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Abstract
In this study, we developed a deep neural network (DNN) model with

weight correlation descent (WCD) regularization to improve polygenic risk
score predictions for complex diseases, specifically gender-specific cancers,
using the UK Biobank dataset. Our DNN model with WCD outperformed
both conventional PRS models and DNN models without WCD, demon-
strating the importance of regularization techniques in enhancing model
performance and capturing non-linear effects and interactions in genomic
data. These findings contribute to a better understanding of genetic archi-
tecture, facilitating personalized interventions based on individual genetic
profiles and ultimately benefiting patient care and health outcomes.
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Introduction
Genome-wide association studies (GWAS) have led to numerous scientific and
biological discoveries by identifying a wide range of associations between common
genetic variants and complex traits in populations1. Recent GWAS studies
with increasingly larger sample sizes have uncovered more accurate and novel
significant associations between various diseases or traits1. The probabilistic
susceptibility of an individual to a disease, referred to as the polygenic risk
score (PRS), can be estimated through GWAS results. PRS also allows us to
understand genetic architecture and support clinical decisions, particularly in
risk stratification, early disease detection, and prevention of common adult-onset
conditions2–5.

In the early PRS development phase, unadjusted PRS were calculated using
statistically significant variants from GWAS6. However, overfitting can still
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occur with small sample sizes or high number of variants7–9. Alternative ap-
proaches employ regularization models like BLUP10 and gBLUP11, but these
can overestimate the effect size of correlated variants.

To address overestimation, linkage disequilibrium (LD) was applied. One method
selects representative SNPs in LD blocks (P+T), while another uses LD panels,
forming the basis of LDpred12, Lassosum13, and PRS-CS14. However, these
methods require costly LD reference panels and may not accurately reflect
real-world scenarios with non-linear effects and interactions.

Predicting polygenic risk using machine learning models can capture variant
interactions and non-linear effects with fewer genetic architecture assumptions15.
A breast cancer PRS model, which applied deep neural network (DNN)15,
outperformed various machine learning models and conventional PRS models.
Additionally, a study on Alzheimer’s disease PRS prediction employed DNN
models16, which surpassed traditional PRS models and graph neural network
(GNN) models. Despite DNN’s superior performance, overfitting can still occur,
necessitating additional regularization in machine learning methods, including
deep learning.

Regularization techniques are essential in deep learning to prevent overfitting
and improve model generalization on unseen data. Common approaches include
L1 and L2 regularization, dropout17, early stopping, weight decay, and batch
normalization18. In addition, weight correlation descent (WCD)19 has been
introduced as a regularization method for deep learning models. WCD further
improves the model’s performance by preventing overfitting and guiding the
model’s nodes to learn unique information from the input data. These methods,
including WCD, help manage high-dimensional data and contribute to more
accurate and generalizable models.

In this study, we exploited WCD to as a regularization method to a DNN model,
testing it on real data from the UK Biobank20,21 to predict the genetic risk of
gender-specific cancers, including breast cancer and prostate cancer. The DNN
model outperformed conventional models, including P+T, PRSice, and PRS-CS
in Nagelkerke R-square and the area under the receiver operating characteristic
curve(ROC AUC). Importantly, the DNN model with WCD achieved significantly
better performance than the plain DNN model.

The results demonstrate that the DNN model with WCD improves genetic risk
predictions for complex diseases by accounting for non-linear effects, interactions,
and preventing overfitting. The enhanced understanding of genetic architecture,
facilitated by WCD, can inform personalized interventions based on individual
genetic profiles.
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Results
Overview of methods
We acknowledged that overfitting posed a significant challenge due to the presence
of highly correlated genetic features within DNN models. To address this issue,
we employed WCD as an appropriate regularization technique. WCD is designed
to reduce the interdependence among nodes in a DNN model by guiding each
node to train in a unique direction. This diversification of training directions
allows the model to better capture the underlying patterns within the genetic
data, ultimately enhancing its predictive capabilities.

J̃(θ;X, y) = J(θ;X, y) + αg(w) (1)

WCD accomplishes its objective by incorporating the cost of weight correla-
tion into the model’s loss function, as illustrated in Equation eq. 1. In this
equation, J(θ;X, y) represents the original loss function, while g(w) denotes
the cost function associated with weight correlation. Furthermore, α serves as
the coefficient determining the contribution of weight correlation during the
training process. By integrating these components, WCD effectively reduces
interdependence among nodes, enhancing the model’s stability and performance.

By doing so, we ensure that the weights of nodes in the l-th layer develop inde-
pendently from each other, preventing any unnecessary influence among nodes.
This approach not only mitigates the risk of overfitting but also contributes to
improved stability and generalization in our DNN model.

GWAS

Table 1: GWAS Information

Trait Cases Controls
Imputed
SNPs

Imputed ∩ 1KG
SNPs

Array
SNPs

Breast
Cancer

9,285 95,140 6,575,143 749,769 477,359

Prostate
Cancer

7,727 87,014 6,575,143 749,769 477,359

In our study, we conducted a Genome-wide Association Study (GWAS) using the
UK Biobank (UKBB) dataset to identify genetic associations with various traits.
Two types of datasets were analyzed: the UKBB array data and an imputed
UKBB dataset. Imputed datasets are generated by estimating genotypes at
untyped loci based on known linkage disequilibrium (LD) information, which
increases the resolution of the dataset. The number of samples used in GWAS
and the number of SNPs are summarized in tbl. 1.
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To assess the quality and effectiveness of the GWAS, we relied on Manhattan
plots and Q-Q plots. Manhattan plots are graphical representations of the
statistical significance of genetic variants across the genome. These plots in fig. 1
revealed the presence of several significant genetic variants associated with the
traits under investigation, confirming that the GWAS had successfully identified
meaningful associations.

The imputed dataset, which incorporates LD information, demonstrated more
significant variants in the same LD block. These additional variants were highly
correlated with the significant variants found in the original array genotype data,
suggesting that they are potentially capturing similar genetic effects.

Q-Q plots were used to compare the distribution of p-values obtained from the
GWAS to the expected statistical distribution under the null hypothesis. The
plots in fig. 2 showed a significant deviation of the observed p-values from the
expected distribution, indicating that the GWAS had effectively identified true
genetic associations with the traits.

It is worth noting that the figures for the imputed and array datasets were
different. The imputed dataset’s Q-Q plot exhibited denser points, which can be
attributed to the inclusion of additional genetic variants based on LD information.
Overall, the results of our GWAS analysis using both the UKBB array data
and imputed UKBB dataset demonstrate the successful identification of genetic
associations with the traits of interest.

Polygenic Risk Score
In this study, we aimed to explore the potential of penalised DNN models in
predicting gender-specific cancers, including breast cancer and prostate cancer,
by comparing their performance with conventional models. Our analysis included
the baseline models P+T, PRSice, and PRS-CS, which used two LD panels
(1KG and UKBB), as well as a DNN model and a DNN model with WCD as
a regularization method. To evaluate the performance of these PRS models,
we employed two widely accepted metrics: Nagelkerke R-square, ROC AUC
and age-case incidence plots, which compare the top 5% of participants with
the highest polygenic risk to the bottom 5% of the sample, yielded comparable
results in terms of case incidence with respect to age. These findings are detailed
in Supplementary Data 1.

For conventional models, we relied on imputed UKBB genotype data, as these
models typically use summary statistics derived from imputed genotype data to
build their predictive models. In contrast, for DNN models, we employed UKBB
array genotype data during GWAS to reduce feature dimensionality and prevent
the inclusion of features containing highly correlated variants with statistically
significant associations to the trait of interest. We used GWAS results to select
significant variants with a range of p-value thresholds for the DNN model.

Our results in fig. 3 demonstrated that the PRSice model had the lowest per-
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Figure 1: Manhattan Plot for the conduected GWAS
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Figure 2: Q-Q plots for the conducted GWAS
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formance in both metrics for both breast and prostate cancer, with Nagelkerke
R-square scores of 0.0079 and 0.01, respectively. The P+T model achieved
slightly better Nagelkerke R-square and AUC scores than the PRSice model,
with a 16% higher Nagelkerke R-square score for prostate cancer. The PRS-CS
model outperformed both in terms of Nagelkerke R-square. Notably, PRS-CS
with the 1KG LD panel had the highest score among the conventional models
for breast cancer, with a 14% higher Nagelkerke R-square score compared to the
P+T model. In contrast, PRS-CS with the UKBB panel achieved the highest
Nagelkerke R-square score among linear models for prostate cancer, with a 40%
higher score compared to the P+T model. The DNN models exhibited superior
performance in predicting both breast and prostate cancer compared to all
conventional models. The DNN model with WCD regularization achieved the
highest scores among all models, including the plain DNN model, for both cancer
types. Specifically, the DNN model with WCD achieved a 5.4% higher Nagelkerke
R-square score for breast cancer and a 2.2% higher Nagelkerke R-square score for
prostate cancer than the plain DNN model. In terms of AUC, the DNN model
with WCD achieved slightly better performance than the plain DNN model for
both cancer types.

In terms of AUC, a similar trend was observed for the AUC metric in fig. 4 as
with Nagelkerke R-square, although the differences between the models were
relatively smaller due to the different scales of scores. The PRSice model achieved
the lowest AUC scores for both breast and prostate cancer. The P+T model
followed the PRSice model with slightly higher AUC scores for both cancer
types.For breast cancer, the PRS-CS model with the UKBB LD panel had the
lowest AUC score, while the PRS-CS model with the 1KG LD panel achieved
the highest AUC score among the conventional models. In the case of prostate
cancer, the PRS-CS model with the UKBB LD panel achieved the highest AUC
score, similar to the trend observed with Nagelkerke R-square. The PRS-CS
model with the 1KG LD panel also performed well, but with a slightly lower
AUC score. In predicting genetic risk for both breast and prostate cancer, the
DNN model outperformed conventional models, including the PRS-CS model.
Furthermore, the DNN model with WCD regularization demonstrated slightly
better performance than the plain DNN model.

Discussion
Polygenic prediction is a promising approach in clinical translation in genetics,
as it uses genome-wide genetic markers to estimate an individual’s predisposition
to complex human diseases or traits. This technique has the potential to improve
clinical care by enabling targeted interventions based on a person’s genetic profile.
The inherent complexity of genotype data, with its massive dimensions, poses a
significant challenge when developing PRS models.

The aim of this study was to improve polygenic risk score predictions for complex
diseases using a deep neural network (DNN) model with an appropriate regular-
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Figure 3: Nagelkerke R-Square Plot

Figure 4: ROC AUC Plot
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ization method, specifically weight correlation descent (WCD). We addressed
the limitations of existing DNN models by constructing a DNN model capable
of capturing non-linear effects and interactions in genomic data while avoiding
distraction from noisy signals. Our key findings revealed that the DNN model
with WCD outperformed existing PRS models in terms of Nagelkerke R-square
and ROC AUC metrics, suggesting the presence of non-linear genetic architecture
that cannot be well explained by linear models alone.

When comparing our results with previous studies15,16 that applied deep learning
models to predict PRS, we found that while they focused on selecting significant
SNPs using traditional methods, our research emphasized constructing DNN
models with both explicit and implicit regularization techniques to enhance
their performance. Our study highlighted the importance of regularization in
PRS models and demonstrated the potential of DNN models with WCD for
constructing PRS models using biobank-level databases, even when dealing with
a relatively small number of cases.

Our study encountered several limitations that could impact the interpretation of
the results. One such limitation was the reliance on GWAS-selected SNPs as input
for the DNN model, which filters out SNPs lacking linear correlation to traits but
may still have an effect. This constraint means our approach is unable to identify
novel variants. Furthermore, GWAS might filter out certain combinations of SNPs
that have a collective effect while not being significant individually. Selecting such
combinations is computationally expensive, necessitating alternative solutions like
machine learning or deep learning approaches. Additionally, the interpretation
of DNN models is challenging, as popular XAI models like LIME22 and Grad-
CAM23 only provide information about individual feature contributions, not the
combination of features.

Another limitation is that DNN models require a large number of samples,
making them unsuitable for diseases or traits with low prevalence or insufficient
case samples. The high-dimensionality of genomic data and complex LD patterns
hinder the model’s training, and learning LD information from samples for DNN
models requires a relatively large number of samples. The dimensionality issue
also leads to overfitting in PRS models using raw genotype data.

Future research should focus on improving the model’s ability to predict pheno-
typic probabilities with fewer samples through dimension reduction techniques
or pre-training. For instance, if a pre-trained extractor can condense the input,
predicting polygenic risk scores might require fewer samples compared to plain
DNN models. As genetic variants have unique characteristics like smaller vo-
cabularies, it is challenging to use pre-trained models from language or vision
domains without modifications to address genetics problems. Developing model
architectures and genome-specific training methods capable of understanding
and learning the particular features of genomics data is essential to overcome
these limitations and advance the field.

In conclusion, this study demonstrates the potential of a DNN model with
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WCD for improving polygenic risk score predictions for complex diseases by
capturing non-linear effects and interactions in genomic data. By overcoming
the limitations of existing approaches and focusing on regularization methods,
this research contributes to the advancement of polygenic prediction and its
clinical translation, ultimately benefiting patient care and health outcomes.

Methods
Participants
UK Biobank Axiom Array genotyped data20 was used to build PRS models for
two cancers with high prevalence and heritability: breast cancer and prostate
cancer. The UK Biobank gathered around 500,000 participants aged 37-73
years during recruitment from 2006 to 2010, conducting a genotyping and a
surveying about baseline characteristics and so on. The participants were limited
to white British individuals validated based on self-report and genetic data. The
participants related with neither first-degree, second-degree, nor third-degree
relatives were also restricted as well as whose genetic information was not
available or with presence of aneuploidy.

UK Biobank was given written informed consent by all participants to access
their data and samples for research purposes. Ethical approval to collect and
use participants’ data of UK Biobank has been acquired by the North West
Multicentre Research Ethics Committee, the National Information Governance
Board for Health & Social Care, and the Community Health Index Advisory
Group. All relevant guidelines and regulation were followed while conducting
this study.

Ascertainment of Cancer Incidence
Disease outcomes were identified using hospital episode statistics. To classify
cases and controls of cancers, we extracted International Classification of Diseases
(ICD) codes from hospital admissions (versions ninth and tenth) and self-report
disease data, following guidance from previous literature21. Cases and controls for
diseases were identified according to criteria referenced from existing studies24,25.

Breast cancer cases were defined as women with a malignant neoplasm of the
breast identified by ICD9, ICD10, or self-report data. Similarly, men with a
malignant neoplasm of the prostate, as determined by either ICD9, ICD10, or
self-report data, were classified as prostate cancer cases. Controls were defined
as individuals without any cancer-related signals, with females considered as
controls for breast cancer and males for prostate cancer, respectively. In this
study, the total number of breast cancer incidences used was 104,425, consisting
of 9,286 cases and 95,139 controls. Additionally, the prostate cancer dataset
comprised 7,487 cases and 87,254 controls, totaling 94,741 individuals.
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Quality Control
Before calculating the PRS, genotyped data must undergo quality control to
reduce genotyping and imputation errors. The quality control procedure for both
genotyped and imputed genotype data includes the following steps: removal
of genetic variants (1) with missing call rates exceeding 0.05, (2) with allele
frequency below 0.01, or (3) with Hardy-Weinberg equilibrium exact test p-values
below 1e-10. We also removed ambiguous SNPs and deduplicated variants based
on their position, retaining only SNPs present in the genotype data of the UK
Biobank and used summary statistics. Additionally, for imputed genotype data,
variants with INFO scores below 0.7 were excluded.

GWAS
To select statistically significant SNPs from a genome-wide range of variants and
estimate their effect sizes, we used summary statistics of GWAS obtained from
partial samples of the UK Biobank. These GWAS and the number of SNPs are
summarized in tbl. 1. To validate and test the PRS models, the dataset was split
into three subsets: train, validation, and test. First, we stratified the dataset
based on case-control information. Second, we divided it into a training set and
a test set in a 9:1 ratio. Lastly, the divided training set was further split in an
8:2 ratio and used as a training set and a validation set. The training set was
used to conduct GWAS, preventing data leakage.

Baseline Models
We considered three of the most popular PRS approaches: P+T, PRSice26, and
PRS-CS14 as baseline models. These conventional PRS models were constructed
using imputed genotype data from the UK Biobank Axiom Array. PRS was
calculated as a linear combination of each variant’s beta coefficient (effect size)
and the number of alleles present at that position under an additive genetic
architecture model. Specifically, PRS for the i-th individual is calculated as eq. 2,
where M is the number of genetic markers used for PRS, Xij is the number of
alleles for the j-th SNP of the i-th individual, and b̂j is the projected effect size
of the j-th SNP.

PRSi =
M∑

j=1
Xij b̂j (2)

The P+T method aims to find valid causal variants associated with traits or
diseases by pruning SNPs correlated with LD and applying a p-value cutoff
to remove variants without sufficient statistical significance. In this study, the
P+T model was implemented with PLINK27, pruning with r2 ≥ 0.1, which is
the correlation between SNPs having a physical distance (called window size)
smaller than 250 kb, and then thresholding with the p-value of 5e-8, according
to the standard28. The PRS of the P+T model was calculated as eq. 2, using the
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selected SNP set and the beta coefficient of GWAS summary statistics without
any modification.

As mentioned above, since static p-value and pruning parameters might not
be optimal, the PRSice model attempts to find optimal parameters used in
the P+T procedure by validating them with metrics in an iterative way. We
reproduced the PRSice model using a software package published on GitHub
by Choi, S.W. & O’Reilly, P.F26, with default parameter settings. Specifically,
during the pruning step, we fixed the window size at 250 kb and R2 criteria at
0.1. In the thresholding stage, less significant SNPs were removed using p-values
as listed below. We considered threshold PT values from 5e-8 (the standard)
to 1 (which uses all SNPs, called the full model) with an interval of 5e-5 in
this paper. The polygenic score is then calculated as the sum of the remaining,
largely independent SNPs with GWAS association p-values below a threshold
PT , weighted by their marginal effect size estimates. Ultimately, the PT value
with the highest prediction accuracy in a validation dataset is applied, and the
model’s performance is evaluated using an independent testing set.

The PRS-CS model estimates PRS by not only using the beta coefficients
of GWAS but also modifying the beta coefficients through a method called
continuous shrinkage. This method transforms the distribution of the beta
coefficients using a predefined prior distribution and the LD reference. The
PRS-CS model considers the following phenotype model:

y = Zβ + ϵ, ϵ ∼ N(0, σ2I), p(σ2) ∝ σ−2, (3)

The prior distribution is based on global-local scale mixtures of normals as shown
in eq. 4, where σ2 is the variance of βj , N is the number of samples, ϕ is a global
scaling parameter that affects the effect size of all variants, ψj is a local and
marker-specific parameter, and g is an absolutely continuous mixing density
function.

βj ∼ N(0, σ
2

N
ϕψj), ψj ∼ g, (4)

The posterior mean of β is

E
[
β

∣∣∣β̂]
=

(
D + T−1)−1

β̂, (5)

where T = diag{ϕψ1, ϕψ2, . . . , ϕψM } is a diagonal matrix and D = ZTZ/N is
the LD matrix, with Z being an N ×M standardized genotypes matrix. The
local shrinkage parameter ψj was assigned an independent gamma-gamma prior
as

ψj ∼ G(a, δj), δj ∼ G(b, 1), (6)

The PRS-CS was implemented using the software package published on GitHub
by Ge, T. et al.14.
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Deep Neural Network
In this study, we propose a deep neural network (DNN) model to predict genetic
risk using summary statistics for selecting a significant SNP set. A variety of
DNN architectures were trained and validated using grid search, which identifies
optimal hyperparameters and an architecture for the DNN model with the
highest validation score. The Leaky Rectified Linear Unit activation function29

(Leaky ReLU) was used for every hidden layer neuron as follows:

LeakyReLU(x) =
{
x if x ≥ 0
αx otherwise.

(7)

On the output layer, the logistic function was applied as:

Logistic(x) = 1
1 + e−x

(8)

The loss function was computed using the binary cross-entropy function as:

BCE = − 1
N

N∑
i=1

yi log(h(xi; θ)) + (1 − yi) log(1 − h(xi; θ)) (9)

Here, y ∈ {0, 1} is the prediction target, with 1 for cases and 0 for controls.
h(xi; θ) ∈ [0, 1] is the predictive probability from the model for the target, given
the input xi and its parameters θ. The estimated probability is considered as the
PRS projected by the DNN. The adaptive learning rate optimization algorithm,
Adam optimizer30, was employed as the DNN model optimizer. The initial
learning rate was set to 1e-3. Dropout17 was applied to reduce the probability
of overfitting with a rate of 0.5. Additionally, Batch Normalization (BN)18

was used to enhance the training process of DNN models by reducing internal
covariate shift. When used, Dropout and BN were applied to all hidden layers
of the DNN models.

The grid search algorithm experimented with a list of DNN models with varying
depth and width of hidden layers. The depth ranged from 1 to 4, and the width
was determined by dividing the number of outputs from the previous layer by
an integer from 1 to 4, which may differ from the number of selected SNPs
for input. The hyperparameter combinations tested in grid search experiments
also included models with and without regularization: BN and Dropout. Early
stopping is employed to expedite the grid search process by halting training
when performance improvement plateaus, thus preventing excessive computation
time.

The SNP set, which served as the input for the DNN model, was selected
based on p-values within a specific range. Since the scale of the p-value for
summary statistics depends on the dataset used in GWAS, a list of p-values was
handcrafted and chosen for each study and disease.
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The DNN models were trained and validated similarly to conventional models.
The performance of the DNN models was validated using the average ROC AUC
of test sets. The best model for each p-value threshold was used as the base
model for the stacking method, which will be discussed in the following section.
Unlike the PRSice model, the DNN model does not use its beta coefficient, so
internal GWAS summary statistics can be used to select the SNP set without
the risk of overfitting. The grid search and DNN models were implemented using
Python3 and PyTorch.

Weight Correlation Descent (WCD)
The correlation between features can likely cause overfitting, especially in non-
linear models such as DNNs. To reduce the risk of overfitting caused by linkage
disequilibrium (LD), weight correlation descent (WCD)19 can be helpful. WCD
is a method to regularize the learning process by adding an additional term to
the loss function for the model, as shown in eq. 10. Here, J̃(θ,X, y) represents
the regularized loss function, J(θ;X, y) is the loss function before applying WCD.
The term g(w) represents the measure of correlation between the weights of each
node in the DNN. α is the coefficient to adjust the effect size of WCD.

J̃(θ;X, y) = J(θ;X, y) + αg(w) (10)

ρ(wl) = 1
Nl(Nl − 1)

Nl∑
i,j=1∀i ̸=j

|wT
liwlj |

∥wli∥2∥wlj∥2
(11)

The weight correlation for each layer of the DNN is calculated using eq. 11, and
ρ(wl) is used to obtain g(wl), which is the weight correlation loss for each layer,
as shown in eq. 12. Then, g(w) can be achieved by simply summing the weight
correlation loss for each layer: g(w) =

∑
l g(wl).

g(wl) = −(Nl − 1)Nl−1 ln(1 − ρ(wl)) −Nl−1 ln(1 + (Nl − 1)ρ(wl)) (12)
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