
 

1 
 

Proteomic predictors of individualized nutrient-specific insulin secretion in health 
and disease 
 

Jelena Kolic*1, WenQing Grace Sun1, Haoning Cen1, Jessica Ewald2, Leanne Beet1, Renata 
Moravcova3, Jason C. Rogalski3, Shugo Sasaki4,5, Han Sun6, Varsha Rajesh6, Yi Han Xia1, Søs 5 
Skovsø1,7, Aliya F. Spigelman8, Jocelyn E. Manning Fox8, James Lyon8, Jianguo Xia2, Francis C. 
Lynn4,5, Anna L. Gloyn6,9,10, Leonard J. Foster3, Patrick E. MacDonald8, James D. Johnson*1  
* Corresponding authors emails: jkolic@mail.ubc.ca; james.d.johnson@ubc.ca  
 

1Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British 10 
Columbia, Vancouver, Canada  
2Institute of Parasitology, McGill University, Montreal, Canada 
3Department of Biochemistry and Molecular Biology, University of British Columbia, 
Vancouver, Canada  
4 Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada  15 
5Department of Surgery, School of Biomedical Engineering, University of British Columbia, 
Vancouver, BC, Canada 
6Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, 
California, USA  
7Valkyrie Life Sciences, Vancouver, Canada 20 
8Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Canada 
9Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, California, USA  
10Welcome Center for Human Genetics, University of Oxford, UK  
 

AUTHOR CONTRIBUTIONS 25 
Conceptualization: JK, JX, FCL, ALG, LJF, PEM, JDJ  
Methodology: JK, HC, JE, HS, VR, SS, AFG, JEM, JL, JX, FCL, ALG, LJF, PEM, JDJ 

            Investigation: JK, LB, RM, JCR, HS, SS, FCL, ALG 
Visualization: JK, WGS, HC, JE, YHX, JDJ 
Funding acquisition: JX, FCL, ALG, LJF, PEM, JDJ 30 
Supervision: JX, FCL, ALG, LJF, PEM, JDJ 
Writing – original draft: JK, JDJ 

 

COMPETING INTERESTS: ALG declares that her spouse holds stock options in Roche and is an 
employee of Genentech. Other authors declare that they have no competing interests. 35 

 

ACKNOWLEDGMENTS: We thank the Human Organ Procurement and Exchange (HOPE) program 
and Trillium Gift of Life Network (TGLN) for their work procuring human donor pancreas for 
research. We especially thank the organ donors and their families for their gift in support of diabetes 
research. The authors acknowledge that work done at UBC and BC Children’s Hospital occurs on the 40 
traditional, ancestral, and unceded territories of the Coast Salish peoples, the S�wx�wú7mesh 

(Squamish), səl�ilwəta�� (Tsleil-Waututh), and x�məθk�əy�əm (Musqueam) Nations. 
 

FUNDING: This work was supported by a Canadian Institutes for Health Research (CIHR) operating 
grant (168857) to J.D.J., a CIHR Team Grant (ASD-179092/5-SRA-2021-1149-S-B) to P.E.M., F.C.L., 45 
J.X., L.J.F., and J.D.J, a CIHR-JDRF Team (ASD-173663/5-SRA-2020-1059-S-B) to F.C.L., P.E.M., 
and J.D.J, and the JDRF Centre of Excellence at UBC (3-COE-2022-1103-M-B). This work was 
funded by Wellcome Trust grants to A.L.G at Oxford (095101, 200837, 106130, 203141, NIH (U01-
DK105535; U01-DK085545) and by the Wellcome Trust (200837) and NIH (UM-1DK126185) at 
Stanford. Proteomics infrastructure and analysis used in this study was supported by the UBC Life 50 
Sciences Institute, Canada Foundation for Innovation, BC Knowledge Development Fund, and Genome 
Canada/BC (PRO264). J.K. was individually supported by a Banting Fellowship from CIHR. 



 

2 
 

ABSTRACT 
Population level variation and molecular mechanisms behind insulin secretion in response to 

carbohydrate, protein, and fat remain uncharacterized despite ramifications for personalized nutrition. 
We now define prototypical insulin secretion dynamics in response to the three macronutrients in islets 
from 140 cadaveric donors, including those diagnosed with type 2 diabetes. We leverage the insulin 5 
response heterogeneity and use transcriptomics and proteomics to identify molecular pathways of 
specific nutrient responsiveness. Surprisingly, we find robust insulin secretion to fatty acid stimulus in 
~8% of donors, challenging the idea that fat has negligible effects on insulin release. Distinct islet 
proteomes with differences in metabolic signalling networks convey this hyper-responsiveness to fat 
relative to carbohydrate. By comparing human islets to human embryonic stem cell-derived islet 10 
clusters, we show that, unlike glucose-responsiveness, fat hyper-responsiveness is equivalent and may 
be a hallmark of functionally immature cells. Our study represents the first comparison of dynamic 
responses to nutrients and multi-omics analysis in human insulin secreting cells. Responses of different 
people’s islets to carbohydrate, protein, and fat lay the groundwork for personalized nutrition. 
 15 
ONE-SENTENCE SUMMARY 
Deep-phenotyping and multi-omics reveal individualized nutrient-specific insulin secretion propensity.  
 
INTRODUCTION  

Insulin is released by pancreatic islet beta cells in response to nutrient stimuli to maintain energy 20 
homeostasis. The major driver of insulin secretion is glucose. However, proteins and fats may also 
modulate insulin release and the effects of non-carbohydrate nutrients on insulin secretion remain 
underexplored. Much of our limited understanding of nutrient-stimulated insulin secretion is 
extrapolated from rodents, although more recent availability of cadaveric human islets for research 
purposes has expanded our pre-clinical knowledge. However, current human islet datasets generally 25 
only examine a single nutrient stimulus, glucose (1-3). A few small studies examined other nutrients (4, 
5), but no large-scale direct comparison of insulin secretion in human islets, stimulated by 
carbohydrates, proteins and fats has been reported. Understanding of nutrient-induced insulin secretion 
is important in the context type 2 diabetes and emerging studies linking hyperinsulinemia with cancer 
(6). Indeed, large prospective clinical trials shows broad beneficial effects of diets targeting 30 
hyperinsulinemia (7).  

Individuals respond differently to diets (8) and there is high interpersonal variability in postprandial 
responses to even one macronutrient, glucose (9). Ex vivo studies measuring insulin secretion from 
human islets show high variability, only some of which can be explained by donor characteristics or 
islet isolation parameters (10). The concept that insulin-responses to food types or different 35 
macronutrients are individualized has not been investigated. No studies have leveraged macronutrient-
induced insulin secretion heterogeneity and large-scale multi-omics to elucidate the associated 
molecular mechanisms.  

Here we address these critical knowledge gaps by measuring dynamic insulin secretion in response 
to three model macronutrient stimuli in islets from non-diabetic and donors with type 2 diabetes, as 40 
well as stem cell-derived islet clusters. Our comprehensive transcriptomic and proteomic analysis 
reveals the molecular signature of each islet donor and shows distinct clusters of proteins that predict 
insulin secretion response, including in a previously unreported subset of lipid-hyperresponsive islets 
that resemble the function of human embryonic stem cell-derived immature islets. This is the largest 
human islet dataset that includes both macronutrient-stimulated insulin secretion measurements and 45 
multi-omic profiling, coupled with the first side-by-side comparison of nutrient responses and 
proteomes between human islets and stem cell-derived islet clusters. This critical advancement in 
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understanding why individuals’ islets respond differently to sugar, protein, and fat advocates for greater 
application of personalized recommendations and treatments for individuals living with diabetes.  

 
RESULTS 
Prototypical nutrient-stimulated insulin secretion dynamics from human islets  5 

Between 2016 and 2022, we systematically measured insulin secretion in response to carbohydrate 
(15 mM or 6 mM glucose), amino acid (5 mM leucine), and fat (1.5 mM oleate/palmitate mix) from 
islets isolated from 140 cadaveric donors (2) reflective of the general population (Fig. 1A) (11). In most 
islet donors, we confirmed that carbohydrate was the strongest insulin secretagogue, followed by amino 
acid and then fat, which only weakly stimulated insulin secretion on average (Figs. 1B, S1A,B). Islets 10 
exhibited biphasic insulin secretion in response to glucose (12). We found that insulin secretion in 
response to amino acid is also biphasic, with a distinct 1st phase lasting ~15 minutes and a sustained 2nd 
phase lasting the duration of the challenge (Figs. 1B, S1A,B). In contrast, the response to fat, when 
present, was monophasic (Figs. 1B,  S1A,B). 

We also assessed the role of macronutrient order on insulin secretion, inspired by clinical meal-order 15 
studies (13, 14). In our experiments, prior exposure to high glucose, amino acid or fat did not alter 
insulin secretion stimulated by moderately elevated 6 mM glucose (Figs. S1A,B). Amino acid on top of 
6 mM glucose further increased insulin secretion. Fat produced no enhanced response (Figs. S1A,B), in 
contrast to previous small-scale rodent or human islet observations (15, 16). Interestingly, insulin 
secretion stimulated by direct depolarization with KCl was inhibited after prior exposure to lipid in 20 
islets from normoglycemic donors (Fig. S1A), perhaps foreshadowing lipotoxic effects on the insulin 
secretory machinery (17). This large dataset provides the first side-by-side response profiles for each of 
the main three macronutrients in human islets. 
 
Prototypical nutrient-stimulated insulin secretion dynamics in type 2 diabetes  25 

We next examined the relationship between type 2 diabetes and nutrient-stimulated insulin 
secretion. Islets from donors with diabetes had ~40% lower insulin secretion in response to 15 mM 
glucose and ~35% lower insulin secretion in response to moderate 6 mM glucose (Figs. 1B, S2 C,D). 
Insulin secretion in response to direct depolarization by KCl was reduced by ~22% but failed to reach 
statistical significance (Fig. S2I, p=0.07). When examining the kinetics of insulin secretion, we saw a 30 
significant delay in time-to-insulin peak in response to high glucose in islets from donors with diabetes 
(Fig. S1E). Insulin secretion in response to fatty acids was also lowered by ~55% (Figs. 1B, S2E). 
However, insulin content, baseline insulin secretion, and insulin secretion in response to 5 mM leucine 
were not different (Figs. 1B, S2A,B,D). This preserved amino acid-stimulated insulin secretion is 
consistent with clinical data (18) and suggests therapeutic protein intake could be exploited in diabetes 35 
management. However, leucine together with 6 mM glucose induced ~36% (on average) less insulin 
secretion in donors with diabetes (Fig. S2G), and leucine was not stimulatory on top of 6 mM glucose 
in these donors (Fig. S1B), emphasizing a need for additional clinical research into context-dependent 
amino acid-stimulated insulin secretion. Known glucose-lowering medication status of these donors 
with diabetes did not significantly correlate with any insulin-secretion parameters; however, there was 40 
an overall trend with the need for exogenous insulin and lower overall insulin secretory capacity (Fig. 
S2J-Q).  
      
Comprehensive transcriptomics and proteomics of islets with and without type 2 diabetes 

To better understand the relationship between secretory response and variation in gene expression in 45 
islets from donors with and without type 2 diabetes, we performed comprehensive transcriptomic and 
proteomic analysis from corresponding batches of donor islets. On average, after quality control, we 
measured over 20,000 mRNAs using RNA sequencing (from 82 ND and 8 T2D donors) and almost 
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8000 proteins (from 118 ND and 16 T2D donors) using mass-spectrometry. RNA sequencing of a large 
subset of human islets showed that 247 mRNAs were enriched in the non-diabetic donors and 126 were 
enriched in the donors with diabetes (Fig. 1C). Importantly, differences were more apparent at the 
proteomic level, with 355 proteins significantly more abundant in islets from non-diabetic donors, and 
200 proteins more abundant in islets from donors with diabetes (Fig. 1D). Despite only finding 44 gene 5 
products that were significantly altered at both mRNA and protein levels (Fig. 1 E), individual protein 
fold changes were mostly consistent with mRNA fold changes (Fig. S3A), and both lists of features 
were enriched with many of the same pathways (Fig. S3B). Gene products decreased in both 
expression and abundance in islets from donors with diabetes included the sulfonylurea receptor 
subunit of the KATP channel (ABCC8), the well-known target of oral hypoglycaemic agents, as well as 10 
pyruvate carboxylase (PC), which is critical for mitochondrial metabolism and glucose-stimulated 
insulin release (19), hedgehog acyltransferase-like (HHATL), which negatively regulates protein 
palmitoylation, a process implicated in type 2 diabetes (20) and islet amyloid polypeptide (IAPP), a 
hormone co-secreted with insulin with roles in glycemic control and gastric emptying (21) (Fig. 1E). 
Only two gene products were increased in both expression and abundance in type 2 diabetes: syntaxin 15 
binding protein 6 (STXBP6), which is thought to limit insulin release by limiting the size of the granule 
fusion pore (22) and beta arrestin 1(ARRB1) which is suggested to be involved in beta cell mass 
expansion (23).  

There was overall discordance between islet RNA expression and protein abundance from the same 
donor/isolations, with an R value of 0.5 (Figs. 1F, S3C-E), consistent with other studies of primary 20 
tissues (24, 25). This discrepancy was likely not due to unreliable RNAseq measurements because we 
observed a strong correlation between the RNAseq and NanoString analysis of 130 mRNAs (Fig. 
S3F,G). Because proteins had lower co-efficients of variation (Fig. S3H), were more stable in the face 
of isolation variable (see below), and may provide better insight into disease phenotype than mRNAs 
(25), we focused on the proteomic data to elucidate key mechanisms. We mapped the protein-protein 25 
interaction networks for proteins showing fold-change greater than 0.5 log2 using STRING (26), and 
subsequently assigned them to their intracellular location in a diagram using subcellular location 
information found in UniProt (Fig. 1G). Consistent with a lower insulin secretory response to high 
glucose (Fig. S2B), islets from donors with type 2 diabetes had lower abundance of key proteins 
predicted to be involved in glucose-stimulated insulin secretion. Islet proteins reduced in type 2 30 
diabetes (Fig. 1 G) included mitochondrial proteins arginase 2 (ARG2), N-acetylaspartate synthetase 
(NAT8L), hydroxyacyl-coenzyme A dehydrogenase, mitochondrial (HADH), protein phosphatase 1K, 
mitochondrial (PPM1K) and alpha-methylacyl-CoA racemase (AMACR), regulators of glycolysis (6-
phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 (PFKFB2) and glucose-6-phosphatase 2 
(G6PC2), endoplasmic reticulum Ca2+ homeostasis factors ERO1-like protein beta (ERO1B), inactive 35 
ubiquitin thioesterase (OTULINL), sarcoplasmic/endoplasmic reticulum calcium ATPase 3 (ATP2A3), 
and the extracellular Ca2+-sensing receptor (CASR). Proteins that were more abundant in islets from 
donors with diabetes included those crucial for cell adhesion (tight junction protein ZO-2 (TJP2), 
integrin alpha-2/beta-1 (ITGA2), Golgi function arylsulfatase L (ARSL), transmembrane BAX 
inhibitor motif containing 1 (TMBIM1), transcriptional proteins such as TLE family member 3 (TLE3), 40 
helicase with zinc finger domain 2 (HELZ2) and RNA-binding protein with multiple splicing 
(RBPMS), and proteins involved in cytoskeletal reorganization like MARCKS-related protein 
(MARCKSK1). Collectively, these data identify multiple proteins that correlate with the insufficient 
glucose-stimulated insulin secretion in islets from donors with diabetes.  
 45 
Individuality of nutrient-stimulated insulin secretion 

Islets from individual donors exhibited a large range of insulin secretion rates at baseline, and in 
response to high glucose, moderate glucose, amino acid, fat, and direct depolarization (Fig. 2A). Some 
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donors had more robust responses to fatty acids than to glucose, challenging the long-standing idea that 
dietary fats alone have negligible effects on insulin release (5, 15, 27). This degree of response 
heterogeneity across all macronutrients was not found in C57Bl6J mouse islets, even when including 
both sexes and a wide range of ages (Fig. 2B).  

We explored the source of this variation by examining known donor characteristics (Table S1). Cold 5 
ischemic time of the pancreas was negatively correlated with insulin secretion in response to direct 
depolarization (Fig. S4O), but it was not correlated to insulin secretion stimulated by any of the three 
macronutrients tested. We also found that islets from female donors had lower insulin secretion at 3 
mM glucose and 6 mM glucose, with or without fatty acid treatment (Fig. S4A-C). Donor age and BMI 
were not different between male and female donors in our study (Table S1), suggesting that these 10 
differences are a result of biological sex. Somewhat surprisingly, donor BMI had only minor effects on 
macronutrient-stimulated insulin secretion (Fig. S4D-L). Expectedly, high HbA1c was negatively 
correlated to insulin secretion stimulated by high glucose and KCl (Fig. S4M-O). These observations 
suggest that donor characteristics and islet isolation parameters minimally contribute to individualized 
nutrient responses and that separate factors must drive most of the observed heterogeneity. 15 

 
Co-expression network analysis uncovers protein-networks correlated with islet function 
     We used co-expression network analysis to obtain an overview of protein-protein relationships 
within the proteome (and transcriptome), and then analyzed the network along with clinical and 
functional outcomes to gain insight into the molecular drivers of macronutrient-stimulated insulin 20 
secretion response heterogeneity. We identified 18 network modules of highly co-regulated proteins 
(Figs. 2C, S5) and plotted them as a co-expression network to illustrate the connections between 
modules (Fig. 2D). All modules were significantly enriched in gene sets (Gene Ontology Cellular 
Component, Molecular Function, and Biological Process) and pathways (KEGG and Reactome), 
allowing for their higher-level functional annotation. The overall protein abundances of 9 modules 25 
were significantly correlated with islet functional data (Fig. 2C). Several modules were positively 
correlated with insulin secretion in response to multiple nutrients. These modules (lightcyan, dark 
green, greenyellow and black) contained proteins with critical roles in cytoskeletal reorganization, 
mitochondrial metabolism, and insulin processing. Two modules of interest (blue and royalblue) with 
roles in protein transport and localization, were positively correlated with insulin secretion stimulated 30 
by KCl but negatively correlated with insulin secretion stimulated by lipids. Notable proteins in this 
module include enzymes involved in fatty acid synthesis, acetyl-CoA carboxylase 1 (ACACA) and 
fatty acid synthase (FASN) (28, 29), and lipid metabolism glycerol-3-phosphate dehydrogenase 
(GPD1) (30). Consistent with the discordance between RNA expression and protein abundance, and 
suggestive of more dynamic mRNA levels, we did not observe any significantly correlated transcript 35 
modules in the 29 network modules detected (Fig. S6). Together, these data demonstrate that these 
protein network modules in human islets likely underpin their differential responsiveness to stimuli. 
 
Significant correlations between individual proteins, donor data and islet function 

We correlated the abundance of each mRNA (Fig. S7) and protein (Fig. 3A) identified in our dataset 40 
to donor traits, independent of diabetes status. We focused our attention on the proteome because we 
found that mRNAs were more prominently correlated with islet isolation and culture variables (Tables 
S2 and S3, Fig. S8). Increasing donor age was strongly positively correlated to proteins with known 
(and postulated) roles in aging, cellular senescence, proteolysis and mitochondrial dysfunction: 
scavenger receptor class B member 2 (SCARB2) (31), arginyl aminopeptidase-like 1 (RNPEPL1) (32), 45 
acid ceramidase (ASAH1)(33), and cyclin-dependent kinase inhibitor 2A (CDKN2A) (34) (Fig. 3A). 
We found that the abundances of 1807 proteins were correlated to HbA1c (Fig. 3B). The strongest 
positive relationships were seen was with ubiquitin associated protein 1 (UBAP1) and WW domain-
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binding protein 2 (WBP2), whose expression is increased in pancreatic adenocarcinoma, breast cancer 
and numerous other malignancies (35, 36). This is relevant to reports of poor glycemic control being 
associated with and increased risk of multiple cancers (37). 

We also correlated protein abundance to islet function in response to each nutrient stimulus (Fig. 
3C-I). The greatest number of significant correlations to protein abundance were seen with insulin 5 
secretion induced by lipids (1941 significant correlations) (Fig. 3H, Table S4), pointing to somewhat 
unique mechanisms for this insulin secretagogue. The abundance of 5 proteins was positively 
correlated to insulin secretion stimulated by all three macronutrients as well as direct depolarization by 
KCl (Fig. 3J,K), suggesting that these proteins play a role in the overall secretory capacity of the beta 
cell. These pan-stimulus enabling proteins were solute carrier family 25 member 4 (SLC25A4), 10 
ADP/ATP translocase 1 (ANT1), glycerol-3-phosphate dehydrogenase 2 (GPD2), G protein subunit 
alpha I2 (GNAI2), growth hormone inducible transmembrane protein (GHITM), and secretory carrier 
membrane protein 4 (SCAMP4). These findings highlight the critical role of mitochondria in nutrient- 
and depolarization-stimulated insulin secretion (38).  

The abundance of several proteins, including protein-tyrosine phosphatase 1B (PTPN1, alias 15 
PTP1B), negative regulator of insulin receptor signalling (39), was positively correlated with insulin 
secretion stimulated glucose, leucine and KCl but not fatty acids (Fig. 3K). This was initially surprising 
because inhibitors of PTPN1 improve whole body insulin sensitivity (40) and whole body ablation of 
PTPN1 increases glucose-stimulated insulin secretion in mice (41). However, our data is consistent 
with the idea that beta-cell insulin receptors inhibit insulin secretion (42), which can eventually 20 
improve insulin sensitivity (43). This highlights the importance of tissue-specific analysis of protein 
abundance and function (25). 

Four proteins were positively correlated to all nutrient responses, including RAP1 GTPase activating 
protein (RAP1GAP) which would be expected to downregulate the activity of small G proteins. 
Interestingly, alpha cell transcription factor, aristaless related homeobox (ARX) (44) was negatively 25 
correlative to basal insulin secretion (Fig. 3C), insulin secretion stimulated by glucose as well as insulin 
secretion stimulated by amino acid (Fig. 3M). While these correlations may initially suggest a general 
decrease in beta cell ability to secrete insulin on account of higher alpha cell mass, we also observe that 
insulin secretion induced by direct depolarization with KCl was not correlated to ARX abundance (Fig. 
3M), arguing against such a simple interpretation. Collectively, these data provide unprecedented 30 
information on the proteins that associate with islet secretory function, in a general and nutrient-
specific way. We have built an online resource where the relationship between any detected protein, 
donor characteristics, islet isolation parameters and islet function can be displayed 
(www.humanislet.com).  

 35 
Unique proteome of lipid- or amino acid-hyper-responders 

During the course of our multi-nutrient phenotyping studies, we identified a previously un-reported 
sub-group of donors with unusually large insulin secretory response to lipids in basal glucose 
conditions. In fact, ~8% (11/140) of donors secreted more insulin in response to oleate/palmitate than 
to 15 mM glucose (Fig. 4A). These fat hyper-responders also secreted more insulin when both 6 mM 40 
glucose and lipid were present, but less insulin in response to direct depolarization (Fig. 4A, Table S4). 
Overall, lipid hyper-responsive islets came from donors with higher HbA1C (Table S4). No significant 
differences in known islet isolation or culture parameters were seen between the two groups (Table S4). 
Proteomic comparison of these donor groups showed that the fat hyper-responsive islets exhibited a 
30% decrease in the abundance of Wnt family member 4 (WNT4), hinting at a less-mature state (45) 45 
(Fig. 4B,C). Fat hyper-responsive islets also had less protein phosphatase 1 catalytic subunit gamma 
(PPP1CC), which is involved in glycogen metabolism, hypoxanthine phosphoribosyltransferase 1 
(HPRT1), which is involved in purine metabolism, and AKT serine/threonine kinase 1 (AKT1), which 
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is involved in growth factor signaling and survival. On the other hand, lipid hyper-responders exhibited 
elevated hepatocyte nuclear factor 1-beta (HNF1B), the gene product underlying a rare form of 
diabetes, maturity onset diabetes of the young (MODY5), sulfotransferase family 1A member 1 
(SULT1A1), and platelet derived growth factor receptor alpha (PDGFRA) (Fig. 4B,C). Pathway 
analysis using multiple databases (46) reveals defects in small-molecule protein medication, AKT 5 
signaling and lipid metabolism in donors classified as fat-hyper responders (Fig. 4D). Interestingly, 
proteins involved in endoplasmic reticulum signal integration and organization are increased in fat-
hyper responders (Fig. 4E), which is perhaps suggestive of endoplasmic reticulum dysfunction in these 
donors (47). 

We also identified a previously un-reported subset of donors (~9%) that secreted more insulin in 10 
response to leucine than to high glucose (Fig. 4F). Amino acid hyper-responders were more likely to 
been diagnosed with type 2 diabetes, but there was no difference in HbA1C between the high and low 
responders (Table S5). Amino acid hyper-response was associated with a longer in vitro culture time 
(Table S5), suggesting that this observed phenotype may be influenced by adaptation to our culture 
conditions. Only two differentially abundant proteins (Fig. 4G,H) were associated with this phenotype, 15 
thymocyte selection-associated high mobility group box protein (TOX; transcriptional regulator) and 
angiotensinogen (AGT), an essential component in the renin-angiotensin system, with important roles 
in the endocrine pancreas (48). Our work suggests that some donors’ islet proteomes may be pre-
programmed or may have adapted to hyper-respond to fats and that in vitro culture conditions can 
enable some donors’ islets to hyper-respond to amino acid.  20 

 
Human embryonic stem cell-derived islet-like clusters are lipid-responsive 

The differentiation of beta cell surrogates from embryonic stem cells has potential as a diabetes 
therapy and can be used to model ‘environmentally naïve’ insulin secretion (49). The in vitro insulin-
secretory function of these cells, even in response to supraphysiological levels of glucose, still does not 25 
match that of human islets (49). There are no reports that directly compare how stem cell-derived islets 
and primary human islets respond to multiple nutrients (49). In our hands, INS2AGFP stem cell-
derived islet clusters (50) (Fig. 5A,B) have ~1/10 the level of basal insulin release when compared to 
human islets, show poor responsiveness to both 15 mM and 6 mM glucose, but release significant 
amounts of insulin upon direct depolarization by KCl (Figs. 5C,S8). They are unresponsive to 30 
stimulation by amino acid either alone or in combination with glucose. Remarkably, fatty acids 
stimulated robust insulin secretion, indistinguishable to the average response of human islets. This 
suggests that these in vitro derived cells have the capacity for regulated insulin secretion but have 
specific defects in glucose and amino acid responses. Comparing their proteomes to human islets 
revealed massive differences; 3196 proteins were significantly more abundant in the non-diabetic 35 
human donor islets (Fig. 5D,E). Some differences were due to the presence of non-islet exocrine cells 
trapped in our hand-picked preparations (Fig. 5E). Other proteomic differences were more informative. 
WNT4, which we found was more abundant in lipid hyper-responders, was more than 2 times lower in 
these hESC-derived islet-like clusters than in islets from non-diabetic donors. In fact, this protein was 
detected in all but one of our human islet donors (T2D, 25 years of duration, absent glucose-stimulated 40 
insulin secretion), but only in 40% of the stem-cell derived islet-like cluster differentiations. On the 
other hand, 2553 proteins were more abundant in the stem cell-derived islet clusters. Higher levels of 
this protein in the pancreatic beta cell are thought to limit voltage-dependent calcium channel activity, 
and thus decrease glucose-stimulated insulin secretion (51). The abundance of monocarboxylate 
transporter 1 (SLC16A1), a beta-cell disallowed gene whose presence is suggestive a neonatal-like 45 
immature beta-cell phenotype (52), increased over 6-fold in these islet-like clusters. Compellingly, 
proteins linked to important roles in fatty acid transport and metabolism long-chain fatty acid transport 
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protein 3 (SLC27A3), mitochondrial coenzyme A transporter (SLC25A42), and solute carrier family 22 
member 18 (SLC22A18) were increased ~2-fold. 

Extended maturation of stem cell-derived islet-like clusters has been shown to increase the ability of 
these cells to respond appropriately to a glucose stimulus (53). We therefore compared nutrient-
stimulated insulin secretion from younger-immature (days 21-35) and older-maturing (days 50+) stem 5 
cell preparations (Fig. 5F). Basal insulin secretion was 5-fold higher in the older-maturing islet-like 
cells, again consistent with the 4-fold increase in insulin content seen by Balboa et al. (54). These 
clusters showed evidence of glucose-responsiveness and maintained their sensitivity to fatty acid. 2072 
proteins more abundant in the older-maturing clusters and 2066 more abundant in the younger-
immature clusters (Fig. 5G,H). Proteins with significant roles in glucose-stimulated insulin secretion 10 
and insulin synthesis including pyruvate carboxylase (PC), mitochondrial citrate carrier (SLC25A1), 
high-voltage gated calcium channel subunit (CACNA2D2), glucose transporter 1 (SLC2A1), an 
integral SNARE protein (VAMP8) and prohormone convertase 2 (PCSK2) were all significantly more 
abundant in the older-maturing SC-islet clusters. These cells also had a 73% decrease in the abundance 
of the beta-cell disallowed gene monocarboxylate transporter (SLC16A1), when compared to more 15 
immature clusters. These proteomic data now provide a roadmap to produce more faithful human islet 
surrogates. Although the maturation of stem cell derived islets remains incomplete in vitro (54, 55), and 
current cell replacement tend to focus on beta-like cells, our dataset can now be used to make better 
stem cell-derived islets by exploiting the differences seen at the protein levels between these cells and 
real human islets.  20 
 
DISCUSSION 

The goal of this study was to compare dynamic insulin secretion responses to carbohydrate, protein, 
and fat from human islets representative of the population of donors with and without type 2 diabetes, 
and to define the transcriptomic and proteomic mechanisms that underly the variation in response to 25 
each nutrient, and to all nutrients. Our study is part of a large multi-institutional human islet deep 
phenotyping network which generates and links functional and multi-omic datasets for insight into 
normal and pathological variation in islet function. Our initiative provides unprecedented and unbiased 
mechanistic detail of the cellular processes associated with insulin secretion in response to each 
nutrient class, and the first to directly compare functional data to both the proteome and transcriptome. 30 
As a part of the Islet Deep Phenotyping Network Resource, this dataset forms the basis on an online 
platform (www.humanislets.com) providing open access to islet donor/isolation data and additional 
phenotyping. Despite working with high-quality research islets, all isolated from the same centre (2), 
isolation parameters can have unavoidable impacts; this was particularly obvious when examining 
mRNA, which was more sensitive than protein to technical isolation and culture parameters. Along 35 
with weak mRNA correlation to protein in our study and others’ (24, 25), this should give pause when 
inferring protein abundance (or function) from mRNA expression. 

Our findings have relevance for personalized therapeutic nutrition and the clinical management of 
diabetes. For example, while both first and second phase insulin secretion in response to high glucose 
were blunted in islets from donors with type 2 diabetes, we did not detect significantly impaired amino 40 
acid-stimulated insulin secretion, which bolsters the case that protein-rich diets could have therapeutic 
benefits in patients with type 2 diabetes (56) and highlights the need for additional research into amino-
acid stimulated insulin secretion. 

A recent study sought to identify differences between islets from 17 normal donors and 12 donors 
with type 2 diabetes, but was only able to quantify 3036 proteins, none of were reported statistically 45 
significant after correcting for multiple comparisons (57). Here, with more donors and more than twice 
the proteomic coverage, we report 555 proteins that are differentially abundant in islets from donors 
with type 2 diabetes. This allowed us to conduct protein-centric network analysis that was not 
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previously possible. Proteins critical to glucose and mitochondrial metabolism coupling are less 
abundant in islets from donors with type 2 diabetes, explaining the blunted glucose-stimulated insulin 
secretory response. Conversely, proteins involved in cytoskeletal actin remodeling are on average more 
abundant in islets from donors with type 2 diabetes, consistent with the role of filamentous actin 
limiting glucose-stimulated insulin secretion in pancreatic beta cells (58). Identifying the pathways that 5 
are perturbed in islets from donors with type 2 diabetes is crucial for better understanding the disease 
pathology and discovering of novel therapeutic targets.  

Previous studies revealed heterogeneity in insulin secretion from human islets in response to glucose 
(1-3), but they do not identify the source of this variation or examine other nutrients. Here, we 
leveraged the heterogeneity in nutrient-stimulated insulin secretion to identify networks of proteins that 10 
drive nutrient-specific responses. Interestingly, we identified more significant correlations between 
protein and insulin secretion in response to physiologically relevant 6 mM glucose, when compared to 
15 mM, calling into question the routine use of such supraphysiological glucose concentrations in vitro.  

Heterogeneity in insulin secretion in response to the three main classes of macronutrients is 
reminiscent of the interindividual variability of postprandial glucose responses to carbohydrates (9, 59, 15 
60). It has been suggested that this interindividual variability in glycemic response is in part responsible 
to the mixed weight loss outcomes following specific diet interventions. A recent randomized clinical 
trial did not support this idea (61), but post-prandial glucose and insulin responses were not measured 
to confirm the effectiveness of the reported personal diets. On the other hand, a diet specifically 
targeting hyperinsulinemia was shown to be highly effect in the prevention of multiple diseases (7). 20 
Multi-omic profiling of blood plasma recently revealed heterogeneity in individual responses to a 
“healthy lifestyle intervention” (62). Combined with our results, these studies provide the rationale for 
a clinical trial to test the insulin response to standardized macronutrients challenges in the general 
population of normoglycemic individuals and those living with type 2 diabetes. 

One of our most surprising findings is that ~8% of donor islets are hyperresponsive to fats. While 25 
fatty acid-stimulated insulin secretion has been debated (4, 15, 63), this controversy may be due to 
insufficient sample sizes in previous studies. Central to this, it is also striking that the greatest number 
of correlations to protein abundance were in response to the fatty acid stimulus. We hypothesize that 
this lipid responsiveness is related to beta cell immaturity, because it is also observed in stem-cell 
derived immature cells. Beta cells are shown to undergo a maturation process postnatally through a 30 
series of events triggered by changes in dietary macronutrient composition as well as a switch from a 
high fat and protein maternal milk diet to a solid diet often containing more carbohydrates than fat and 
protein (53, 64). 

In summary, we present compelling evidence that nutrient-specific insulin secretion is highly 
heterogeneous in the general population. Our multifaceted analysis reveals a subset of the population 35 
whose islets are insulin hyper-responsive to fat (relative to carbohydrate) and have unique islet 
proteomes that convey this hyper-responsiveness. We suggest that this is a characteristic of functionally 
immature islet cells, as evident by prominent insulin secretion in response to fat (but not glucose or 
protein) in human embryonic stem cell-derived islet clusters. In the face of hyperinsulinemia being 
causal to numerous health conditions, our benchmark study lays the groundwork for future clinical 40 
studies aiming to advance the area of personalized therapeutic nutrition.  
 
DATA AND MATERIALS AVAILABILITY: All data are available, both via a purpose-build web 
portal and the appropriate public databases. The raw RNA sequencing data has been deposited in the 
European Genome-phenome Archive (EGA) under study number EGAS00001007241. 45 
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MATERIALS AND METHODS 
Human islet culture 

Islets were isolated from pancreas of cadaveric human donors at the Alberta Diabetes Institute 
IsletCore and used with approval of the Human Research Ethics Board at the University of Alberta 
(Pro00013094; Pro00001754), the University of British Columbia (UBC) Clinical Research Ethics 5 
Board (H13-01865), the University of Oxford’s Oxford Tropical Research Ethics Committee (OxTREC 
Ref.2-15), the Oxfordshire Regional Ethics Committee B (REC reference: 09/H0605/2), or by the 
Stanford Center for Biomedical Ethics (IRB Protocol: 57310). All families of organ donors provided 
written informed consent for use in research. Islet isolation was performed according to the detailed 
methods deposited in the protocols.io repositor (65). Islets were shipped in CMRL media (Thermo 10 
Fisher Scientific) overnight from Edmonton to UBC. Upon arrival, islets were immediately purified by 
handpicking under a stereomicroscope and suspended in RPMI 1640 medium (Thermo Fisher 
Scientific, Cat#, 11879-020) supplemented with 5.5 mmol glucose, 10% fetal bovine serum (FBS), and 
100 units/mL penicillin/streptomycin. Islets were cultured in 10 cm non-adhesive petri dishes (Thermo 
Fisher Scientific, Cat # FB0875713) at a density of 10-16 islets/cm2 (100-160 IEQ/ cm2) for 24-72 15 
hours prior to experiments to allow for recovery from shipment. Total islet culture time (as well as 
additional donor and isolation characteristics) are listed in Table 1. 
 
Deep dynamic phenotyping of human and mouse islets, and stem cell-derived islet-like clusters 
     Our standard approach (66) compared the response to 6 mM or 15 mM glucose stimulation and 20 
direct depolarization with 30 mM KCl. In parallel, we also measured insulin secretion in response to 5 
mM leucine (Sigma, Cat. # L8912, dissolved in 1M HCl, then pH adjusted with 1M NaOH) or a 1:1 
mixture of 0.75 mM oleic acid (Sigma, Cat. # 364525) and 0.75 mM palmitic acid (Sigma, Cat. 
#P5585) at either 3 mM or 6 mM glucose (see figure legends). Fatty acids stock solutions were 
prepared in 50% ethanol at 65°C for 30 minutes, and then added to a solution of fatty acid free bovine 25 
serum albumin (BSA) (Sigma, Cat. # A7030) in a 6:1 molar ratio in a 37 °C water bath for 60 min. 
     We loaded perifusion columns with either 65 human islets, 100 (hESC)-stem cell-derived islet-like 
clusters, or 100 mouse islets and perifused them at 0.4 mL/min with 3 mM glucose Krebs-Ringer 
Modified Buffer (KRB) solution as described previously (66) for 60 minutes to equilibrate the islets to 
the KRB and flow rate, and then with the indicated conditions. First-phase insulin release was defined 30 
as the amount of insulin secreted during the first 15 minutes of 15 mM glucose stimulation, while the 
remaining 25 min of stimulation were defined as second-phase release. Peak insulin secretion was 
defined as single point whereby the amount of insulin released during the first 15 minutes of a solution 
change was the highest. Samples were stored at -20 °C and insulin secretion was quantified using 
human (Millipore Cat. # HI-14K) or rat (Millipore Cat. # RI-13K) insulin radioimmunoassay kits. All 35 
insulin secretion units have been converted to pmol/islet, to allow for direct comparison between 
species.  
 
Mouse islet isolation and culture 
     C57BL/6J mice were purchased from the Jackson Laboratory and housed in the UBC Modified 40 
Barrier Facility (temperature- controlled) using protocols approved by the UBC Animal Care 
Committee and in accordance with international guidelines. The mice were on a 12-hour light/dark 
cycle with chow diet (LabDiet #5053) and drinking water ad libitum. Mouse islets were isolated by 
ductal collagenase (Type XI; Sigma, Cat. # C7657) injection followed by hand-picking. To allow for 
recovery post digestion, islets were cultured overnight in islet culture media (RPMI media with 11.1 45 
mM D-glucose supplemented with 10% vol/vol fetal bovine serum (Thermo Fisher Scientific, Cat. 
#12483020) and 1% vol/vol Penicillin-Streptomycin (Gibco, Cat #15140-148)) at 37°C with 5% CO2. 
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Human embryonic stem cell-derived islet-like cluster culture and differentiation 
     A human embryonic stem cell line, based on the WiCell WA01 line, that contained knock-in add-on 
of EGFP downstream of the insulin coding sequence (50) was differentiated, as previously described, 
through a 6-stage protocol to day 2 (50). After the initial 21 days of differentiation, SC-β cells were 
cultured in CMRL with 5.6 mM glucose (Thermo Fisher Scientific) containing 1% fatty acid-free BSA 5 
(Proliant), 1:100 Glutamax, 1:100 NEAA, 1 mM pyruvate, 10 mM HEPES, 1:100 ITS (Thermo Fisher 
Scientific), 10 μg/ml of heparin sulfate, 1 mM N-acetyl cysteine, 10 μM zinc sulfate, 1.75 μL 2-
mercaptoethanol, 2 μM T3 and 0.155 mM ascorbic acid (Sigma Aldrich) until Day 27. Between Day 
27-50, aggregates were grown in CMRL with 5.6 mM glucose containing 1% fatty acid-free BSA, 
1:100 Glutamax, 1:100 NEAA, 1 mM Pyruvate, 10 mM HEPES, 1:100 ITS, 10 μg/ml heparin sulfate, 1 10 
mM N-acetyl cysteine, 10 μM zinc sulfate, 1.75 μL 2-mercaptoethanol, 10 nM T3, 1:2000 Trace 
elements A (Cellgro), 1:2000 trace elements B (Cellgro), 1:2000 Lipid Concentrate (Thermo Fisher 
Scientific) and 0.5 µM ZM447439 (Selleckchem) (54).  
 
Proteomics                15 
     For each donor approximately 300 hand-picked islets were transferred into a 1.5 ml microcentrifuge 
tube. Culture media was removed, islets were washed twice in 1X PBS (Invitrogen, Cat. #10010049) 
and cell pellets were immediately flash frozen in liquid nitrogen and then stored at -80°C. SDS-based 
chemical lysis was performed on all the flash-frozen pellet samples. Briefly, 60 μl of SDS lysis buffer 
(4 % SDS, 100 mM Tris, pH = 8) was added to each sample. Samples were then vortexed for 1 minute, 20 
boiled at 100°C for 10 minutes, vortexed again for 1 minute and then centrifuged at 4°C at 10,000 
RPM for 10 minutes. The supernatants were collected and tested for protein concentration by BCA 
protein assay (ThermoFisher Scientific, Cat. # PI-23225). Measurements were performed on a Spark 
plate reader (TECAN). All protein samples were stored at -80°C. Next, 20 μg of each lysed sample was 
taken for further processing. Reduction of disulfide bonds was done by incubation with DTT (30 mM) 25 
for 35 min at 37°C, followed by alkylation by CAA (50 mM) for 20 min at 37°C. Samples were loaded 
onto 10% Mini-PROTEAN® TGX™ Precast Protein Gels (BioRad) and run for 30 min at 85V. 
Proteins were visualized by Coomassie blue (stained for 20 min). Lanes were cut out and destained in 
Ambic:EtOH (60:40), dehydrated and digested with Trypsin, first round 0.32ug/lane for 15 hours at 
37°C, second round 0.128ug/lane for 2 hours, at 37°C (0.448ug in total/lane). Digestion was stopped 30 
with 10% FA, and samples were extracted with a series of extraction solutions, twice by 50% ACN, 
50% of 0.1% TFA, and twice by 80% ACN, 20% of 0.1% TFA. Samples were then concentrated via 
vacuum centrifugation. Extracted peptide samples were then cleaned up via STAGE-tip purification, 
briefly: Resolubilized acidified sample was forced through a conditioned and equilibrated column with 
8-12 mm of C18 packing, washed with 1% TFA twice, and eluted into clean plates by buffer containing 35 
40% ACN, 0.1% TFA, then dried down. 

Each sample was reconstituted in 0.5% ACN, 0.1% formic acid for LC-MS/MS analysis of 150 ng 
total on-column injections (with n = 3 technical replicates). The digest was separated using NanoElute 
UHPLC system (Bruker Daltonics) with Aurora Series Gen2 (CSI) analytical column (25 cm x 75 μm 
1.6 μm FSC C18, with Gen2 nanoZero and CSI fitting; Ion Opticks, Parkville, Victoria, Australia) 40 
heated to 50°C and coupled to a Trapped Ion Mobility – Time of Flight mass spectrometer (timsTOF 
Pro; Bruker Daltonics, Germany) operated in Data-Independent Acquisition - Parallel Accumulation-
Serial Fragmentation (DIA-PASEF) mode. A standard 60 min gradient was run from 2% B to 12% B 
over 30 min, then to 33% B from 30 to 60 min, then to 95% B over 0.5 min, and held at 95% B for 7.72 
min. Before each run, the analytical column was conditioned with 4 column volumes of buffer A. 45 
Where buffer A consisted of 0.1% aqueous formic acid and 0.5 % acetonitrile in water, and buffer B 
consisted of 0.1% formic acid in 99.4 % acetonitrile. The NanoElute thermostat temperature was set 
at 7°C. The analysis was performed at 0.3 μL/min flow rate. 
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The TimsTOF Pro was set to Parallel Accumulation-Serial Fragmentation (PASEF) scan mode for 
DIA acquisition scanning 100 – 1700 m/z. The capillary voltage was set to 1800V, drying gas to 
3L/min, and drying temperature to 180°C. The MS1 scan was followed by 17 consecutive PASEF 
ramps containing 22 non-overlapping 35 m/z isolation windows, covering the m/z range 319.5 – 1089.5 
(more information in DIA windows). As for TIMS setting, ion mobility range (1/k0) was set to 0.70 – 5 
1.35 V·s/cm2, 100ms ramp time and accumulation time (100% duty cycle), and ramp rate of 9.42 Hz; 
this resulted in 1.91s of total cycle time. The collision energy was ramped linearly as a function of 
mobility from 27eV at 1/k0 = 0.7 V·s/cm2 to 55eV at 1/k0 = 1.35 V·s/cm2. Mass accuracy: error of 
mass measurement is typically within 3 ppm and is not allowed to exceed 7 ppm. For calibration of ion 
mobility dimension, the ions of Agilent ESI-Low Tuning Mix ions were selected (m/z [Th], 1/k0 [Th]: 10 
622.0290, 0.9915; 922.0098, 1.1986; 1221.9906, 1.3934). TimsTOF Pro was run with timsControl v. 
3.0.0 (Bruker). LC and MS were controlled with HyStar 6.0 (6.0.30.0, Bruker). Acquired diaPASEF 
data were then searched using FragPipe (67) computational platform (v. 17.1) with MSFragger (68, 69) 
(v. 3.4), Philosopher (67) (v. 3.8), EasyPQP (v. 0.1.27) and DIA-NN (v. 1.8) to obtain DIA 
quantification, with use of the spectral library generated from the before mentioned highly fractionated 15 
sample. Quantification mode was set to “Any LC (high precision)”. All other settings were left default. 
 
RNAseq and Nanostring 

Islets for RNA-seq were processed in two centers, initially in Oxford (n=49) with later donors being 
processed at Stanford (n = 47). For those processed in Oxford the methods have been described (70). 20 
Briefly, freshly isolated human islets were collected at the Alberta Diabetes Institute IsletCore 
(www.isletcore.ca) in Edmonton, Canada. Freshly isolated islets were processed for RNA and DNA 
extraction after 1-3 days in culture in CMRL media. RNA was extracted from human islets using Trizol 
(Ambion, UK or Sigma-Aldrich, Canada). To clean remaining media from the islets, samples were 
washed three times with phosphate-buffered saline (Sigma-Aldrich, UK). After the final cleaning step 25 
1�mL Trizol was added to the cells. The cells were lysed by pipetting immediately to ensure rapid 
inhibition of RNase activity and incubated at room temperature for 10�min. Lysates were then 
transferred to clean 1.5�mL RNase-free centrifuge tubes (Applied Biosystems, UK). RNA quality 
(RIN score) was determined using an Agilent 2100 Bioanalyser (Agilent, UK), with a RIN score�>�6 
deemed acceptable for inclusion in the study. Samples were stored at −80�°C prior to sequencing. 30 
PolyA selected libraries were prepared from total RNA at the Oxford Genomics Centre using NEBNext 
ultra directional RNA library prep kit for Illumina with custom 8�bp indexes (71). Libraries were 
multiplexed (three samples per lane), clustered using TruSeq PE Cluster Kit v3, and paired-end 
sequenced (75bp) using Illumina TruSeq v3 chemistry on the Illumina HiSeq2000 platform. For the 
samples processed at Stanford, freshly isolated human islets were collected at the Alberta Diabetes 35 
Institute IsletCore in Edmonton, Canada, the same as the Oxford samples. The islets were picked to 
>95% purity and washed with PBS, then stored in 1 mL of Trizol (Ambion, UK). Islets in trizol were 
stored at -80 C until they were processed for RNA using the phenol-chloroform extraction method. The 
extracted RNA was resuspended in water and then dnased to remove contaminating DNA. RNA quality 
(RIN score) and concentration were determined using an Agilent 2100 Bioanalyzer (Agilent, US), with 40 
a RIN score�>�5 deemed acceptable for inclusion in the study. Samples were stored at −80�°C prior 
to sequencing. PolyA selected cDNA libraries were prepared from total RNA and then sequenced using 
NovaSeq 6000 by Novogene. The raw sequencing data (fastq files) were checked first in regarding of 
the number of reads (>= 20 million per sample and extra sequencing were performed if necessary) and 
then in regarding of quality control, including quality score per base and length distribution using 45 
fastqc (v0.11.9). Reads were aligned to human genome reference (GRCh38) using STAR (v2.7.9a) 
with ENSEMBL gene annotations (v101). Gene expression levels were counted using featureCounts 
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(v2.0.1) on exonic reads only. Differential expression was compared using the Wald test in DESeq2 
(v1.26.0). p values were adjusted using the Benjamini and Hochberg method. 

Fifty islets from each donor batch were used to assess islet quality by profiling expression of 132 
human islet genes as described (72). Gene expression was measured using nCounter prep kits and 
nCounter SPRINT profiler according to manufacturer’s protocol (NanoString, USA). 5 
 
Co-expression analysis  

Analysis was performed with both RNA-seq and proteomics data to assess relationships between 
‘modules’ of omics features and donor metadata, including technical islet isolation parameters, clinical 
metadata, and functional outcomes. There were three main steps: data processing, network construction 10 
and functional characterization, and module-donor metadata correlation analysis. 

Raw protein abundance matrices (134 donors, 8489 proteins; Uniprot IDs) were filtered to remove 
proteins with greater than 50% missing values, reducing the number of proteins to 7919. Next, the 
proteomics data were normalized by sample median, log transformed (base 10), and missing values 
were imputed with the missForest R package (73) using a random forest-based algorithm. The RNA-15 
seq counts matrix (96 donors, 17 673 genes; Entrez IDs) was filtered based on abundance (15% with 
lowest mean counts removed), normalized with the ‘variance stabilizing transformation’ from the 
DeSeq2 R package (74), and then filtered based on variance (15% with lowest variance removed). The 
RNA-seq data was measured in seven batches; batch effects were adjusted for using the ComBat 
method in the sva R package (75). One of the batches (n = 6 samples) had a sequencing depth of about 20 
50% compared to the other samples, resulting in ~5000 genes with zero counts that prevented effective 
batch effect adjustment. These six samples were removed from the dataset. Donor metadata included 
clinical metadata (age, sex, BMI, diabetes diagnosis, HbA1c), technical islet isolation metadata (culture 
time, cold ischemia time, digestion time, purity, and insulin content), and functional outcomes (AUC 
values from perifusion experiments after glucose, leucine, and oleate/palmitate exposures). Continuous 25 
variables with right-skew distributions were log-transformed (base 10). A constant value was added to 
the perifusion outcomes that had negative values to ensure all data were > 0 before log-transformation. 

Two co-expression networks were constructed using the same methods, one for each omics type, 
using the WGCNA R package (76). First, the soft threshold parameter was selected by choosing the 
lowest value at which the R2 value of the scale free topology model fit did not substantially increase 30 
(threshold parameter = 8 and 20 for proteomics and RNA-seq respectively; selected via visual 
examination of an elbow plot). Next, pairwise distances between omics features were calculated by 
computing signed adjacency and topological overlap matrices using the soft threshold parameter and 
the ‘bicor’ correlation function. Finally, modules of co-expressed (or co-abundant) features were 
defined by first hierarchically clustering features based on the distance matrix, and then detecting 35 
modules of densely connected features using the dynamic tree cut algorithm. Modules were annotated 
with KEGG pathways and GO terms (biological process, cellular component, and molecular function) 
by performing overrepresentation analysis with the list of features in each module. 

The pairwise partial correlation between module expression/abundance levels and donor metadata, 
accounting for the technical isolation parameters (purity, culture time, digestion time, and cold 40 
ischemia time), were calculated with the partial Pearson correlation function in the ppcor R package 
(77). Module expression/abundance levels were summarized with WGCNA ‘eigengenes’, which are the 
first principal component scores for each module, re-scaled so that positive and negative scores can be 
interpreted as higher and lower expression/abundance levels respectively. Correlation p-values were 
adjusted using the Benjamini-Hochberg method, with the FDR set to 5%.  45 

 
Multi-omics data analyses 
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     RNAseq data was analyzed by DESeq2 R package (version 1.36.0) (74). Six samples exhibiting 
large batch difference were excluded, leaving a total of 90 individuals (82 ND and 8 T2D) included in 
the analyses. Genes with low counts (<5 raw counts in more than 50% samples) were removed. Raw 
counts of the genes were normalized by variance stabilizing transformation (VST). T2D group was 
contrasted to ND group, and genes with Benjamini-Hochberg adjusted p-values < 0.05 were considered 5 
as differentially expressed. The VST normalized gene counts were correlated with log10-transformed 
islet parameters or log10-transformed protein abundances using Pearson correlation, and the p-values 
are adjusted for multiple testing using Benjamini-Hochberg procedure.  
     For proteomics data analyses, Benjamini-Hochberg adjusted p-values < 0.05 were used to identify 
differentially expressed proteins between the various identified groups. Undetected proteins in more 10 
than 50% samples were removed. Significant differentially abundant proteins were defined with a 
threshold of p-value < 0.05 (adjusted) and were plotted in their corresponding colours as volcano plots 
in RStudio with packages ggplot2, tidyverse, ggrepel, and corrplot. Significance levels on the y-axis 
was calculated by a -log base 10 of the adjusted p-value. Fold change (FC) on the x-axis is calculated 
as a log base 2 of the abundance between corresponding comparisons.  15 
 
General statistical analyses and data visualization  
     Statistical analyses and data presentation for perifusion studies of dynamic insulin secretion were 
carried out using GraphPad Prism 9 (Graphpad Software, San Diego, CA, USA) or R (v 4.1.1). using 
Student’s t-test for parametric data and Mann-Whitney test for non-parametric data, as indicated in the 20 
figure legends. For all statistical analyses, differences were considered significant if the p-value was 
less than 0.05. *: p< 0.05; ** p< 0.01; *** p< 0.001. Data were presented as means ± SEM with 
individual data points from biological replicates (average of two technical replicates).  
 
 25 
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Figure Legends: 10 
 
Fig. 1. Nutrient-stimulated insulin secretion, transcriptomes, and proteomes from metabolically 
healthy and T2D islets. (A) Histogram with trend line of ages for both male (green, solid line) and 
female (yellow, dashed line) donors. Additional details of islet isolation parameters and donor 
characteristics are available from IsletCore.ca, and will be available on www.humanislets.com (B) 15 
Averaged traces of dynamic insulin secretion measurements in response to glucose (15 or 6 mM), 
leucine (5 mM), 1.5 mM oleate and palmitate (1:1 mixture) or 30 mM KCl in islets isolated from non-
diabetic donors (n=123) (left) and donors with type 2 diabetes (n=17) (right) are shown as indicated. 
Basal glucose was 3 mM. (C) Islet samples from the cadaveric donors were collected for RNAseq. 
Enriched mRNAs in islets from ND donors (n= 82) are shown in teal and enriched mRNAs in islets 20 
from donors with type 2 diabetes (n=8) are shown in red. The top 40 most significant differentially 
abundant proteins are highlighted by labelling with gene name. (D) Shows the same as E, except donor 
islets were collected for mass-spec based proteomics (n= 118) in ND, and (n=16) in T2D (E) (top) 
Venn diagrams show the overlap of differentially expressed mRNAs and abundant proteins, and this is 
further depicted in the correlation plot (bottom)  (F) Across-gene correlation between RNAs and 25 
proteins (G) Differentially abundant proteins (with a greater than 0.5 log2 fold change) between the 
non-diabetic and type 2 diabetic donor islets were connected using STRING and depicted in the context 
of beta cell signalling. The color of the ovals represents the fold change (ND/T2D), while the thickness 
of the line around the oval represents the p-value (adjusted).  
 30 
Fig. 2. Clustering heterogenous insulin responses to macronutrients and donor proteomes. (A) 
(left) Individual traces of dynamic insulin secretion stimulated by glucose (15 mM or 6 mm) or KCl (30 
mM). Basal glucose was 3 mM. Average responses from non-diabetic donors are illustrated with solid 
teal line and average responses from donors with type 2 diabetes are in shown in the dashed salmon 
line. Floating dot plot inserts illustrate the heterogeneity in insulin AUC for the corresponding section 35 
of the perifusion curve (salmon dots illustrate the responses from donors with T2D). (middle) illustrates 
the same as (left) expect islets were stimulated with 5 mM leucine alone, or in combination with 6 mM 
glucose as depicted in figure panel. (right) illustrates the same as (left), except islets were stimulated 
with 5 mM leucine alone, or in combination with 6 mM glucose. (B) Illustrates the same as (A) except 
in mouse islets of both sexes (7 males, 9 females, 7-90 weeks of age). Floating box plots illustrate the 40 
variance of AUC responses between the mouse islet (grey) and human islet (brown) responses. (C) Co-
correlation analysis identified 18 distinct modules of proteins whose abundance shows similar patterns. 
Modules are annotated with KEGG pathways and GO terms. The Pearson correlation coefficients 
between the modules and the donor meta data or functional data (x-axis) are shown in each rectangle, 
and the corresponding adjusted p-value is shown in the brackets. Positive correlations are shown in 45 
shades of red and negative in shades of blue. Significant correlations are highlighted with black box. 
(D) Illustrates the main connection in the co-expression network. The WGCNA adjacency matrix was 
filtered to remove: 1) any protein not in a module, 2) protein-protein adjacency distances less than 0.2, 



 

19 
 

and 3) any protein without any connections after filters 1 and 2. The resulting network contained 1600 
protein nodes and 16 209 edges. Note that filtering was performed for practical reasons, as larger 
networks crashed the software and were too busy to visually interpret. Each protein node is colored 
according to its module (same color scheme as C). 
 5 
Fig. 3. Correlation of individual proteins and mRNAs with insulin secretory responses. Volcano 
plots are shown depicting significant positive (red) and negative (blue) correlations of proteins to 
continuous donor characteristics: (A) donor age and (B) HbA1c; or functional parameters in response 
to: (C) 3 mM glucose (D) 15 mM glucose (E) 6 mM glucose (F) 5 mM leucine (G) 1.5 mM 
oleate/palmitate (1:1 molar ratio) (H) 1.5 mM oleate/palmitate + 6 mM glucose and (I) 30 mM KCl.  10 
Relative protein abundances are depicted by size of circle, and the coefficient of variance (log10) is 
depicted by color gradient. (J) Venn diagram showing the overlap of the number of protein abundances 
that positively correlate to the indicated nutrient stimuli. (K) Heat map depicts the top 50 most 
positively correlative proteins to the indicated stimuli. (L-M) Shows the same as (J-K), but for negative 
correlations.  15 
 
Fig. 4. Prototypical proteomes and responses of fat and protein hyper-responders. (A) The 
average insulin secretion response from donors classified as “high lipid responders” is shown in dark 
blue (n=11) and the average insulin secretion response from donors classified as “low lipid responders” 
is shown in the light blue (n=129). (B) Principal component analysis (PCA) plot of protein 20 
abundance in the high (dark blue circles) vs. low (light blue circles) lipid responders. (C) Volcano plot 
showing differential protein abundance between high and low lipid responders. The top 40 most 
significant differentially abundant proteins are highlighted by labelling with gene name. (D) Pathway 
analysis of proteins that are less abundant in fat hyper-responsive donors showing enriched biological 
functions and pathways obtained from multiple databases including (among others), Gene Ontology 25 
(GO), KEGG and Reactome. (E) Shows the same as (D) except for proteins that are more abundant in 
fat hyper-responsive donors. (F) The average insulin secretion response from donors classified as “high 
protein responders” is shown in orange (n=13) and the average insulin secretion response from donors 
classified as “low protein responders” is shown in yellow (n=127). (G) PCA plot of protein 
abundance in the high (orange circles) vs. low (yellow circles) protein responders. (H) Volcano plot 30 
showing differential protein abundance between high and low protein responders.  
 
Fig. 5. Stem cell derived islet-like clusters hyper-respond to fat and can be matured with 
extended culture. (A) Summary of the human embryonic stem cell-derived islet-like clusters 
differentiation protocol. (B) Representative images of unsorted (day 35) Sc-derived islet-like clusters 35 
(left) and sorted (day 35) Sc-derived beta cell-like clusters (right) (C) Averaged traces of dynamic 
insulin secretion measurements in response to glucose (15 or 6 mM), leucine (5 mM), 1.5 mM oleate 
and palmitate (1:1 mixture) or 30 mM KCl in stem cell derived islet-like clusters (average of 8 
younger-immature and 8 older-maturing preparations). Basal glucose was 3 mM. For comparison, the 
average human islet dynamic insulin secretion measurement traces are shown in the dashed lines. (D) 40 
PCA plot of protein abundance in the stem cell-derived islet-like clusters (n=25) (blue circles) 
compared to donors with type 2 diabetes (salmon circles, n=16) and normoglycemic donors (teal 
circles) (n=118). (E) Volcano plot showing differential protein abundance between stem cell derived 
islet like clusters (blue circles, n=25) and donors without diabetes (teal circles, n=118). The top 40 
most significant differentially abundant proteins are highlighted by labelling with gene name. (F) (left) 45 
Compares average dynamic insulin secretion stimulated by glucose (15 mM or 6 mm) or KCl (30 mM) 
between younger-immature (dashed brown lines, n=8) and older-maturing (solid brown lines, n=8) 
clusters. Basal glucose was 3 mM. Floating dot plot inserts illustrate the AUC responses for the 



 

20 
 

corresponding section of the perifusion curve between younger-immature clusters (black circles) and 
older-maturing clusters (open circles). (middle) illustrates the same as (left) expect islet-like clusters 
were stimulated with 5 mM leucine alone, or in combination with 6 mM glucose as depicted in figure 
panel. (right) illustrates the same as (left), except islet-like were stimulated with 1.5 mM 
oleate/palmitate, or in combination with 6 mM glucose. (G) PCA plot and (H) volcano plot of protein 5 
abundance comparing the younger-immature clusters (light green, n=14) and older-maturing clusters 
(dark green, n=10).  
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