in pursuit of better health may result in
prioritisations that are different from what is typically seen in a health care setting. For instance, if
guidance was based on our app and model, mental health would likely be the most highly prioritised
health factor for many individuals, as it was the strongest predictor of SRH by a substantial margin. The
app would also tend to prioritise PA above both BMI and Diabetes. However, as in clinical care, the app
takes into account the changing relationship between BMI and health with age, as it effectively places
lower priority on weight loss after age 65. By including an interaction effect between age>65 and
vigorous PA approximately every day, the app also adjusts its feedback on PA levels on the basis of age,
and conveys that extreme PA levels may not be as advantageous in older age. Despite this negative
interaction effect however, vigorous PA was still strongly associated with high SRH in the age>65 cohort.
An advantage of IAPHI is that it can more precisely communicate such subtle interaction effects,
resulting in a lower risk of miss-communication or exaggeration.

Comparison between self-rated health and other health measures

It is interesting to consider, as a proxy for health, how SRH differs from lifespan in terms of how it
weights various health factors, which in turn influences which lifestyle factors are focused on in the
general population and in healthcare. Epidemiological studies consistently support that the biggest
increase in life expectancy is gained in transitioning from a sedentary lifestyle to one that is moderately
active (such as taking a brisk walk daily) (42—44), with diminishing returns associated with more extreme
PA volume (intensity X frequency). By contrast, we observed no evidence for diminishing returns to SRH
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with increasing PA volume. Figure 2b suggests that to achieve high SRH, one should aim to combine
high PA intensity and frequency. Thus, a SRH-based model of health would more strongly encourage high
PA volume than models that have longevity as the endpoint. It is plausible that a SRH model reflects short
term benefits to a person's subjective sense of health that are not captured in longevity studies. A model of
health based on SRH could therefore supplement a longevity model to facilitate a more complete
understanding. On the other hand, longevity-based models may better illustrate the long term
consequences of habits for which subjective sense of health might not adequately reflect long term
consequences. For example, smoking has a surprisingly low impact in the SRH-model that did not seem
to be proportional to its well known health consequences. Another reason why a SRH model in isolation
might not be suitable for representing the harm of smoking, is that the increased mortality risk associated
with smoking could substantially bias its effect in SRH-models since the individuals with the most
severely affected health will likely be underrepresented. To get a more complete understanding of the
benefits of each health-related behaviour, a future version of the app should therefore incorporate models
for different measures of health, such as mortality, specific diseases (such as cardiovascular diseases,
obesity or Diabetes T2), and mental health.

Limitations

Cannot infer causality

The main limitation of this study is that the data is observational, and therefore we cannot be certain about
the role of causality in describing an association, nor can we determine the direction of causality. For
mental health, reverse causality could account for a considerable portion of the association, although
adjusting for comorbid disease provides some degree of confidence. In any case, uncertain causal
interpretations is an inherent limitation to using epidemiological models as a knowledge base, especially
when the model is based only on a single population study. Making the health information more reliable
will require methods for incorporating multiple studies and sources of knowledge into the app.

Variables do not change in isolation

Many of the variables included in the model have complicated relationships, with some acting as both
confounders and mediators for other covariates. This makes it challenging to infer the impact of the
lifestyle factors and decide which variables to include in the model. For example, PA's positive effect on
health is partly mediated through its ability to facilitate long-term maintenance of weight loss weight loss
(45), and thus BMI can act as a mediator of the positive effect of PA on SRH (Figure 3 illustrates this
point, as the effect of PA drops when BMI is included). Conversely, some individuals are motivated to
exercise because they are overweight, and therefore BMI can also be interpreted as a confounder of the
relationship between PA and SRH. A similar discussion can be had for PA and comorbid disease burden
(5), PA and Diabetes T2, and numerous other combinations of lifestyle factors. Automated user adjusted
presentation of such statistical models therefore should be supplemented with educational tools that help
the user understand how to interpret the information that is presented to them. For instance, it could
illustrate through text and animations that the estimated impact of a lifestyle factor represents only its
isolated or direct effect assuming that all other model variables are held constant, but that is unlikely to be
the case. The app could also allow the user to query the model for the joint effect of reaching multiple
goals, and suggest synergistic combinations based on other studies to provide context to the presented
results. If model effects are presented without such context, it might mislead a person into thinking that a
given health investment will be less impactful than it actually would be.
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The model can not show cumulative effects over time

The model and app can not provide information on the cumulative benefit or harm of maintaining
behaviours or states across various lengths of time, and does not specify the time of adherence that
corresponds to the stated effects. Measures of PA, Diabetes, BMI, and mental health in this study provide
only snapshots of peoples current situations at two time points. Therefore, the SRH associated with a
certain reported behaviour, such exercising 2-3 times per week, will represent an average across various
levels of adherence to that behaviour, and the estimated effect may therefore not represent the maximum
possible benefit. This again stresses the importance of educating the user on the correct interpretation and
limitations of the presented information, as well as supplementing it with scientific results that motivates
adherence by illustrating the cumulative nature of various lifestyle changes.

Other lifestyle variables could be added.

We have not included as independent predictors the full range of modifiable lifestyle factors relevant to
health. Most notably, diet and sleep are not included, although sleep does influence the model via its
influence on mental health. Sleep issues may exist independently of mental health issues, however. In
terms of guiding lifestyle change and prioritisation, this is not an issue if the user has sleep issues because
of mental distress. However, if an individual suffers from sleep issues that are unrelated to mental health
issues, the algorithm would suggest focusing on mental health instead of sleep as the primary intervention
target. A model incorporating questionnaire items designed specifically to detect sleep issues and their
likely causes could resolve this issue.

Conclusions

A digital educational tool for presenting scientific findings that utilises user data to adjust the presentation
can potentially convey research findings more effectively than standard guidelines. They can visualise the
information from a point of reference that is tailored to the user, simplify the presentation by showing
only relevant findings, and facilitate engagement and understanding by allowing the user to interact with
the information, and convey health information in a way that is more easily translated into actionable
steps. SRH was found to be strongly associated with lifestyle factors after controlling for comorbid
disease burden and demographic factors. The most predictive modifiable health risk factors were
symptoms of mental health, physical activity levels, and BMI. PA frequency and intensity were found to
interact positively on SRH, suggesting that PA that high volume is particularly important for good SRH.

List of abbreviations

SRH: self-rated health

PA: physical activity

IAPHI: individually adjusted presentation of health information
BMI: body mass index

HSCL: Hopkins symptoms checklist

HII: health impact index
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