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ABSTRACT

Population level variation and molecular mechanisms behind insulin secretion in response to
carbohydrate, protein, and fat remain uncharacterized despite ramifications for personalized nutrition.
We now define prototypical insulin secretion dynamics in response to the three macronutrients in islets
from 140 cadaveric donors, including those diagnosed with type 2 diabetes. We leverage the insulin
response heterogeneity and use transcriptomics and proteomics to identify molecular pathways of
specific nutrient responsiveness. Surprisingly, we find robust insulin secretion to fatty acid stimulus in
~8% of donors, challenging the idea that fat has negligible effects on insulin release. Distinct islet
proteomes with differences in metabolic signalling networks convey this hyper-responsiveness to fat
relative to carbohydrate. By comparing human islets to human embryonic stem cell-derived islet
clusters, we show that, unlike glucose-responsiveness, fat hyper-responsiveness is equivalent and may
be a hallmark of functionally immature cells. Our study represents the first comparison of dynamic
responses to nutrients and multi-omics analysis in human insulin secreting cells. Responses of different
people’s islets to carbohydrate, protein, and fat lay the groundwork for personalized nutrition.

ONE-SENTENCE SUMMARY
Deep-phenotyping and multi-omics reveal individualized nutrient-specific insulin secretion propensity.

INTRODUCTION

Insulin is released by pancreatic islet beta cells in response to nutrient stimuli to maintain energy
homeostasis. The major driver of insulin secretion is glucose. However, proteins and fats may also
modulate insulin release and the effects of non-carbohydrate nutrients on insulin secretion remain
underexplored. Much of our limited understanding of nutrient-stimulated insulin secretion is
extrapolated from rodents, although more recent availability of cadaveric human islets for research
purposes has expanded our pre-clinical knowledge. However, current human islet datasets generally
only examine a single nutrient stimulus, glucose (1-3). A few small studies examined other nutrients (4,
5), but no large-scale direct comparison of insulin secretion in human islets, stimulated by
carbohydrates, proteins and fats has been reported. Understanding of nutrient-induced insulin secretion
is important in the context type 2 diabetes and emerging studies linking hyperinsulinemia with cancer
(6). Indeed, large prospective clinical trials shows broad beneficial effects of diets targeting
hyperinsulinemia (7).

Individuals respond differently to diets (8) and there is high interpersonal variability in postprandial
responses to even one macronutrient, glucose (9). Ex vivo studies measuring insulin secretion from
human islets show high variability, only some of which can be explained by donor characteristics or
islet isolation parameters (10). The concept that insulin-responses to food types or different
macronutrients are individualized has not been investigated. No studies have leveraged macronutrient-
induced insulin secretion heterogeneity and large-scale multi-omics to elucidate the associated
molecular mechanisms.

Here we address these critical knowledge gaps by measuring dynamic insulin secretion in response
to three model macronutrient stimuli in islets from non-diabetic and donors with type 2 diabetes, as
well as stem cell-derived islet clusters. Our comprehensive transcriptomic and proteomic analysis
reveals the molecular signature of each islet donor and shows distinct clusters of proteins that predict
insulin secretion response, including in a previously unreported subset of lipid-hyperresponsive islets
that resemble the function of human embryonic stem cell-derived immature islets. This is the largest
human islet dataset that includes both macronutrient-stimulated insulin secretion measurements and
multi-omic profiling, coupled with the first side-by-side comparison of nutrient responses and
proteomes between human islets and stem cell-derived islet clusters. This critical advancement in
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understanding why individuals’ islets respond differently to sugar, protein, and fat advocates for greater
application of personalized recommendations and treatments for individuals living with diabetes.

RESULTS
Prototypical nutrient-stimulated insulin secretion dynamics from human islets

Between 2016 and 2022, we systematically measured insulin secretion in response to carbohydrate
(15 mM or 6 mM glucose), amino acid (5 mM leucine), and fat (1.5 mM oleate/palmitate mix) from
islets isolated from 140 cadaveric donors (2) reflective of the general population (Fig. 1A) (11). In most
islet donors, we confirmed that carbohydrate was the strongest insulin secretagogue, followed by amino
acid and then fat, which only weakly stimulated insulin secretion on average (Figs. 1B, S1A,B). Islets
exhibited biphasic insulin secretion in response to glucose (12). We found that insulin secretion in
response to amino acid is also biphasic, with a distinct 1% phase lasting ~15 minutes and a sustained 2™
phase lasting the duration of the challenge (Figs. 1B, S1A,B). In contrast, the response to fat, when
present, was monophasic (Figs. 1B, S1A,B).

We also assessed the role of macronutrient order on insulin secretion, inspired by clinical meal-order
studies (13, 14). In our experiments, prior exposure to high glucose, amino acid or fat did not alter
insulin secretion stimulated by moderately elevated 6 mM glucose (Figs. S1A,B). Amino acid on top of
6 mM glucose further increased insulin secretion. Fat produced no enhanced response (Figs. S1A,B), in
contrast to previous small-scale rodent or human islet observations (15, 16). Interestingly, insulin
secretion stimulated by direct depolarization with KCI was inhibited after prior exposure to lipid in
islets from normoglycemic donors (Fig. S1A), perhaps foreshadowing lipotoxic effects on the insulin
secretory machinery (17). This large dataset provides the first side-by-side response profiles for each of
the main three macronutrients in human islets.

Prototypical nutrient-stimulated insulin secretion dynamicsin type 2 diabetes

We next examined the relationship between type 2 diabetes and nutrient-stimulated insulin
secretion. Islets from donors with diabetes had ~40% lower insulin secretion in response to 15 mM
glucose and ~35% lower insulin secretion in response to moderate 6 mM glucose (Figs. 1B, S2 C,D).
Insulin secretion in response to direct depolarization by KCI was reduced by ~22% but failed to reach
statistical significance (Fig. S2I, p=0.07). When examining the kinetics of insulin secretion, we saw a
significant delay in time-to-insulin peak in response to high glucose in islets from donors with diabetes
(Fig. S1E). Insulin secretion in response to fatty acids was also lowered by ~55% (Figs. 1B, S2E).
However, insulin content, baseline insulin secretion, and insulin secretion in response to 5 mM leucine
were not different (Figs. 1B, S2A,B,D). This preserved amino acid-stimulated insulin secretion is
consistent with clinical data (18) and suggests therapeutic protein intake could be exploited in diabetes
management. However, leucine together with 6 mM glucose induced ~36% (on average) less insulin
secretion in donors with diabetes (Fig. S2G), and leucine was not stimulatory on top of 6 mM glucose
in these donors (Fig. S1B), emphasizing a need for additional clinical research into context-dependent
amino acid-stimulated insulin secretion. Known glucose-lowering medication status of these donors
with diabetes did not significantly correlate with any insulin-secretion parameters; however, there was
an overall trend with the need for exogenous insulin and lower overall insulin secretory capacity (Fig.
S2J-Q).

Comprehensive transcriptomics and proteomics of islets with and without type 2 diabetes

To better understand the relationship between secretory response and variation in gene expression in
islets from donors with and without type 2 diabetes, we performed comprehensive transcriptomic and
proteomic analysis from corresponding batches of donor islets. On average, after quality control, we
measured over 20,000 mRNAs using RNA sequencing (from 82 ND and 8 T2D donors) and almost

3



10

15

20

25

30

35

40

45

8000 proteins (from 118 ND and 16 T2D donors) using mass-spectrometry. RNA sequencing of a large
subset of human islets showed that 247 mRNAs were enriched in the non-diabetic donors and 126 were
enriched in the donors with diabetes (Fig. 1C). Importantly, differences were more apparent at the
proteomic level, with 355 proteins significantly more abundant in islets from non-diabetic donors, and
200 proteins more abundant in islets from donors with diabetes (Fig. 1D). Despite only finding 44 gene
products that were significantly altered at both mRNA and protein levels (Fig. 1 E), individual protein
fold changes were mostly consistent with mRNA fold changes (Fig. S3A), and both lists of features
were enriched with many of the same pathways (Fig. S3B). Gene products decreased in both
expression and abundance in islets from donors with diabetes included the sulfonylurea receptor
subunit of the Katp channel (ABCCS), the well-known target of oral hypoglycaemic agents, as well as
pyruvate carboxylase (PC), which is critical for mitochondrial metabolism and glucose-stimulated
insulin release (19), hedgehog acyltransferase-like (HHATL), which negatively regulates protein
palmitoylation, a process implicated in type 2 diabetes (20) and islet amyloid polypeptide (IAPP), a
hormone co-secreted with insulin with roles in glycemic control and gastric emptying (21) (Fig. 1E).
Only two gene products were increased in both expression and abundance in type 2 diabetes: syntaxin
binding protein 6 (STXBP6), which is thought to limit insulin release by limiting the size of the granule
fusion pore (22) and beta arrestin 1(ARRB1) which is suggested to be involved in beta cell mass
expansion (23).

There was overall discordance between islet RNA expression and protein abundance from the same
donor/isolations, with an R value of 0.5 (Figs. 1F, S3C-E), consistent with other studies of primary
tissues (24, 25). This discrepancy was likely not due to unreliable RNAseq measurements because we
observed a strong correlation between the RNAseq and NanoString analysis of 130 mRNAs (Fig.
S3F,G). Because proteins had lower co-efficients of variation (Fig. S3H), were more stable in the face
of isolation variable (see below), and may provide better insight into disease phenotype than mRNAs
(25), we focused on the proteomic data to elucidate key mechanisms. We mapped the protein-protein
interaction networks for proteins showing fold-change greater than 0.5 log2 using STRING (26), and
subsequently assigned them to their intracellular location in a diagram using subcellular location
information found in UniProt (Fig. 1G). Consistent with a lower insulin secretory response to high
glucose (Fig. S2B), islets from donors with type 2 diabetes had lower abundance of key proteins
predicted to be involved in glucose-stimulated insulin secretion. Islet proteins reduced in type 2
diabetes (Fig. 1 G) included mitochondrial proteins arginase 2 (ARG2), N-acetylaspartate synthetase
(NAT8L), hydroxyacyl-coenzyme A dehydrogenase, mitochondrial (HADH), protein phosphatase 1K,
mitochondrial (PPM1K) and alpha-methylacyl-CoA racemase (AMACR), regulators of glycolysis (6-
phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 (PFKFB2) and glucose-6-phosphatase 2
(G6PC2), endoplasmic reticulum Ca®* homeostasis factors ERO1-like protein beta (ERO1B), inactive
ubiquitin thioesterase (OTULINL), sarcoplasmic/endoplasmic reticulum calcium ATPase 3 (ATP2A3),
and the extracellular Ca?*-sensing receptor (CASR). Proteins that were more abundant in islets from
donors with diabetes included those crucial for cell adhesion (tight junction protein ZO-2 (TJP2),
integrin alpha-2/beta-1 (ITGA2), Golgi function arylsulfatase L (ARSL), transmembrane BAX
inhibitor motif containing 1 (TMBIML), transcriptional proteins such as TLE family member 3 (TLE3),
helicase with zinc finger domain 2 (HELZ2) and RNA-binding protein with multiple splicing
(RBPMS), and proteins involved in cytoskeletal reorganization like MARCKS-related protein
(MARCKSK1). Collectively, these data identify multiple proteins that correlate with the insufficient
glucose-stimulated insulin secretion in islets from donors with diabetes.

I ndividuality of nutrient-stimulated insulin secretion
Islets from individual donors exhibited a large range of insulin secretion rates at baseline, and in
response to high glucose, moderate glucose, amino acid, fat, and direct depolarization (Fig. 2A). Some

4



10

15

20

25

30

35

40

45

donors had more robust responses to fatty acids than to glucose, challenging the long-standing idea that
dietary fats alone have negligible effects on insulin release (5, 15, 27). This degree of response
heterogeneity across all macronutrients was not found in C57BI6J mouse islets, even when including
both sexes and a wide range of ages (Fig. 2B).

We explored the source of this variation by examining known donor characteristics (Table S1). Cold
ischemic time of the pancreas was negatively correlated with insulin secretion in response to direct
depolarization (Fig. S40), but it was not correlated to insulin secretion stimulated by any of the three
macronutrients tested. We also found that islets from female donors had lower insulin secretion at 3
mM glucose and 6 mM glucose, with or without fatty acid treatment (Fig. S4A-C). Donor age and BMI
were not different between male and female donors in our study (Table S1), suggesting that these
differences are a result of biological sex. Somewhat surprisingly, donor BMI had only minor effects on
macronutrient-stimulated insulin secretion (Fig. S4D-L). Expectedly, high HbAlc was negatively
correlated to insulin secretion stimulated by high glucose and KCI (Fig. S4M-O). These observations
suggest that donor characteristics and islet isolation parameters minimally contribute to individualized
nutrient responses and that separate factors must drive most of the observed heterogeneity.

Co-expression network analysis uncovers protein-networks correlated with islet function

We used co-expression network analysis to obtain an overview of protein-protein relationships
within the proteome (and transcriptome), and then analyzed the network along with clinical and
functional outcomes to gain insight into the molecular drivers of macronutrient-stimulated insulin
secretion response heterogeneity. We identified 18 network modules of highly co-regulated proteins
(Figs. 2C, S5) and plotted them as a co-expression network to illustrate the connections between
modules (Fig. 2D). All modules were significantly enriched in gene sets (Gene Ontology Cellular
Component, Molecular Function, and Biological Process) and pathways (KEGG and Reactome),
allowing for their higher-level functional annotation. The overall protein abundances of 9 modules
were significantly correlated with islet functional data (Fig. 2C). Several modules were positively
correlated with insulin secretion in response to multiple nutrients. These modules (lightcyan, dark
green, greenyellow and black) contained proteins with critical roles in cytoskeletal reorganization,
mitochondrial metabolism, and insulin processing. Two modules of interest (blue and royalblue) with
roles in protein transport and localization, were positively correlated with insulin secretion stimulated
by KCI but negatively correlated with insulin secretion stimulated by lipids. Notable proteins in this
module include enzymes involved in fatty acid synthesis, acetyl-CoA carboxylase 1 (ACACA) and
fatty acid synthase (FASN) (28, 29), and lipid metabolism glycerol-3-phosphate dehydrogenase
(GPD1) (30). Consistent with the discordance between RNA expression and protein abundance, and
suggestive of more dynamic mRNA levels, we did not observe any significantly correlated transcript
modules in the 29 network modules detected (Fig. S6). Together, these data demonstrate that these
protein network modules in human islets likely underpin their differential responsiveness to stimuli.

Significant correlations between individual proteins, donor data and islet function

We correlated the abundance of each mRNA (Fig. S7) and protein (Fig. 3A) identified in our dataset
to donor traits, independent of diabetes status. We focused our attention on the proteome because we
found that mRNAs were more prominently correlated with islet isolation and culture variables (Tables
S2 and S3, Fig. S8). Increasing donor age was strongly positively correlated to proteins with known
(and postulated) roles in aging, cellular senescence, proteolysis and mitochondrial dysfunction:
scavenger receptor class B member 2 (SCARB2) (31), arginyl aminopeptidase-like 1 (RNPEPL1) (32),
acid ceramidase (ASAH1)(33), and cyclin-dependent kinase inhibitor 2A (CDKN2A) (34) (Fig. 3A).
We found that the abundances of 1807 proteins were correlated to HbAlc (Fig. 3B). The strongest
positive relationships were seen was with ubiquitin associated protein 1 (UBAP1) and WW domain-
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binding protein 2 (WBP2), whose expression is increased in pancreatic adenocarcinoma, breast cancer
and numerous other malignancies (35, 36). This is relevant to reports of poor glycemic control being
associated with and increased risk of multiple cancers (37).

We also correlated protein abundance to islet function in response to each nutrient stimulus (Fig.
3C-1). The greatest number of significant correlations to protein abundance were seen with insulin
secretion induced by lipids (1941 significant correlations) (Fig. 3H, Table S4), pointing to somewhat
unique mechanisms for this insulin secretagogue. The abundance of 5 proteins was positively
correlated to insulin secretion stimulated by all three macronutrients as well as direct depolarization by
KCI (Fig. 3J,K), suggesting that these proteins play a role in the overall secretory capacity of the beta
cell. These pan-stimulus enabling proteins were solute carrier family 25 member 4 (SLC25A4),
ADP/ATP translocase 1 (ANT1), glycerol-3-phosphate dehydrogenase 2 (GPD2), G protein subunit
alpha 12 (GNAI2), growth hormone inducible transmembrane protein (GHITM), and secretory carrier
membrane protein 4 (SCAMP4). These findings highlight the critical role of mitochondria in nutrient-
and depolarization-stimulated insulin secretion (38).

The abundance of several proteins, including protein-tyrosine phosphatase 1B (PTPN1, alias
PTP1B), negative regulator of insulin receptor signalling (39), was positively correlated with insulin
secretion stimulated glucose, leucine and KCI but not fatty acids (Fig. 3K). This was initially surprising
because inhibitors of PTPN1 improve whole body insulin sensitivity (40) and whole body ablation of
PTPNL1 increases glucose-stimulated insulin secretion in mice (41). However, our data is consistent
with the idea that beta-cell insulin receptors inhibit insulin secretion (42), which can eventually
improve insulin sensitivity (43). This highlights the importance of tissue-specific analysis of protein
abundance and function (25).

Four proteins were positively correlated to all nutrient responses, including RAP1 GTPase activating
protein (RAP1GAP) which would be expected to downregulate the activity of small G proteins.
Interestingly, alpha cell transcription factor, aristaless related homeobox (ARX) (44) was negatively
correlative to basal insulin secretion (Fig. 3C), insulin secretion stimulated by glucose as well as insulin
secretion stimulated by amino acid (Fig. 3M). While these correlations may initially suggest a general
decrease in beta cell ability to secrete insulin on account of higher alpha cell mass, we also observe that
insulin secretion induced by direct depolarization with KCI was not correlated to ARX abundance (Fig.
3M), arguing against such a simple interpretation. Collectively, these data provide unprecedented
information on the proteins that associate with islet secretory function, in a general and nutrient-
specific way. We have built an online resource where the relationship between any detected protein,
donor characteristics, islet isolation parameters and islet function can be displayed
(www.humanislet.com).

Unigue proteome of lipid- or amino acid-hyper-responders

During the course of our multi-nutrient phenotyping studies, we identified a previously un-reported
sub-group of donors with unusually large insulin secretory response to lipids in basal glucose
conditions. In fact, ~8% (11/140) of donors secreted more insulin in response to oleate/palmitate than
to 15 mM glucose (Fig. 4A). These fat hyper-responders also secreted more insulin when both 6 mM
glucose and lipid were present, but less insulin in response to direct depolarization (Fig. 4A, Table S4).
Overall, lipid hyper-responsive islets came from donors with higher HbA1C (Table S4). No significant
differences in known islet isolation or culture parameters were seen between the two groups (Table S4).
Proteomic comparison of these donor groups showed that the fat hyper-responsive islets exhibited a
30% decrease in the abundance of Wnt family member 4 (WNT4), hinting at a less-mature state (45)
(Fig. 4B,C). Fat hyper-responsive islets also had less protein phosphatase 1 catalytic subunit gamma
(PPP1CC), which is involved in glycogen metabolism, hypoxanthine phosphoribosyltransferase 1
(HPRT1), which is involved in purine metabolism, and AKT serine/threonine kinase 1 (AKT1), which
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is involved in growth factor signaling and survival. On the other hand, lipid hyper-responders exhibited
elevated hepatocyte nuclear factor 1-beta (HNF1B), the gene product underlying a rare form of
diabetes, maturity onset diabetes of the young (MODYY5), sulfotransferase family 1A member 1
(SULT1A1), and platelet derived growth factor receptor alpha (PDGFRA) (Fig. 4B,C). Pathway
analysis using multiple databases (46) reveals defects in small-molecule protein medication, AKT
signaling and lipid metabolism in donors classified as fat-hyper responders (Fig. 4D). Interestingly,
proteins involved in endoplasmic reticulum signal integration and organization are increased in fat-
hyper responders (Fig. 4E), which is perhaps suggestive of endoplasmic reticulum dysfunction in these
donors (47).

We also identified a previously un-reported subset of donors (~9%) that secreted more insulin in
response to leucine than to high glucose (Fig. 4F). Amino acid hyper-responders were more likely to
been diagnosed with type 2 diabetes, but there was no difference in HbALC between the high and low
responders (Table S5). Amino acid hyper-response was associated with a longer in vitro culture time
(Table S5), suggesting that this observed phenotype may be influenced by adaptation to our culture
conditions. Only two differentially abundant proteins (Fig. 4G,H) were associated with this phenotype,
thymocyte selection-associated high mobility group box protein (TOX; transcriptional regulator) and
angiotensinogen (AGT), an essential component in the renin-angiotensin system, with important roles
in the endocrine pancreas (48). Our work suggests that some donors’ islet proteomes may be pre-
programmed or may have adapted to hyper-respond to fats and that in vitro culture conditions can
enable some donors’ islets to hyper-respond to amino acid.

Human embryonic stem cell-derived islet-like clusters are lipid-responsive

The differentiation of beta cell surrogates from embryonic stem cells has potential as a diabetes
therapy and can be used to model ‘environmentally naive’ insulin secretion (49). The in vitro insulin-
secretory function of these cells, even in response to supraphysiological levels of glucose, still does not
match that of human islets (49). There are no reports that directly compare how stem cell-derived islets
and primary human islets respond to multiple nutrients (49). In our hands, INS2AGFP stem cell-
derived islet clusters (50) (Fig. 5A,B) have ~1/10 the level of basal insulin release when compared to
human islets, show poor responsiveness to both 15 mM and 6 mM glucose, but release significant
amounts of insulin upon direct depolarization by KCI (Figs. 5C,S8). They are unresponsive to
stimulation by amino acid either alone or in combination with glucose. Remarkably, fatty acids
stimulated robust insulin secretion, indistinguishable to the average response of human islets. This
suggests that these in vitro derived cells have the capacity for regulated insulin secretion but have
specific defects in glucose and amino acid responses. Comparing their proteomes to human islets
revealed massive differences; 3196 proteins were significantly more abundant in the non-diabetic
human donor islets (Fig. 5D,E). Some differences were due to the presence of non-islet exocrine cells
trapped in our hand-picked preparations (Fig. 5E). Other proteomic differences were more informative.
WNT4, which we found was more abundant in lipid hyper-responders, was more than 2 times lower in
these hESC-derived islet-like clusters than in islets from non-diabetic donors. In fact, this protein was
detected in all but one of our human islet donors (T2D, 25 years of duration, absent glucose-stimulated
insulin secretion), but only in 40% of the stem-cell derived islet-like cluster differentiations. On the
other hand, 2553 proteins were more abundant in the stem cell-derived islet clusters. Higher levels of
this protein in the pancreatic beta cell are thought to limit voltage-dependent calcium channel activity,
and thus decrease glucose-stimulated insulin secretion (51). The abundance of monocarboxylate
transporter 1 (SLC16A1), a beta-cell disallowed gene whose presence is suggestive a neonatal-like
immature beta-cell phenotype (52), increased over 6-fold in these islet-like clusters. Compellingly,
proteins linked to important roles in fatty acid transport and metabolism long-chain fatty acid transport
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protein 3 (SLC27A3), mitochondrial coenzyme A transporter (SLC25A42), and solute carrier family 22
member 18 (SLC22A18) were increased ~2-fold.

Extended maturation of stem cell-derived islet-like clusters has been shown to increase the ability of
these cells to respond appropriately to a glucose stimulus (53). We therefore compared nutrient-
stimulated insulin secretion from younger-immature (days 21-35) and older-maturing (days 50+) stem
cell preparations (Fig. 5F). Basal insulin secretion was 5-fold higher in the older-maturing islet-like
cells, again consistent with the 4-fold increase in insulin content seen by Balboa et al. (54). These
clusters showed evidence of glucose-responsiveness and maintained their sensitivity to fatty acid. 2072
proteins more abundant in the older-maturing clusters and 2066 more abundant in the younger-
immature clusters (Fig. 5G,H). Proteins with significant roles in glucose-stimulated insulin secretion
and insulin synthesis including pyruvate carboxylase (PC), mitochondrial citrate carrier (SLC25A1),
high-voltage gated calcium channel subunit (CACNA2D2), glucose transporter 1 (SLC2A1), an
integral SNARE protein (VAMP8) and prohormone convertase 2 (PCSK2) were all significantly more
abundant in the older-maturing SC-islet clusters. These cells also had a 73% decrease in the abundance
of the beta-cell disallowed gene monocarboxylate transporter (SLC16A1), when compared to more
immature clusters. These proteomic data now provide a roadmap to produce more faithful human islet
surrogates. Although the maturation of stem cell derived islets remains incomplete in vitro (54, 55), and
current cell replacement tend to focus on beta-like cells, our dataset can now be used to make better
stem cell-derived islets by exploiting the differences seen at the protein levels between these cells and
real human islets.

DISCUSSION

The goal of this study was to compare dynamic insulin secretion responses to carbohydrate, protein,
and fat from human islets representative of the population of donors with and without type 2 diabetes,
and to define the transcriptomic and proteomic mechanisms that underly the variation in response to
each nutrient, and to all nutrients. Our study is part of a large multi-institutional human islet deep
phenotyping network which generates and links functional and multi-omic datasets for insight into
normal and pathological variation in islet function. Our initiative provides unprecedented and unbiased
mechanistic detail of the cellular processes associated with insulin secretion in response to each
nutrient class, and the first to directly compare functional data to both the proteome and transcriptome.
As a part of the Islet Deep Phenotyping Network Resource, this dataset forms the basis on an online
platform (www.humanislets.com) providing open access to islet donor/isolation data and additional
phenotyping. Despite working with high-quality research islets, all isolated from the same centre (2),
isolation parameters can have unavoidable impacts; this was particularly obvious when examining
mMRNA, which was more sensitive than protein to technical isolation and culture parameters. Along
with weak mRNA correlation to protein in our study and others’ (24, 25), this should give pause when
inferring protein abundance (or function) from mRNA expression.

Our findings have relevance for personalized therapeutic nutrition and the clinical management of
diabetes. For example, while both first and second phase insulin secretion in response to high glucose
were blunted in islets from donors with type 2 diabetes, we did not detect significantly impaired amino
acid-stimulated insulin secretion, which bolsters the case that protein-rich diets could have therapeutic
benefits in patients with type 2 diabetes (56) and highlights the need for additional research into amino-
acid stimulated insulin secretion.

A recent study sought to identify differences between islets from 17 normal donors and 12 donors
with type 2 diabetes, but was only able to quantify 3036 proteins, none of were reported statistically
significant after correcting for multiple comparisons (57). Here, with more donors and more than twice
the proteomic coverage, we report 555 proteins that are differentially abundant in islets from donors
with type 2 diabetes. This allowed us to conduct protein-centric network analysis that was not
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previously possible. Proteins critical to glucose and mitochondrial metabolism coupling are less
abundant in islets from donors with type 2 diabetes, explaining the blunted glucose-stimulated insulin
secretory response. Conversely, proteins involved in cytoskeletal actin remodeling are on average more
abundant in islets from donors with type 2 diabetes, consistent with the role of filamentous actin
limiting glucose-stimulated insulin secretion in pancreatic beta cells (58). Identifying the pathways that
are perturbed in islets from donors with type 2 diabetes is crucial for better understanding the disease
pathology and discovering of novel therapeutic targets.

Previous studies revealed heterogeneity in insulin secretion from human islets in response to glucose
(1-3), but they do not identify the source of this variation or examine other nutrients. Here, we
leveraged the heterogeneity in nutrient-stimulated insulin secretion to identify networks of proteins that
drive nutrient-specific responses. Interestingly, we identified more significant correlations between
protein and insulin secretion in response to physiologically relevant 6 mM glucose, when compared to
15 mM, calling into question the routine use of such supraphysiological glucose concentrations in vitro.

Heterogeneity in insulin secretion in response to the three main classes of macronutrients is
reminiscent of the interindividual variability of postprandial glucose responses to carbohydrates (9, 59,
60). It has been suggested that this interindividual variability in glycemic response is in part responsible
to the mixed weight loss outcomes following specific diet interventions. A recent randomized clinical
trial did not support this idea (61), but post-prandial glucose and insulin responses were not measured
to confirm the effectiveness of the reported personal diets. On the other hand, a diet specifically
targeting hyperinsulinemia was shown to be highly effect in the prevention of multiple diseases (7).
Multi-omic profiling of blood plasma recently revealed heterogeneity in individual responses to a
“healthy lifestyle intervention” (62). Combined with our results, these studies provide the rationale for
a clinical trial to test the insulin response to standardized macronutrients challenges in the general
population of normoglycemic individuals and those living with type 2 diabetes.

One of our most surprising findings is that ~8% of donor islets are hyperresponsive to fats. While
fatty acid-stimulated insulin secretion has been debated (4, 15, 63), this controversy may be due to
insufficient sample sizes in previous studies. Central to this, it is also striking that the greatest number
of correlations to protein abundance were in response to the fatty acid stimulus. We hypothesize that
this lipid responsiveness is related to beta cell immaturity, because it is also observed in stem-cell
derived immature cells. Beta cells are shown to undergo a maturation process postnatally through a
series of events triggered by changes in dietary macronutrient composition as well as a switch from a
high fat and protein maternal milk diet to a solid diet often containing more carbohydrates than fat and
protein (53, 64).

In summary, we present compelling evidence that nutrient-specific insulin secretion is highly
heterogeneous in the general population. Our multifaceted analysis reveals a subset of the population
whose islets are insulin hyper-responsive to fat (relative to carbohydrate) and have unique islet
proteomes that convey this hyper-responsiveness. We suggest that this is a characteristic of functionally
immature islet cells, as evident by prominent insulin secretion in response to fat (but not glucose or
protein) in human embryonic stem cell-derived islet clusters. In the face of hyperinsulinemia being
causal to numerous health conditions, our benchmark study lays the groundwork for future clinical
studies aiming to advance the area of personalized therapeutic nutrition.

DATA AND MATERIALS AVAILABILITY: All data are available, both via a purpose-build web
portal and the appropriate public databases. The raw RNA sequencing data has been deposited in the
European Genome-phenome Archive (EGA) under study number EGAS00001007241.
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MATERIALSAND METHODS

Human islet culture

Islets were isolated from pancreas of cadaveric human donors at the Alberta Diabetes Institute
IsletCore and used with approval of the Human Research Ethics Board at the University of Alberta
(Pro00013094; Pro00001754), the University of British Columbia (UBC) Clinical Research Ethics
Board (H13-01865), the University of Oxford’s Oxford Tropical Research Ethics Committee (OXTREC
Ref.2-15), the Oxfordshire Regional Ethics Committee B (REC reference: 09/H0605/2), or by the
Stanford Center for Biomedical Ethics (IRB Protocol: 57310). All families of organ donors provided
written informed consent for use in research. Islet isolation was performed according to the detailed
methods deposited in the protocols.io repositor (65). Islets were shipped in CMRL media (Thermo
Fisher Scientific) overnight from Edmonton to UBC. Upon arrival, islets were immediately purified by
handpicking under a stereomicroscope and suspended in RPMI 1640 medium (Thermo Fisher
Scientific, Cat#, 11879-020) supplemented with 5.5 mmol glucose, 10% fetal bovine serum (FBS), and
100 units/mL penicillin/streptomycin. Islets were cultured in 10 cm non-adhesive petri dishes (Thermo
Fisher Scientific, Cat # FB0875713) at a density of 10-16 islets/cm® (100-160 IEQ/ cm?) for 24-72
hours prior to experiments to allow for recovery from shipment. Total islet culture time (as well as
additional donor and isolation characteristics) are listed in Table 1.

Deep dynamic phenotyping of human and mouse idets, and stem cell-derived iset-like clusters

Our standard approach (66) compared the response to 6 mM or 15 mM glucose stimulation and
direct depolarization with 30 mM KCI. In parallel, we also measured insulin secretion in response to 5
mM leucine (Sigma, Cat. # L8912, dissolved in 1M HCI, then pH adjusted with 1M NaOH) or a 1:1
mixture of 0.75 mM oleic acid (Sigma, Cat. # 364525) and 0.75 mM palmitic acid (Sigma, Cat.
#P5585) at either 3 mM or 6 mM glucose (see figure legends). Fatty acids stock solutions were
prepared in 50% ethanol at 65°C for 30 minutes, and then added to a solution of fatty acid free bovine
serum albumin (BSA) (Sigma, Cat. # A7030) in a 6:1 molar ratio in a 37 °C water bath for 60 min.

We loaded perifusion columns with either 65 human islets, 100 (hESC)-stem cell-derived islet-like
clusters, or 100 mouse islets and perifused them at 0.4 mL/min with 3 mM glucose Krebs-Ringer
Modified Buffer (KRB) solution as described previously (66) for 60 minutes to equilibrate the islets to
the KRB and flow rate, and then with the indicated conditions. First-phase insulin release was defined
as the amount of insulin secreted during the first 15 minutes of 15 mM glucose stimulation, while the
remaining 25 min of stimulation were defined as second-phase release. Peak insulin secretion was
defined as single point whereby the amount of insulin released during the first 15 minutes of a solution
change was the highest. Samples were stored at -20 °C and insulin secretion was quantified using
human (Millipore Cat. # HI-14K) or rat (Millipore Cat. # RI-13K) insulin radioimmunoassay kits. All
insulin secretion units have been converted to pmol/islet, to allow for direct comparison between
species.

Mouseidet isolation and culture

C57BL/6J mice were purchased from the Jackson Laboratory and housed in the UBC Modified
Barrier Facility (temperature- controlled) using protocols approved by the UBC Animal Care
Committee and in accordance with international guidelines. The mice were on a 12-hour light/dark
cycle with chow diet (LabDiet #5053) and drinking water ad libitum. Mouse islets were isolated by
ductal collagenase (Type XIl; Sigma, Cat. # C7657) injection followed by hand-picking. To allow for
recovery post digestion, islets were cultured overnight in islet culture media (RPMI media with 11.1
mM D-glucose supplemented with 10% vol/vol fetal bovine serum (Thermo Fisher Scientific, Cat.
#12483020) and 1% vol/vol Penicillin-Streptomycin (Gibco, Cat #15140-148)) at 37°C with 5% CO..
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Human embryonic stem cell-derived idet-like cluster culture and differentiation

A human embryonic stem cell line, based on the WiCell WAOL line, that contained knock-in add-on
of EGFP downstream of the insulin coding sequence (50) was differentiated, as previously described,
through a 6-stage protocol to day 2 (50). After the initial 21 days of differentiation, SC-p cells were
cultured in CMRL with 5.6 mM glucose (Thermo Fisher Scientific) containing 1% fatty acid-free BSA
(Proliant), 1:100 Glutamax, 1:100 NEAA, 1 mM pyruvate, 10 mM HEPES, 1:100 ITS (Thermo Fisher
Scientific), 10 pg/ml of heparin sulfate, 1 mM N-acetyl cysteine, 10 uM zinc sulfate, 1.75 pL 2-
mercaptoethanol, 2 uM T3 and 0.155 mM ascorbic acid (Sigma Aldrich) until Day 27. Between Day
27-50, aggregates were grown in CMRL with 5.6 mM glucose containing 1% fatty acid-free BSA,
1:100 Glutamax, 1:100 NEAA, 1 mM Pyruvate, 10 mM HEPES, 1:100 ITS, 10 ug/ml heparin sulfate, 1
mM N-acetyl cysteine, 10 uM zinc sulfate, 1.75 uL 2-mercaptoethanol, 10 nM T3, 1:2000 Trace
elements A (Cellgro), 1:2000 trace elements B (Cellgro), 1:2000 Lipid Concentrate (Thermo Fisher
Scientific) and 0.5 pM ZM447439 (Selleckchem) (54).

Proteomics

For each donor approximately 300 hand-picked islets were transferred into a 1.5 ml microcentrifuge
tube. Culture media was removed, islets were washed twice in 1X PBS (Invitrogen, Cat. #10010049)
and cell pellets were immediately flash frozen in liquid nitrogen and then stored at -80°C. SDS-based
chemical lysis was performed on all the flash-frozen pellet samples. Briefly, 60 ul of SDS lysis buffer
(4 % SDS, 100 mM Tris, pH = 8) was added to each sample. Samples were then vortexed for 1 minute,
boiled at 100°C for 10 minutes, vortexed again for 1 minute and then centrifuged at 4°C at 10,000
RPM for 10 minutes. The supernatants were collected and tested for protein concentration by BCA
protein assay (ThermoFisher Scientific, Cat. # P1-23225). Measurements were performed on a Spark
plate reader (TECAN). All protein samples were stored at -80°C. Next, 20 ug of each lysed sample was
taken for further processing. Reduction of disulfide bonds was done by incubation with DTT (30 mM)
for 35 min at 37°C, followed by alkylation by CAA (50 mM) for 20 min at 37°C. Samples were loaded
onto 10% Mini-PROTEAN® TGX™ Precast Protein Gels (BioRad) and run for 30 min at 85V.
Proteins were visualized by Coomassie blue (stained for 20 min). Lanes were cut out and destained in
Ambic:EtOH (60:40), dehydrated and digested with Trypsin, first round 0.32ug/lane for 15 hours at
37°C, second round 0.128ug/lane for 2 hours, at 37°C (0.448ug in total/lane). Digestion was stopped
with 10% FA, and samples were extracted with a series of extraction solutions, twice by 50% ACN,
50% of 0.1% TFA, and twice by 80% ACN, 20% of 0.1% TFA. Samples were then concentrated via
vacuum centrifugation. Extracted peptide samples were then cleaned up via STAGE-tip purification,
briefly: Resolubilized acidified sample was forced through a conditioned and equilibrated column with
8-12 mm of C18 packing, washed with 1% TFA twice, and eluted into clean plates by buffer containing
40% ACN, 0.1% TFA, then dried down.

Each sample was reconstituted in 0.5% ACN, 0.1% formic acid for LC-MS/MS analysis of 150 ng
total on-column injections (with n = 3 technical replicates). The digest was separated using NanoElute
UHPLC system (Bruker Daltonics) with Aurora Series Gen2 (CSI) analytical column (25 cm X 75 pm
1.6 um FSC C18, with Gen2 nanoZero and CSI fitting; lon Opticks, Parkville, Victoria, Australia)
heated to 50°C and coupled to a Trapped lon Mobility — Time of Flight mass spectrometer (timsTOF
Pro; Bruker Daltonics, Germany) operated in Data-Independent Acquisition - Parallel Accumulation-
Serial Fragmentation (DIA-PASEF) mode. A standard 60 min gradient was run from 2% B to 12% B
over 30 min, then to 33% B from 30 to 60 min, then to 95% B over 0.5 min, and held at 95% B for 7.72
min. Before each run, the analytical column was conditioned with 4 column volumes of buffer A.
Where buffer A consisted of 0.1% aqueous formic acid and 0.5 % acetonitrile in water, and buffer B
consisted of 0.1% formic acid in 99.4 % acetonitrile. The NanoElute thermostat temperature was set
at 7°C. The analysis was performed at 0.3 uL/min flow rate.
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The TimsTOF Pro was set to Parallel Accumulation-Serial Fragmentation (PASEF) scan mode for
DIA acquisition scanning 100 — 1700 m/z. The capillary voltage was set to 1800V, drying gas to
3L/min, and drying temperature to 180°C. The MS1 scan was followed by 17 consecutive PASEF
ramps containing 22 non-overlapping 35 m/z isolation windows, covering the m/z range 319.5 — 1089.5
(more information in DIA windows). As for TIMS setting, ion mobility range (1/k0) was set to 0.70 —
1.35 V-s/cm?, 100ms ramp time and accumulation time (100% duty cycle), and ramp rate of 9.42 Hz;
this resulted in 1.91s of total cycle time. The collision energy was ramped linearly as a function of
mobility from 27eV at 1/k0 = 0.7 V-s/cm? to 55eV at 1/k0 = 1.35 V-s/cm®. Mass accuracy: error of
mass measurement is typically within 3 ppm and is not allowed to exceed 7 ppm. For calibration of ion
mobility dimension, the ions of Agilent ESI-Low Tuning Mix ions were selected (m/z [Th], 1/k0 [Th]:
622.0290, 0.9915; 922.0098, 1.1986; 1221.9906, 1.3934). TimsTOF Pro was run with timsControl v.
3.0.0 (Bruker). LC and MS were controlled with HyStar 6.0 (6.0.30.0, Bruker). Acquired diaPASEF
data were then searched using FragPipe (67) computational platform (v. 17.1) with MSFragger (68, 69)
(v. 3.4), Philosopher (67) (v. 3.8), EasyPQP (v. 0.1.27) and DIA-NN (v. 1.8) to obtain DIA
quantification, with use of the spectral library generated from the before mentioned highly fractionated
sample. Quantification mode was set to “Any LC (high precision)”. All other settings were left default.

RNAseq and Nanostring

Islets for RNA-seq were processed in two centers, initially in Oxford (n=49) with later donors being
processed at Stanford (n = 47). For those processed in Oxford the methods have been described (70).
Briefly, freshly isolated human islets were collected at the Alberta Diabetes Institute IsletCore
(www.isletcore.ca) in Edmonton, Canada. Freshly isolated islets were processed for RNA and DNA
extraction after 1-3 days in culture in CMRL media. RNA was extracted from human islets using Trizol
(Ambion, UK or Sigma-Aldrich, Canada). To clean remaining media from the islets, samples were
washed three times with phosphate-buffered saline (Sigma-Aldrich, UK). After the final cleaning step
17ImL Trizol was added to the cells. The cells were lysed by pipetting immediately to ensure rapid
inhibition of RNase activity and incubated at room temperature for 10CJmin. Lysates were then
transferred to clean 1.5 JmL RNase-free centrifuge tubes (Applied Biosystems, UK). RNA quality
(RIN score) was determined using an Agilent 2100 Bioanalyser (Agilent, UK), with a RIN score_>[16
deemed acceptable for inclusion in the study. Samples were stored at —807 °C prior to sequencing.
PolyA selected libraries were prepared from total RNA at the Oxford Genomics Centre using NEBNext
ultra directional RNA library prep kit for lllumina with custom 8(Ibp indexes (71). Libraries were
multiplexed (three samples per lane), clustered using TruSeq PE Cluster Kit v3, and paired-end
sequenced (75bp) using Illumina TruSeq v3 chemistry on the Illumina HiSeq2000 platform. For the
samples processed at Stanford, freshly isolated human islets were collected at the Alberta Diabetes
Institute IsletCore in Edmonton, Canada, the same as the Oxford samples. The islets were picked to
>95% purity and washed with PBS, then stored in 1 mL of Trizol (Ambion, UK). Islets in trizol were
stored at -80 C until they were processed for RNA using the phenol-chloroform extraction method. The
extracted RNA was resuspended in water and then dnased to remove contaminating DNA. RNA quality
(RIN score) and concentration were determined using an Agilent 2100 Bioanalyzer (Agilent, US), with
a RIN score1>[15 deemed acceptable for inclusion in the study. Samples were stored at —801°C prior
to sequencing. PolyA selected cDNA libraries were prepared from total RNA and then sequenced using
NovaSeq 6000 by Novogene. The raw sequencing data (fastq files) were checked first in regarding of
the number of reads (>= 20 million per sample and extra sequencing were performed if necessary) and
then in regarding of quality control, including quality score per base and length distribution using
fastgc (v0.11.9). Reads were aligned to human genome reference (GRCh38) using STAR (v2.7.9a)
with ENSEMBL gene annotations (v101). Gene expression levels were counted using featureCounts
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(v2.0.1) on exonic reads only. Differential expression was compared using the Wald test in DESeq2
(v1.26.0). p values were adjusted using the Benjamini and Hochberg method.

Fifty islets from each donor batch were used to assess islet quality by profiling expression of 132
human islet genes as described (72). Gene expression was measured using nCounter prep Kits and
nCounter SPRINT profiler according to manufacturer’s protocol (NanoString, USA).

Co-expression analysis

Analysis was performed with both RNA-seq and proteomics data to assess relationships between
‘modules’ of omics features and donor metadata, including technical islet isolation parameters, clinical
metadata, and functional outcomes. There were three main steps: data processing, network construction
and functional characterization, and module-donor metadata correlation analysis.

Raw protein abundance matrices (134 donors, 8489 proteins; Uniprot 1Ds) were filtered to remove
proteins with greater than 50% missing values, reducing the number of proteins to 7919. Next, the
proteomics data were normalized by sample median, log transformed (base 10), and missing values
were imputed with the missForest R package (73) using a random forest-based algorithm. The RNA-
seq counts matrix (96 donors, 17 673 genes; Entrez 1Ds) was filtered based on abundance (15% with
lowest mean counts removed), normalized with the ‘variance stabilizing transformation’ from the
DeSeg2 R package (74), and then filtered based on variance (15% with lowest variance removed). The
RNA-seq data was measured in seven batches; batch effects were adjusted for using the ComBat
method in the sva R package (75). One of the batches (n = 6 samples) had a sequencing depth of about
50% compared to the other samples, resulting in ~5000 genes with zero counts that prevented effective
batch effect adjustment. These six samples were removed from the dataset. Donor metadata included
clinical metadata (age, sex, BMI, diabetes diagnosis, HbAlc), technical islet isolation metadata (culture
time, cold ischemia time, digestion time, purity, and insulin content), and functional outcomes (AUC
values from perifusion experiments after glucose, leucine, and oleate/palmitate exposures). Continuous
variables with right-skew distributions were log-transformed (base 10). A constant value was added to
the perifusion outcomes that had negative values to ensure all data were > 0 before log-transformation.

Two co-expression networks were constructed using the same methods, one for each omics type,
using the WGCNA R package (76). First, the soft threshold parameter was selected by choosing the
lowest value at which the R* value of the scale free topology model fit did not substantially increase
(threshold parameter = 8 and 20 for proteomics and RNA-seq respectively; selected via visual
examination of an elbow plot). Next, pairwise distances between omics features were calculated by
computing signed adjacency and topological overlap matrices using the soft threshold parameter and
the ‘bicor’ correlation function. Finally, modules of co-expressed (or co-abundant) features were
defined by first hierarchically clustering features based on the distance matrix, and then detecting
modules of densely connected features using the dynamic tree cut algorithm. Modules were annotated
with KEGG pathways and GO terms (biological process, cellular component, and molecular function)
by performing overrepresentation analysis with the list of features in each module.

The pairwise partial correlation between module expression/abundance levels and donor metadata,
accounting for the technical isolation parameters (purity, culture time, digestion time, and cold
ischemia time), were calculated with the partial Pearson correlation function in the ppcor R package
(77). Module expression/abundance levels were summarized with WGCNA “eigengenes’, which are the
first principal component scores for each module, re-scaled so that positive and negative scores can be
interpreted as higher and lower expression/abundance levels respectively. Correlation p-values were
adjusted using the Benjamini-Hochberg method, with the FDR set to 5%.

Multi-omics data analyses
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RNAseq data was analyzed by DESeq2 R package (version 1.36.0) (74). Six samples exhibiting
large batch difference were excluded, leaving a total of 90 individuals (82 ND and 8 T2D) included in
the analyses. Genes with low counts (<5 raw counts in more than 50% samples) were removed. Raw
counts of the genes were normalized by variance stabilizing transformation (VST). T2D group was
contrasted to ND group, and genes with Benjamini-Hochberg adjusted p-values < 0.05 were considered
as differentially expressed. The VST normalized gene counts were correlated with log10-transformed
islet parameters or log10-transformed protein abundances using Pearson correlation, and the p-values
are adjusted for multiple testing using Benjamini-Hochberg procedure.

For proteomics data analyses, Benjamini-Hochberg adjusted p-values < 0.05 were used to identify
differentially expressed proteins between the various identified groups. Undetected proteins in more
than 50% samples were removed. Significant differentially abundant proteins were defined with a
threshold of p-value < 0.05 (adjusted) and were plotted in their corresponding colours as volcano plots
in RStudio with packages ggplot2, tidyverse, ggrepel, and corrplot. Significance levels on the y-axis
was calculated by a -log base 10 of the adjusted p-value. Fold change (FC) on the x-axis is calculated
as a log base 2 of the abundance between corresponding comparisons.

General statistical analyses and data visualization

Statistical analyses and data presentation for perifusion studies of dynamic insulin secretion were
carried out using GraphPad Prism 9 (Graphpad Software, San Diego, CA, USA) or R (v 4.1.1). using
Student’s t-test for parametric data and Mann-Whitney test for non-parametric data, as indicated in the
figure legends. For all statistical analyses, differences were considered significant if the p-value was
less than 0.05. *: p< 0.05; ** p< 0.01; *** p< 0.001. Data were presented as means = SEM with
individual data points from biological replicates (average of two technical replicates).
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Figure L egends:

Fig. 1. Nutrient-stimulated insulin secretion, transcriptomes, and proteomes from metabolically
healthy and T2D idets. (A) Histogram with trend line of ages for both male (green, solid line) and
female (yellow, dashed line) donors. Additional details of islet isolation parameters and donor
characteristics are available from IsletCore.ca, and will be available on www.humanislets.com (B)
Averaged traces of dynamic insulin secretion measurements in response to glucose (15 or 6 mM),
leucine (5 mM), 1.5 mM oleate and palmitate (1:1 mixture) or 30 mM KCI in islets isolated from non-
diabetic donors (n=123) (left) and donors with type 2 diabetes (n=17) (right) are shown as indicated.
Basal glucose was 3 mM. (C) Islet samples from the cadaveric donors were collected for RNAseq.
Enriched mRNAs in islets from ND donors (n= 82) are shown in teal and enriched mRNAs in islets
from donors with type 2 diabetes (n=8) are shown in red. The top 40 most significant differentially
abundant proteins are highlighted by labelling with gene name. (D) Shows the same as E, except donor
islets were collected for mass-spec based proteomics (n= 118) in ND, and (n=16) in T2D (E) (top)
Venn diagrams show the overlap of differentially expressed mRNAs and abundant proteins, and this is
further depicted in the correlation plot (bottom) (F) Across-gene correlation between RNAs and
proteins (G) Differentially abundant proteins (with a greater than 0.5 log2 fold change) between the
non-diabetic and type 2 diabetic donor islets were connected using STRING and depicted in the context
of beta cell signalling. The color of the ovals represents the fold change (ND/T2D), while the thickness
of the line around the oval represents the p-value (adjusted).

Fig. 2. Clustering heter ogenousinsulin responses to macronutrients and donor proteomes. (A)
(Ieft) Individual traces of dynamic insulin secretion stimulated by glucose (15 mM or 6 mm) or KCI (30
mM). Basal glucose was 3 mM. Average responses from non-diabetic donors are illustrated with solid
teal line and average responses from donors with type 2 diabetes are in shown in the dashed salmon
line. Floating dot plot inserts illustrate the heterogeneity in insulin AUC for the corresponding section
of the perifusion curve (salmon dots illustrate the responses from donors with T2D). (middle) illustrates
the same as (left) expect islets were stimulated with 5 mM leucine alone, or in combination with 6 mM
glucose as depicted in figure panel. (right) illustrates the same as (left), except islets were stimulated
with 5 mM leucine alone, or in combination with 6 mM glucose. (B) Illustrates the same as (A) except
in mouse islets of both sexes (7 males, 9 females, 7-90 weeks of age). Floating box plots illustrate the
variance of AUC responses between the mouse islet (grey) and human islet (brown) responses. (C) Co-
correlation analysis identified 18 distinct modules of proteins whose abundance shows similar patterns.
Modules are annotated with KEGG pathways and GO terms. The Pearson correlation coefficients
between the modules and the donor meta data or functional data (x-axis) are shown in each rectangle,
and the corresponding adjusted p-value is shown in the brackets. Positive correlations are shown in
shades of red and negative in shades of blue. Significant correlations are highlighted with black box.
(D) Hlustrates the main connection in the co-expression network. The WGCNA adjacency matrix was
filtered to remove: 1) any protein not in a module, 2) protein-protein adjacency distances less than 0.2,
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and 3) any protein without any connections after filters 1 and 2. The resulting network contained 1600
protein nodes and 16 209 edges. Note that filtering was performed for practical reasons, as larger
networks crashed the software and were too busy to visually interpret. Each protein node is colored
according to its module (same color scheme as C).

Fig. 3. Correlation of individual proteins and mRNAs with insulin secretory responses. VVolcano
plots are shown depicting significant positive (red) and negative (blue) correlations of proteins to
continuous donor characteristics: (A) donor age and (B) HbAlc; or functional parameters in response
to: (C) 3 mM glucose (D) 15 mM glucose (E) 6 mM glucose (F) 5 mM leucine (G) 1.5 mM
oleate/palmitate (1:1 molar ratio) (H) 1.5 mM oleate/palmitate + 6 mM glucose and (1) 30 mM KCI.
Relative protein abundances are depicted by size of circle, and the coefficient of variance (log10) is
depicted by color gradient. (J) Venn diagram showing the overlap of the number of protein abundances
that positively correlate to the indicated nutrient stimuli. (K) Heat map depicts the top 50 most
positively correlative proteins to the indicated stimuli. (L-M) Shows the same as (J-K), but for negative
correlations.

Fig. 4. Prototypical proteomes and responses of fat and protein hyper-responders. (A) The
average insulin secretion response from donors classified as “high lipid responders” is shown in dark
blue (n=11) and the average insulin secretion response from donors classified as “low lipid responders”
is shown in the light blue (n=129). (B) Principal component analysis (PCA) plot of protein

abundance in the high (dark blue circles) vs. low (light blue circles) lipid responders. (C) Volcano plot
showing differential protein abundance between high and low lipid responders. The top 40 most
significant differentially abundant proteins are highlighted by labelling with gene name. (D) Pathway
analysis of proteins that are less abundant in fat hyper-responsive donors showing enriched biological
functions and pathways obtained from multiple databases including (among others), Gene Ontology
(GO), KEGG and Reactome. (E) Shows the same as (D) except for proteins that are more abundant in
fat hyper-responsive donors. (F) The average insulin secretion response from donors classified as “high
protein responders” is shown in orange (n=13) and the average insulin secretion response from donors
classified as “low protein responders” is shown in yellow (n=127). (G) PCA plot of protein

abundance in the high (orange circles) vs. low (yellow circles) protein responders. (H) Volcano plot
showing differential protein abundance between high and low protein responders.

Fig. 5. Stem cell derived islet-like cluster s hyper-respond to fat and can be matured with
extended culture. (A) Summary of the human embryonic stem cell-derived islet-like clusters
differentiation protocol. (B) Representative images of unsorted (day 35) Sc-derived islet-like clusters
(left) and sorted (day 35) Sc-derived beta cell-like clusters (right) (C) Averaged traces of dynamic
insulin secretion measurements in response to glucose (15 or 6 mM), leucine (5 mM), 1.5 mM oleate
and palmitate (1:1 mixture) or 30 mM KCI in stem cell derived islet-like clusters (average of 8
younger-immature and 8 older-maturing preparations). Basal glucose was 3 mM. For comparison, the
average human islet dynamic insulin secretion measurement traces are shown in the dashed lines. (D)
PCA plot of protein abundance in the stem cell-derived islet-like clusters (n=25) (blue circles)
compared to donors with type 2 diabetes (salmon circles, n=16) and normoglycemic donors (teal
circles) (n=118). (E) Volcano plot showing differential protein abundance between stem cell derived
islet like clusters (blue circles, n=25) and donors without diabetes (teal circles, n=118). The top 40
most significant differentially abundant proteins are highlighted by labelling with gene name. (F) (lft)
Compares average dynamic insulin secretion stimulated by glucose (15 mM or 6 mm) or KCI (30 mM)
between younger-immature (dashed brown lines, n=8) and older-maturing (solid brown lines, n=8)
clusters. Basal glucose was 3 mM. Floating dot plot inserts illustrate the AUC responses for the
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corresponding section of the perifusion curve between younger-immature clusters (black circles) and
older-maturing clusters (open circles). (middle) illustrates the same as (left) expect islet-like clusters
were stimulated with 5 mM leucine alone, or in combination with 6 mM glucose as depicted in figure
panel. (right) illustrates the same as (left), except islet-like were stimulated with 1.5 mM
oleate/palmitate, or in combination with 6 mM glucose. (G) PCA plot and (H) volcano plot of protein
abundance comparing the younger-immature clusters (light green, n=14) and older-maturing clusters
(dark green, n=10).
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