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Abstract—The ongoing COVID-19 pandemic has demonstrated
the shortcoming of epidemiological modelling for guiding policy
decisions. Due to the lack of public data on infection spread
in contact networks and individual courses of disease, current
forecasting models rely heavily on unreliable population statistics
and ad hoc parameters, resulting in forecasts with high uncer-
tainty. To tackle the problem of insufficient public individual
data, we develop an agent-based model to generate a synthetic
Taiwanese COVID-19 dataset. We collected COVID-19 data from
Taiwanese public databases for the period when the original
SARS-CoV-2 virus was most prevalent (Jan.-Oct., 2020) and fit
our model to it. We used the Firefly algorithm to optimize the 194
epidemiological parameters and validated the synthetic dataset
by comparing it to Taiwanese public data. Here we study the
difference between population statistics and individual course
of disease data, and computational optimization of our code to
reduce run time. The discrepancy between serum prevalence and
reported cases, as well as excess deaths and reported deaths, show
that population statistics are unreliable. Monte Carlo simulations
further exemplify the discrepancy between actual and reported
infections. By using Python CProfiler and Snakeviz packages, we
iteratively optimize our algorithm and has so far decreased the
computation time of the core code from 0.11s to 0.07s. The large
computation time implies that we need to further optimize the
algorithm.

Index Terms—COVID-19, individual data, synthetic dataset,
epidemiological model, firefly optimization

I. INTRODUCTION

The COVID-19 epidemic outbreak caused by Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has
spread worldwide since December 2019. The decision-making
process was often based on mathematical modelling for fore-
casting and/or intervention comparison purposes. The UK’s
first lockdown was based on Imperial College’s forecast [1].
Hellewell et al. has investigated the effect of quick isolation
on controlling the pandemic [2]. They concluded that highly
effective contact tracing and case isolation is enough to control
a new COVID-19 outbreak. The Institute for Health Metrics
and Evaluation (IHME) used the deterministic Susceptible-
Exposed-Infected-Recovered (SEIR) model to provide fore-
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casts under a variety of scenarios, such as mask use, vaccina-
tion, and antivirals use [3]. A trustworthy forecasting model
is crucial to guide the disease prevention policy. However,
current epidemiological forecasting models are based on pop-
ulation data, which require precise population measurements
such as the accurate number of infected or deaths. Individual-
level data is more informative from a modelling perspective
but almost completely lacking in any public database, limiting
the development of epidemiological models.

In general, COVID-19 models can be divided into (i)
population-based models and (ii) individual-based models. On
the population-based side, the model is either only based
on population data or the concept of virus spread at the
population level. Widely used population data are the daily
number of confirmed cases and recovered. At the beginning
of the pandemic, the Susceptible-Infected-Recovered (SIR)
model SIKJα was implemented, forecasting the temporally
varying infection, death, and hospitalization rates [4]. Some
other teams developed deep learning models to extract the
hidden pattern in the population data. DeepCOVID created
a small-sized deep neural network (DNN) due to the small
dataset that included CDC data and syndromic surveillance
data [5]. Microsoft’s deep learning model, DeepStia (HierST),
considered not only the population cases but also spatial
information [6]. They trained the model containing two graph
neural networks (GNN) to explain the interaction between
country, states, and county in the US. In the diffusion con-
volutional recurrent neural network—DeepGLEAM [7]—the
encoder reads as input a 7 × 50 × 4 tensor that consists of
the daily residuals between the observed death number and
GLEAM forecast. The decoder produced forecasts for each
state for the following 4 weeks.

The individual-based model (agent-based model) is based
on the disease-spreading structure that incorporates the disease
spread at the individual level (agent), i.e. how the virus spread
from one person to another. Imperial College of London
developed an agent-based stochastic model (CovidSim) and
simulated the pandemic for the UK and USA [1]. The model
can provide forecasting of cases, deaths, and hospitalisations
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under different non-pharmaceutical interventions such as sup-
pression and mitigation. Institute for Disease Modeling (IDM)
developed the agent-based model, COVID-19 Agent-based
Simulator (Covasim), simulating each agent’s demographic
data, disease progression, and contact network in different
social layers [8].

Despite this, all models performed poorly with high uncer-
tainty, and none of them was trained on individual data. We
focus on developing a forecasting model based on individual-
level course of disease datasets. We first develop an algorithm
that generates an individual-level synthetic dataset. The main
idea of the branching process of our algorithm is shown in
Figure 1 and the detailed flow chart is shown in Figure 2.

II. METHOD

Our data synthesis algorithm consists of four main mod-
ules: draw demographic data, draw social context data, draw
course of disease data, and draw contact data. An outbreak is
simulated by inputting an individual in the infection queue.
Each individual in the infection queue is assigned a case ID,
infection time, and previously infected status. As long as the
queue is not empty and the outbreak time does not exceed the
time limit, the process will keep synthesizing source cases’
detailed information.

A. Draw demographic and social context data

Demographic data includes a person’s age, gender, and
occupation. The social context data are categorized into five
different layers, which are household, school, workplace,
health care, and community. Based on the size of social context
data randomly selected from Taiwanese social data, contacts
will be drawn each day for each layer.

B. Draw course of disease data

The latent period is defined as the time from the infection
date to the beginning of the infectious period and the incuba-
tion period is defined as the time from infection to symptom
onset. Each subject has different infectious periods (the grey
shaded area in Figure 1), typically starting a few days before
onset-of-symptom and ending when the viral load is low. The
generation time is defined as the time between infection of the
infector-infectee pair and the serial interval as the symptom-
onset interval between the infector-infectee. If the case is
confirmed and moved to monitored isolation before the end
of the infectious period, then the infected person cannot infect
other citizens, reducing the spread. Some cases may develop
severe symptoms or even die, while most cases recover from
the disease and become immune. Eventually, they lose their
immunity and return to being susceptible.

The latent period, infectious period, and isolation time were
simulated. We set the isolation date to be less than the sum
of the latent period and infectious period. Since every case
in our training data set has been tested and isolated, we have
implemented this restriction, which can be relaxed later.

A subject can either move to state symptomatic or recovered
after infection. If the person is symptomatic, the person can

either move to the critically ill or recovered state. If the person
is critically ill, the person can either recover or die. In each
transition, we draw a time of progression and check if the
time agrees with typical disease progression. Natural immunity
was also drawn, and it affected the attack rate. The course
of disease is saved in the infected matrix so that we can
access all dates of disease progression for any infected person.
Our algorithm for drawing course of disease data is shown
in Algorithm 1. Since we don’t simulate the transition for
each course of disease state each day but instead simulate the
transition time directly, the computation cost is reduced.

C. Draw contact data

The contact each day for each layer was synthesized by
input social size, course of disease (incubation period and
isolation period), and contact probability. The source case can
only have valid contacts during infection to isolation and each
day had a certain contact probability. Based on the assumption
that human behaviour of close contacts would change a few
days after symptom-onset, following an exponential trend, we
defined the contact probability function fpL

(t) for the case
of no contact in the previous day by combining two logistic
functions.

fpL
(t) =2pH − pS −

pH − pS
1 + e−s(t−tPS)

− pH − pS
1 + es(t−tPN)

,

tPS ≤ tPN (1)

where pH and pS are the contact probability when healthy and
symptomatic. s is the steepness. tPS and tPN are the phases
relative to symptom-onset tIA for symptom starting and toward
recovering back to the normal contact pattern.

After the draw contacts each day process, the contact date
for each contact in each layer is simulated. The source case
might have multiple contacts either within the previously
infected set or the population set. The vaccination status is
drawn for each contact. All the contact types, vaccination
status, natural immunity, and overdispersion state will affect
the calculation of the daily secondary attack rate. With the
secondary attack rate and contact dates, we can decide which
date the contact gets infected, i.e. the effective contact date.
The effective contact list was then sorted by infection time
and appended back to the infection queue to start the next
iteration. Our algorithm for drawing contact data is shown in
Algorithm 2.

D. Energy statistics

We apply energy distance statistics to quantify how dif-
ferent our synthetic dataset (Monte-Carlo events) is from the
observed Taiwanese dataset. The null hypothesis is that both
multidimensional data come from the same distribution. The
idea is to make the synthetic dataset similar to the observed
Taiwanese data.
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Fig. 1: Example of the simulated branching process model and the mapping to the daily cumulative infected cases. Case B
and C are the effective contacts of case A, case D get infected by case B, and case E to G are infected by case C. The bottom
plot shows that the resulting chains can be mapped into cumulative cases per day, which follow an exponential growth trend.
Reproduced from a manuscript under CC BY license [9].

Consider the two datasets X = [xd
1x
d
1x
d
1, . . . ,x

d
Nx
d
Nx
d
N ] and Y =

[yd1y
d
1y
d
1 , . . . , y

d
My
d
My
d
M ]. Each of the xdxdxd and ydydyd is a d dimentional vector.

The energy distance is defined as

ϕNM =
1

M(M − 1)

∑
j>i

R(|yi − yj |)

− 1

MN

∑
i,j

R(|xi − yj |)

+
1

N(N − 1)

∑
j>i

R(|xi − xj |), (2)

where R(·) is the distance function. We apply the logarithmic
distance function

R(r) = ln(r + ϵ). (3)

The small positive constant ϵ is set to be 10−16. Because
our observed data is a sparse matrix, i.e. containing many
NaN values, we remove the NaN and calculate the euclidean
distances. The missing values are ignored in order to not distort
the distribution.

The test data matrix of Taiwanese data contained features
such as age, gender, time from infection to symptomatic, time

from infection to recovery, time from symptomatic to critically
ill, time from symptomatic to critically ill, time from critically
ill to recovered, time from critically ill to death, time from
the first negative test to confirmed, time from symptomatic to
confirmed, and size of unique contacts. The asymptomatic date
was not considered a test feature since it was an oversimplified
estimated value and could cause the distortion of the real
distribution.

E. Optimization by Firefly algorithm

Since our model is complex with non-linear behaviour and
has multiple local minima, gradient-based methods cannot
explore the parameter space and produce good parameter
estimates. Therefore, we implement the Firefly algorithm,
which is a soft-computing optimization method, capable of
producing a result closer to the global minimum without being
trapped in the first local minimum.

As a cost function, we use the residual sum of square
(RSS) of the synthesis secondary contact number and infection
number each day versus the observation by Cheng et al. [10].
The contact number each day is grouped as < 0, 0 − 3,
4 − 5, 6 − 7, 8 − 9, and > 9 days from onset to the first
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Algorithm 1 Draw course of disease data

Input: Time of infection, tI ∈ N0, parameters of epidemio-
logical distribution ∈ R1×22

0+ .
Output: Course of disease data including time of beginning

monitored isolation, tM ∈ N0, latent period, τL ∈ N0,
incubation period, τI ∈ N0, infectious period, τF ∈ N0,
time of positive test, tTP ∈ N0, time vector of negative
tests, tttTN ∈ N0, status vector of negative tests, sssTN ∈
{True, False}, time of becoming critially ill, tIC ∈ N0,
time of recoverey, tR ∈ N0, and time of death, tD ∈ N0

1: Initialize output variables
2: while ∼ (tI + τL ≤ tM ≤ tI + τL + τF) do
3: τL ← draw latent period
4: τF ← draw infectious period
5: tM ← draw time of beginning monitored isolation
6: end while
7: tTP ← draw time of positive test ▷ Draw test data
8: tttTN ← draw time of negative test
9: sssTN ← draw status of negative test

10: while (tttTN [−1] ≥ 0)&&& (sssTN [−1] == False) do
11: Draw time of negative test and append it to tttTN

12: Draw status of negative test and append it to sssTN

13: end while
14: Randomly choose the target state from the infection state

▷ Draw state transition data
15: if Transit to recovered state then
16: while ∼ (tR ≥ tI + τL + τF) do
17: tR ← draw time from infection to recovered
18: end while
19: else
20: while ∼ (tI + τL ≤ tI + τI ≤ tM) do
21: τI ← draw incubation period
22: end while
23: Randomly choose the target state from the symp-

tomatic state
24: if Transit to recovered state then
25: while ∼ (tR ≥ tI + τL + τF) do
26: tR ← τI+ time from symptomatic to recov-

ered
27: end while
28: else
29: while ∼ (tI + τI ≤ tIC ≤ tI + τL + τF) do
30: tIC ← τI+ time from symptomatic to critically

ill
31: end while
32: Randomly choose the target state from the criti-

cally ill
33: if Transit to recovered state then
34: while ∼ (tR ≥ tI + τL + τF) do
35: tR ← τIC+ time from symptomatic to

recovered
36: end while
37: else
38: while ∼ (tI + τL + τF ≤ tD) do
39: tD ← draw time from infection to death
40: end while
41: end if
42: end if
43: end if

Algorithm 2 Draw contact data

Input: Social data, course of disease data, previously infected
set, I, population set, P, vaccine efficacy, eV ∈ R[0,1], and
vaccination rate, rv ∈ R[0,1]

Output: Contact data including contact matrix for each layer,
MMM ∈ Nc×(τM+1)

{0,1} , specifying the days of contact, time of
infection, tI ∈ N0, infection status, sI ∈ {True, False}

1: MMM ← draw social contact data each day for household
(H), school (S), workplace (W), health care (C), and
municipality layer (M)

2: sO ← determine overdispersion state
3: ã̃ãai ← calculate daily secondary attack rate
4: for i ∈ {H,S,W,C,M} do
5: for j ∈ {1, . . . , size(MMM [i])[0]} do ▷ Number of rows
6: mmm←MMM [i][j, :] ▷ Contact day vector
7: y ← draw from previously infected set
8: if y == True then
9: Pop one from I

10: else
11: Pop one from P
12: end if
13: sV ← draw vaccination status
14: gc ← draw the age of the secondary contact
15: i,mmme ← draw infected status and effective contact

day vector
16: if i == True then
17: Save variables to contact data
18: end if
19: end for
20: end for

exposure. Since Cheng et al. did not provide the specific
layers’ statistics, we fit the sum of the contacts of our school,
workplace, and municipality layers to the sum of Cheng et
al.’s ‘nonhousehold family’ and ‘others’ layers. The energy
distance (E) is also considered in the optimization to minimize
the distance between Taiwan CDC data and our synthetic
dataset.

Finally, the cost function is defined as,

min RSShousehold +RSShealth +RSSothers + w ∗ E,
(4)

where w is a weight set to be 1000, since we observed that
E was 3 order of magnitude smaller than RSS.

Optimization was performed on a Linux server with an
AMD Ryzen Threadripper 1950x 16-core processor, 62G
RAM, and Ubuntu 7.5.0, taking approximately 18 hours to
optimize 194 parameters with a population size of 50 and 20
generations. Synthetic data and profile files were created on
a Windows laptop with an Intel Core i7-7700HQ CPU, 16G
RAM, and Windows 10. The Python Cprofiler and Snakeviz
were used for iterative improvement of the algorithm, which
included optimizing the numpy loading function, replacing the
numpy random choice function with the Python random choice
function, splitting if statements, and applying preallocation.
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III. RESULT

We report the difference between population and course of
disease data, the optimization of the parameters, and genera-
tion of synthetic data.

A. Measurement error of population data

We first compare population statistics to the seroprevalence
study conducted by Roxhed et al. in Stockholm, Sweden. The
study utilized tests on 878 randomly sampled individuals and
found that the seroprevalence was 12.5% [11]. This indicated
∼150,000 inhabitants would have been infected with SARS-
CoV-2 while the reported PCR-confirmed cases were just
∼13,000 during the study period. US, Taiwanese, and Iranian
studies also showed that the estimated prevalence was much
higher than the reported cases [12]–[14], see Figure 3.

100 101 102 103 104 105

Reported cases per 100,000

100

101

102

103

104

105

Es
tim

at
ed

 p
re

va
le

nc
e 

pe
r 1

00
,0

00 US
Taiwan
Iran
Sweden

Fig. 3: Seroprevalence estimates vs reported cases. Data is
extracted from US, Taiwan, Iran, and Sweden [11]–[14].

The WHO estimate of excess deaths up until December
2021 was around 15 million compared to the reported COVID-
19 deaths of 5.4 million. Furthermore, according to The
Economist, the world estimated central excess death on Dec.
27, 2021, was 14.4 million with a lower bound of 12.9
million and an upper bound of 19 million, while the reported
confirmed COVID-19 deaths was 5.5 million. The excess death
was much higher than the reported death indicating that the
death measurement was also problematic [15], [16].

We collected the estimated reproduction number of
population-based models (Figure 7). The estimats of R0 were
widespread from 0.17 to 4.5 with confidence interval ranging
from 0 to 12.26.

B. Comparison of synthetic population data and individual
data

We synthesized 10 subjects’ course of disease data and
highlight the increased informativeness of individual data
compared to population data. Figure 5A displays the daily
cumulative number of different states, such as symptomatic,
confirmed, critically ill, recovered, and dead, which are com-
monly obtained from open databases. The cumulative number
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Fig. 4: Estimates of R0 using population-based models. The
black dots were extracted from [17] and the blue dots were
extracted from [18]–[31].

of infected individuals is difficult to measure and not present in
any open database. Figure 5B presents the branching process
of the ten cases, similar to Figure 1. Effective contacts between
cases are marked as diamonds and only occur during the
infectious period. Note that some cases start the infectious
period before symptom onsets such as cases I2, I5, I6, and
I10. The detailed contact information of each subject is plotted
in the daily contact network (Figure 5C) and the contact
network in various social contexts (Figure 5D). Uninfected
contacts are labelled by integers and represented as small
nodes, while infected cases are labelled by I+integer, where ‘I’
stands for ‘infected’. Figure 5C shows that uninfected subjects
can have multiple days of contact with the source case without
becoming infected. For example, subject 0 has contact with
subject I1 on days 14 and 15. The effective contact is shown
in the example of I2 being infected by I1 on day 19. Due to
the complexity of the network, we only show the contacts until
index 10 and the timelimit 23 days. Figure 5D presents the
contact network visualized using Cytoscape version 3.9.1, with
different layers coloured differently. In this example, there is
no contact in the school layer. Different uninfected subjects
can have contact with multiple infected cases, such as subject
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83 having contact with I5 and I6.
Based on Taiwanese seroprevalence research [13], we com-

pare population data with median detection rates of 0.04 and
lower and upper bounds of 0.02 and 0.1. The death detection
rate was set to be 0.4 based on The Economist’s estimation
[15]. The results of our Monte-Carlo simulation with 1,000
iterations are displayed in log scale in Figure 6. The actual
cumulative number of confirmed cases on day 150 was 1454,
while the median detected number of confirmed cases on the
final day were 154, 68, and 39, respectively for 0.1, 0.04, and
0.02.

R0 values for population data were estimated using the
least-squares method under the SIRD model structure [18].
This was a widely adopted method during the beginning of
the COVID-19 pandemic, with over a thousand citations. Note
that the SIRD approach did not take into account factors such
as the incubation period, heterogeneous contact transmission,
age, and so on, which could cause bias when estimating R0.
Furthermore, this method is not reliable after the early stages
of an epidemic.

We also estimated R0 values directly from the contact
network by averaging the effective contact number for each
subject. We reported the mean and median values of the R0

estimates in Table I and Figure 7. Since R0 is an average
number and the mean values tend to be higher than the median
values, which can lead to faster reaction times in practice,
we estimated the baseline R0 by averaging the effective
contact number over a total of 3,718 simulated source objects.
Additionally, we observed a trend where the uncertainty range
tended to decrease as the number of subjects increased. For
instance, our findings indicate that the uncertainty range for
100 subjects was comparable in magnitude to the estimates
obtained from population data.

TABLE I: R0 estimates based on population data (first four)
and contact networks (last three). The estimate of all subject
based on the average of the effective contact numbers of 3,718
subjects is 2.1.

Min Median Mean (95% CI) Max

Detection rate 0.02 1.5 2.0 2.0 (1.6, 2.6) 3.5
Detection rate 0.04 1.8 2.3 2.4 (1.9, 3.1) 5.5
Detection rate 0.1 2.4 2.9 2.9 (2.4, 3.7) 4.8
Detection rate 1 - - 3.5 -
Subject number 10 0.2 1.5 2.0 (0.6, 6.0) 20.4
Subject number 100 1.1 1.9 2.1 (1.3, 3.7) 5.5
Subject number 500 1.4 2.0 2.0 (1.6, 2.7) 5.5

C. Synthesization and validation of individual data

In Figure 8 each firefly is initially scattered across the cost
landscape marked as red dots, representing a diverse range of
solutions. As the algorithm progresses, the fireflies undergo a
process of exploration and they move towards the regions of
higher cost and then move toward optimal results.

We compared our synthetic dataset with the Taiwanese data
shown in Figure 9. The simulation result stays in the 95%

confidence interval of the Taiwanese data except for around
day 24 and day 34.

Furthermore, the energy distance between our synthetic
dataset and the Taiwanese data was 0.19 with p-value 0.67
meaning that the null hypothesis that both datasets are from
the same distribution cannot be rejected.

D. Algorithm optimization

The running time of the core code was iteratively improved
from 0.011s to 0.007s. The detailed profile files are shown in
Figure 10.

IV. DISCUSSION AND CONCLUSION

In section III-A, we demonstrate the unreliability of com-
monly used measurements such as the number of infections,
deaths, and R0. Despite this, all state-of-the-art COVID-19
models rely on population data, without utilizing individual-
level information about the course of disease and contact
networks, even in agent-based models.

In this article, we take a pure empirical data based approach
to epidemiology. Only when data is not available do we
use relationships derived from past studies, such as statistical
distribution or parameter values. The open Taiwanese COVID-
19 data has limited individual information, making analysis
and modeling challenging. To overcome this, we synthesized
additional individual data based on the collected data and
COVID-19 epidemiological parameters. We synthesized ten
cases and compared them with population data in Figure 5.
Daily cumulative case is an oversimplification by ignoring the
information about each subject’s different course of disease,
daily contact network, and contact type. We also demonstrate
the impact of the detection rate on population measurement in
Figure 6.

To validate the effectiveness of the firefly optimization in
balancing exploration and exploitation, we plot the cost versus
distance from the best firefly to the others in Figure 8. All
fireflies converged towards the steady state but have not yet
reached it. This indicates that the number of generation need to
be increased. Improving the core code’s efficiency is critical,
as it is repeatedly executed hundreds of thousands of times
during the optimization process. Our simulation result shown
in Figure 9 stays in the 95% confidence interval for most of
the states and days except for the critically ill state. This also
suggests that our parameters have not been optimized to the
global minimum. Nonetheless, our model is still useful for our
analysis.

In the epidemiological modelling field, we are the first to
develop a synthetic dataset for disease model development.
These ideas have been validated in the systems biology field,
e.g. synthetic gene expression datasets for inference of gene
regulatory networks and published in top journals [32], [33].
The algorithm we developed for generating synthetic COVID-
19 datasets enables benchmarking of epidemiological models.
After better optimization, our model is expected to give more
accurate forecasts to inform decision-makers and save lives in
future pandemics.
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Fig. 5: Comparison of population data (upper left figure) and individual data (other figures). The upper left figure presents the
daily cumulative count of symptomatic, confirmed, critically ill, recovered, and death, which are obtainable from open-source
databases. The daily number of infected individuals is indicated by a dashed line, reflecting its difficulty in measurement. The
upper right figure depicts the course of disease for the ten synthesized cases, including the specific dates of states transition
and the infectious period, during which the subject is capable of infecting others. The bottom left figure shows the daily count
of uninfected contacts of source cases I1 and I2, labeled as integers, each representing a different day of contact with the
source case in the same row. The bottom right figure displays the contact network of the infected cases (large nodes) and
uninfected contacts (small nodes), with different types of contacts distinguished by different colors. Household contacts are
blue, workplace contacts are green, healthcare contacts are red, and other contacts are purple.

an almost unobservable number of deaths. Furthermore, the
R0 is estimated by exponential growth rate following the SIR
structure. The values of R0 change from 1.4 to 1.36, 1.09, and
1.04 indicating th impact of detection rate on the estimation
of R0.

B. Synthesization and validation of individual data

In Figure 7 each firefly is initially scattered across the cost
landscape marked as red dots, representing a diverse range of
solutions. As the algorithm progresses, the fireflies undergo a
process of exploitation, where they move towards the regions
of lower cost. This is reflected in the plot as a decrease in the
cost values of the fireflies over time. Later, the fireflies explore
other regions and eventually, the fireflies converge towards
a few clusters marked as blue dots around the lowest cost
position, indicating successful convergence towards the global
optimum.

The features included in our synthetic dataset, publicly
accessible in existing databases, and number of cases with the
data in the structured dataset that we composed are shown in

Appendix Table I and II. For the contact information, a unique
contact means a person that has been in contact with the source
case once or more on that day. We also synthesized the detail
daily number of unique contacts and contact date for each
of them with contact type, such as household family, school,
workplace, health care, and community. In contrast, public
data contains only confirmed cases and their effective contacts,
i.e. a contact network for only the confirmed cases, but not
other uninfected contacts. Note that our current algorithm for
generating synthetic data does not include vaccination.

We compared our synthetic dataset with the Taiwanese data
shown in Figure 8 and the detailed version shown in 11. The
simulation result stays in the 95% confidence interval of the
Taiwanese data except for around day 24 and day 34.

Furthermore, the energy distance between our synthetic
dataset and the Taiwanese data was 0.19 with p-value 0.67
meaning that the null hypothesis that both datasets are from
the same distribution cannot be rejected.

A B

C D

Fig. 5: Comparison of population data and individual data. Figure A presents the daily cumulative count of symptomatic,
confirmed, critically ill, recovered, and dead, which are obtainable from open databases. The daily number of infected individuals
is indicated by a dashed line, reflecting the difficulty to measure it. Figure B depicts the course of disease for the ten synthesized
cases, including the specific dates of state transitions and the infectious period, during which the subject is capable of infecting
others. Figure C shows the daily count of uninfected contacts of source cases I1 and I2, labelled as integers, each representing a
different day of contact with the source case in the same row. Figure D displays the contact network of the infected cases (large
nodes) and uninfected contacts (small nodes), with different types of contacts distinguished by different colours. Household
contacts are blue, workplace contacts are green, healthcare contacts are red, and other contacts are purple.
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230 0.0006793 2.953e-06 0.001873 8.141e-06 tokenize.py:429(_tokenize)
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28 0.0004221 1.508e-05 0.0004221 1.508e-05 Data_synthesize.py:380(generate_logistic_contact_p)

28 0.0003047 1.088e-05 0.001022 3.649e-05 Data_synthesize.py:529(draw_infection_status)
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1 0.0001992 0.0001992 0.005772 0.005772 Data_synthesize.py:562(draw_contact_data)

229 0.0001748 7.633e-07 0.0002894 1.264e-06 random.py:498(<listcomp>)

43 0.0001688 3.926e-06 0.0001688 3.926e-06 ~:0(<method 'reduce' of 'numpy.ufunc' objects>)
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Fig. 10: Comparison of the core code Python profile file
of Data_synthesis_main.py, before optimization (top)
and after (bottom).
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APPENDIX

A. Taiwan COVID-19 individual data collection and prepro-
cessing

The Taiwanese COVID-19 individual data of confirmed
cases and the daily summary data were collected from the
following open source databases: Taiwan CDC Open Data
Portal, Regents of the National Center for High-performance
Computing (COVID-19 Dashboard), United Daily News (Vi-
sualization of contacts of Taiwan COVID-19 cases), Taiwan
Centers for Disease Control (CDC) press release, and Taiwan
Centers for Disease Control press conference. We use the
quantitative structured data that we composed based on public
sources in Taiwan. We fit Gamma distributions to all state
transition days. Statistics from other studies were used for
parameters with insufficient data, such as the latent period.

B. Data preprocessing

We collected individual course of disease data from 2020-
02-05 to 2020-11-09 covering the first outbreak in Taiwan. The
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second outbreak started from 2021-01-12 to 2021-02-09 and
the third outbreak started on 2021-04-20. Both the second and
third outbreaks contain the alpha variant, which was estimated
to have a 1.44-fold higher infection probability and 57%
higher reproduction number [34]. Since the alpha variant has a
different attack rate, and the open-source Taiwanese data does
not specify alpha cases, we did not use the data for modelling.
Moreover, Taiwan CDC stopped providing individual case data
starting on 2021-05-15 due to the sudden daily increase from
29 cases to 185 cases, which makes it challenging to collect
detailed data.

The confirmed case data contain 579 samples with 64 fea-
tures including travel history, age, gender, nationality, the onset
of symptom, confirmed date, symptoms, way of discovery, and
contact types between cases. We categorize the contact type
into groups, such as couples, parents, grandparents, siblings,
family, friends, live together, flight, flight (nearby seat), travel-
ling, school, car, coworker, hospital, hotel, Panshi combat ship,
Coral Princess, and others. Some cases also contain ICU date,
recovery date, and death date, depending on the availability of
sources. The daily summary data released by Taiwan CDC
from 2020-01-21 to 2022-05-23 provided population data,
including the number of suspected cases, excluded cases,
abroad positive cases, local positive cases, Panshi ship positive
cases, positive cases with unknown sources, deaths, recovery
cases, and hospital quarantine cases. Contact information is not
available for all the cases. But when available, Taiwan CDC
reported the number of close contacts, contact dates, and case
indexes of the contact.
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