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Abstract: Endometrial cancer (EC) has four molecular subtypes with strong prognostic value and 

therapeutic implications. The most common subtype (NSMP; No Specific Molecular Profile) is assigned 

after exclusion of the defining features of the other three molecular subtypes and includes patients with 

heterogeneous clinical outcomes. In this study, we employed artificial intelligence (AI)-powered 

histopathology image analysis to differentiate between p53abn and NSMP EC subtypes and consequently 

identified a novel sub-group of NSMP EC patients that had markedly inferior progression-free and disease-

specific survival (termed ‘p53abn-like NSMP’), in a discovery cohort of 368 patients and an independent 

validation cohort of 290 patients from another center. Shallow whole genome sequencing revealed a 

higher burden of copy number abnormalities in the ‘p53abn-like NSMP’ group compared to NSMP, 

suggesting that this new group is biologically distinct compared to other NSMP ECs. Our work 

demonstrates the power of AI to detect prognostically different and otherwise unrecognizable subsets of 

EC where conventional and standard molecular or pathologic criteria fall short, refining image-based 

tumor classification. 

Keywords: endometrial cancer, computational pathology, digital pathology, molecular classification, 

Artificial intelligence  
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Introduction 

The clinicopathological parameters used for decades to classify endometrial cancers (EC) and guide 

management have been sub-optimally reproducible, particularly in high-grade tumors1,2. Specifically, 

inconsistency in grade and histotype assignment has yielded inaccurate assessment of the risk of disease 

recurrence and death. As a result, many women affected by EC may be over-treated or are not directed 

to treatment that might have reduced their risk of recurrence. In 2013, the Cancer Genome Atlas (TCGA) 

project demonstrated that endometrial cancers could be stratified into four distinct prognostic groups 

using a combination of whole genome and exome sequencing, microsatellite instability (MSI) assays, and 

copy number analysis3. These subtypes were labelled according to dominant genomic abnormalities and 

included ‘ultra-mutated’ ECs harboring POLE mutations, ‘hypermutated’ identified to have microsatellite 

instability, copy-number low, and copy-number high endometrial cancers. 

Inspired by this initial discovery, our team and a group from the Netherlands independently and 

concurrently developed a pragmatic, clinically applicable molecular classification system that classifies ECs 

into : (i) POLE mutant (POLEmut) with pathogenic mutations in the exonuclease domain of POLE (DNA 

polymerase epsilon, involved in DNA proofreading repair), (ii) mismatch repair deficient (MMRd) 

diagnosed based on the absence of key mismatch repair proteins on immunohistochemistry (IHC), (iii) p53 

abnormal (p53abn) as assessed by IHC, and (iv) NSMP (No Specific Molecular Profile), lacking any of the 

defining features of the other three subtypes4,5. Categorization of ECs into these subtypes recapitulates 

the survival curves/prognostic value of the four TCGA molecular subgroups and enhances 

histopathological evaluation, offering an objective and reproducible classification system with strong 

prognostic value and therapeutic implications. In 2020, the World Health Organization (WHO) 

recommended integrating these key molecular features into standard pathological reporting of ECs when 

available6.   

POLEmut endometrial cancers have highly favorable outcomes with almost no deaths due to disease. 

While the three other molecular subtypes are associated with more variable outcomes (MMRd and NSMP 

are considered ‘intermediate risk’ and p53abn ECs have the worst prognosis), within each subtype there 

are clinical and prognostic outliers7–10. This is particularly true within the largest subtype, NSMP 

(representing ~50% of ECs).  The majority of NSMP tumors are early stage, low grade, estrogen driven 

tumors likely cured by surgery alone.  However, a subset of patients with NSMP EC experience a very 

aggressive disease course, comparable to what is observed in patients with p53abn ECs. At present, 

limited tools exist to identify these aggressive outliers and current clinical guidelines do not stratify or 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2023. ; https://doi.org/10.1101/2023.05.23.23290415doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.23.23290415
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

direct treatment within NSMP EC beyond using pathologic features11,12. Thus, for half of diagnosed 

endometrial cancers, i.e., NSMP EC, assumption of indolence is inappropriate and clinicians need tools for 

accurate risk stratification of individual patients when making treatment decisions.  

With the rise of artificial intelligence (AI) in the past decade, deep learning methods (e.g., deep 

convolutional neural networks and their extensions) have shown impressive results in processing text and 

image data13. The paradigm shifting ability of these models to learn predictive features from raw data 

presents exciting opportunities with medical images, including digitized histopathology slides14–17. In 

recent years, these models have been deployed to reproduce or improve pathology diagnosis in various 

disease conditions (e.g.,18–20), explore the potential link between histopathologic features and molecular 

markers in different cancers including EC17,21–24 , and directly link histopathology to clinical outcomes25–28. 

More specifically, two recent studies have reported promising results in the application of deep learning-

based models to identify the four molecular subtypes of EC from histopathology images.  

Building on a recent study reporting morphological heterogeneity in NSMP ECs and nuclear features 

typical of p53abn ECs in this subtype29, we built a deep learning-based image classifier to differentiate 

between the NSMP and p53abn ECs. We then hypothesized that within the NSMP molecular subtype of 

endometrial cancer, there is a subset of patients with aggressive disease whose tumors have histological 

features similar to p53abn EC and that these tumors can be identified by deep learning models applied to 

hematoxylin & eosin (H&E)-stained slides. Our results show that these cases (referred to as p53abn-like 

NSMP) have inferior outcomes compared to the other NSMP ECs, similar to that of p53abn EC, in two 

independent cohorts. Furthermore, shallow whole genome sequencing studies suggested that the 

genomic architecture of the p53abn-like NSMP differs from other NSMP ECs, showing increased copy 

number abnormalities, a characteristic of p53abn EC. 

Results 

Patient cohort selection and description. 1,678 H&E-stained hysterectomy tissue sections from 658 

patients with histologically confirmed endometrial carcinoma of NSMP or p53abn subtypes were included 

in this study3–5. Our discovery cohort included 155 whole section slides (WSI) from 146 patients from 

TCGA3 and 431 WSIs (222 patients) from another center5. Our validation set included tissue microarray 

(TMA) data corresponding to 290 patients from our own center4. Tables 1 and 2 show the 

clinicopathological features of the discovery and validation cohorts.  
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Histopathology-based machine learning classifier to differentiate NSMP and p53abn ECs. Fig. 1 depicts 

our AI-based histopathology image analysis pipeline. A subset of 27 whole section H&E slides from the 

TCGA cohort were annotated by a board-certified pathologist (DF) using a custom in-house histopathology 

slide viewer (cPathPortal) to identify areas containing tumor and stromal cells. A deep convolutional 

neural network (CNN)-based classifier was then trained to acquire pseudo-tumor and benign annotations 

for the remaining slides in the discovery cohort. The identified tumor regions were then divided into 

512x512 pixel patches at 20x objective magnification. The number of extracted patches from each subtype 

and performance measure for the tumor stroma classifier can be found in Supplementary Tables 1 and 2. 

To address variability in slide staining due to differences in staining protocols across different centres, and 

inter-patient variability, we utilized the Vahadane color normalization technique30. We then trained a 

VarMIL model31 based on multiple instance learning (MIL) to differentiate H&E image patches associated 

with p53abn and NSMP ECs. 

In a “group 10-fold” cross-validation strategy, the patients in our discovery cohort were divided into 10 

groups and in various combinations, 60% were used for training, 20% for validation, and 20% for testing; 

resulting in 10 different binary p53abn vs. NSMP classifiers. These 10 classifiers were then used to label 

the cases as p53abn or NSMP and their consensus was used to come up with a label for a given case. For 

patients with multiple slides, to prevent data leakage between training, validation, and test sets, we 

assigned slides from each patient to only one of these sets. 

Fig. 2A and Supplementary Table 3 show the receiver operating characteristics (ROC) and precision/recall 

curves as well as performance metrics of the resulting classifiers for the discovery and validation sets, 

respectively. These results suggest that our p53abn vs. NSMP classifier achieves 89·4% and 79·8% mean 

balanced accuracy (across the 10 classifiers) and area under the curve (AUC) of 0.95 and 0.88 in both the 

discovery and validation sets, respectively (for details see Supplementary Tables 3 & 4 and Supplementary 

Fig. 1).  

Identification of a subset of NSMP ECs with inferior survival. Our proposed ML-based models classified 

17·65% and 20% of NSMPs as p53abn for the discovery and validation cohorts, respectively 

(Supplementary Table 5). These cases (referred to as p53abn-like NSMP group) presumably show p53abn 

histological features in the assessment of H&E images even though immunohistochemistry did not show 

mutant-pattern p53 expression and these were therefore classified as NSMP by the molecular classifier. 

We hypothesized that such cases may in fact exhibit similar clinical behavior as p53abn ECs. 
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Fig. 2B,C show the progression free survival (PFS) and disease specific survival (DSS) of the discovery and 

validation sets. Compared to the rest of the NSMP cases, p53abn-like NSMPs had markedly inferior PFS 

(10-year PFS 55·7% vs. 89·6% (p < 2.7e-7)) and DSS (10-year DSS 62·6% vs. 93·7% (p < 1·8e-7)) in our 

discovery cohort. These findings were confirmed in the validation cohort, with 20% of the 195 patients 

categorized as p53abn-like tumors, showing 10-year PFS of 65·4% vs. 91·2% (p < 1·1e-4) and DSS of 58·3% 

vs. 84·3% (p < 5·3e-5). Additionally, comparison of the PFS and DSS between p53abn-like NSMP and 

p53abn ECs revealed a trend, though not statistically significant, in which p53abn-like NSMPs had better 

outcome compared to p53abn ECs in both the discovery and validation cohorts (Supplementary Fig. 2A,B).  

Of note, our model also identified a subset of p53abn ECs (representing 20%; referred to as NSMP-like 

p53abn) with resemblance to NSMP as assessed by H&E staining. While we observed marginally superior 

disease-specific survival in the identified cases compared to the rest of the p53abn group both in the 

discovery and validation cohorts, progression free survival was not significantly different between the 

groups (Supplementary Fig. 3A,B).  

Robustness of p53abn-like NSMP subtype. Our proposed deep learning-based model was built to 

differentiate between NSMP and p53abn EC subtypes. Given that these subtypes are determined based 

on molecular assays, their accurate identification from routine H&E-stained slides would have removed 

the need to perform molecular testing that might only be available in specialized centers. However, our 

observation of imperfect results and characterization of discordant cases as p53abn-like NSMP required 

further investigation to rule out the possibility of a more superior deep learning model that could result 

in a better performance in differentiating p53abn and NSPMP molecular subtypes. Therefore, we 

implemented five other deep learning-based image analysis strategies to test the stability of the identified 

classes (see Methods section for further details). Our results showed that these models also achieve 

balanced accuracies ranging from 83.5-88.6% and 77.3-80.2% and AUCs ranging from 0.88-0.95 and 0.8-

0.88 in both the discovery and validation sets, respectively (Supplementary Fig. 4 and Supplementary 

Tables 6-7). Furthermore, Kaplan-Meier survival analysis of the so-called p53abn-like NSMP group 

identified by these models also corroborated with our initial findings in which this new subgroup had 

statistically significant inferior survival compared to the rest of the patients (Supplementary Fig. 5). These 

results suggest that the choice of the algorithm did not substantially affect the findings and outcome of 

our study. To further investigate the robustness of our results, we utilized an unsupervised approach in 

which we extracted histopathological features from the slides in our validation cohort utilizing KimiaNet32 

feature representation. Our results suggested that p53abn-like NSMP and the rest of the NSMP cases 
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constitute two separate clusters with no overlap (Figure 3A) suggesting that our findings could also be 

achieved with unsupervised approaches. It is noteworthy to mention that we utilized the original KimiaNet 

weights for feature extraction without any finetuning the model on our datasets. 

Comparison of NSMP and p53abn-like NSMP. To further investigate the differences between NSMP and 

p53abn-like NSMP cases, we compared various clinical, pathological, and molecular variables 

(Supplementary Tables 8 and 9). Our analysis showed an enrichment of p53abn-like NSMP cases with 

higher grade and higher stage tumors (p < 1·4e-25; p < 2·4e-4, respectively). In a multi-variate Cox 

regression analysis, the association between p53abn-like NSMP and progression free survival remained 

significant in the presence of grade, stage, and histology (p = 0·01 and Hazard Ratio = 2·5; Supplementary 

Table 10). Furthermore, Fig. 3B shows an enrichment for estrogen receptor (ER) and progesterone 

receptor (PR) positive cases in the p53abn-like NSMPs in the subset of the cohort that the status of these 

markers were available (p < 5·2e-3 and p < 2·3e-4, respectively).  

Independent pathology review of selected NSMP cases. Two expert gynepathologists (NS, CBG) 

independently reviewed whole section slides of a subset of NSMP cases including the p53abn-like NSMP 

subtype. They specifically assessed whether tumors showed nuclear features that have been previously 

described as being associated with TP53 mutation/mutant pattern p53 expression in endometrial 

carcinoma29. The p53abn-like NSMP cases were enriched with tumors showing increased nuclear atypia, 

as assessed by altered chromatin pattern, nucleolar features, pleomorphism, atypical mitoses, or giant 

tumor cells (p < 0·00005 for both reviewers).  

Genomic characterization of p53abn-like NSMP cases. We next sought to investigate the molecular 

profiles of p53abn-like NSMP cases in our validation set for which we had access to tissue material. 

Targeted sequencing of exonic regions in a number of genes revealed enrichment of p53abn-like NSMP 

cases with CTNNB1 mutations (Fisher’s exact test p-value = 0·01; Fig. 3B). However, exonic point mutation 

data for the TCGA subset of the discovery cohort were available and suggested a lack of enrichment of 

the p53abn-like NSMP group with specific gene mutations including CTNNB1 (Fig. 3C).  

We next selected representative samples of NSMP, p53abn, and p53abn-like NSMP cases in our validation 

cohort and performed shallow whole genome sequencing (sWGS). Overall, copy number profile analysis 

of these cases revealed that p53abn-like NSMP cases harbor a higher fraction of altered genome 

compared to NSMP cases but still lower than what we observe in p53abn cases (Fig. 4A; p < 0·035). These 

findings were further validated in the TCGA cohort (Fig. 4B; p < 5·46e-5). 
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We next investigated the gene expression profiles associated with the p53abn-like NSMP, NSMP, and 

p53abn tumors within the TCGA cohort. Unsupervised clustering of patients based on gene expression 

profiles of their tumors showed that eleven of the 21 p53abn-like NSMPs had similar expression profiles 

to p53abn tumors, while the remaining 10 cases clustered together with the NSMP group (Fig. 4C). While 

p53abn and NSMP groups were clustered separately, unsupervised analysis of the gene expression 

profiles did not reveal any differences between p53abn-like NSMP group and other subtypes, i.e., they 

did not have a unique gene expression profile but instead clustered with one of the known molecular 

subtypes. We then performed pairwise differential expression analysis and pathway analysis, separately 

comparing p53abn-like NSMP and p53abn groups against NSMP cases. These results suggested the 

upregulation of PI3k-Akt, Wnt, and Cadherin signaling pathways both in p53abn-like NSMP and p53abn 

groups (compared to NSMP). Interestingly, while these pathways were up-regulated in both groups, we 

found little to no overlap between the specific down- and up-regulated genes in the p53abn-like NSMP 

and p53abn groups (compared to NSMP) suggesting that the molecular mechanisms associated with 

p53abn and p53abn-like tumors might be different even though p53abn and p53abn-like NSMP groups 

had similar histopathological profiles as assessed based on H&E slides.  

Discussion 

Although many patients with endometrial carcinoma may be cured by surgery alone, about 1 in 5 patients 

have more aggressive disease and/or have the disease spread beyond the uterus at the time of diagnosis. 

Identifying these at-risk individuals remains a challenge, with current tools lacking precision. Molecular 

classification offers an objective and reproducible classification system that has strong prognostic value; 

improving the ability to discriminate outcomes compared to conventional pathology-based risk 

stratification criteria. However, it has become apparent that within molecular subtypes and most 

profoundly within NSMP ECs, there are clinical outcome outliers. The current study addresses this 

diversity by employing AI-powered histopathology image analysis, in an attempt to identify clinical 

outcome outliers within the most common molecular subtype of endometrial cancer (Fig. 5). Our results 

have several clinical and biological implications.  

To be clear, for some molecular subtypes, such as POLEmut endometrial cancers with almost uniformly 

favourable outcomes, no further stratification, at least within Stage I-II disease (encompassing >90% of 

POLEmut ECs), is needed. Multiple studies, as well as meta-analyses33, have shown that in patients with 

POLEmut endometrial cancers, additional pathological or molecular features are not associated with 

outcomes, i.e., are not prognostic, as POLE is the overriding feature that determines survival. However, 
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for NSMP endometrial cancers, additional stratification tools are greatly needed. Designation of NSMP is 

the last step in molecular classification, only defined by what molecular features it does not have; that is 

without pathogenic POLE mutations, without mismatch repair deficiency or p53 abnormalities as assessed 

by IHC. This leaves a large group of pathologically and molecularly diverse tumors with markedly varied 

clinical outcomes.   

Our AI-based histomorphological image analysis model identified a subset of NSMP endometrial cancers 

with inferior survival. This subset of patients encompassed approximately 20% of NSMP tumors which are 

the most common molecular subtype, representing half of endometrial cancers diagnosed in the general 

population, and thus account for 10% of all ECs. Our results suggest that clinicopathological, IHC, gene 

expression profiles, or NGS molecular markers (except for copy number burden to some extent) may not 

be able to identify these p53abn-like outliers. Of note, our results corroborated with a recent report that 

identified a similar subset of NSMP cases with higher nuclear atypia in 3% of NSMP cases (n = 4 out of 

120) with poor outcome, although this difference was not statistically significant likely due to a small 

sample size and differences in the image analysis models (p = 0·13)23. Taken together, AI applied to 

histomorphological images of routinely generated H&E slides appears to enable a more encompassing 

and easily implementable stratification of NSMP tumors and provides greater value than any single or 

combined pathological/molecular profile could achieve.  

Molecular characterization of the identified subtype using sWGS suggests that these cases harbor an 

unstable genome with a higher fraction of altered genome, similar to the p53abn group but with lesser 

degree of instability. These results suggest that the identified subgroup based on histopathology images 

is biologically distinct. Furthermore, in spite of the fact that similar gene expression pathways were 

implicated in both groups and H&E images of both groups as assessed by AI had resemblances, expression 

data analysis revealed minimal overlap between the differentially expressed genes in both p53abn and 

p53abn-like EC compared to NSMP cases. This suggests that they may have different etiologies and 

warrants further biological interrogation of these groups in future studies. 

Certainly, others have attempted to refine stratification within early-stage endometrial cancers, including 

within the molecularly defined NSMP subset. PORTEC4a used a combination of pathologic and molecular 

features (MMRd, L1CAM overexpression, POLE,  CTNNB1 status) to identify low, intermediate, and high 

risk individuals assigned to favourable, intermediate, and unfavourable risk groups which then 

determined observations vs. treatment34. TAPER/EN.10 also stratifies early-stage NSMP tumors by 

pathological (e.g., histotype, grade, LVI status) and molecular features (TP53, ER status) to identify those 
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individuals appropriate for de-escalated therapy35. In retrospective series, key parameters of ER and grade 

have been suggested to discern outcomes within NSMP. ER status was also demonstrated to stratify 

outcomes in patients with NSMP ECs enrolled in clinical trials36. However, even in-depth profiling of 

apparent low risk ECs has failed to find pathogenomic features that would discern individuals who develop 

recurrence from other apparent indolent tumors37. Stasenko et al.37 assessed a series of 486 cases of 

‘ultra-low risk’ endometrial cancers defined as stage 1A with no myoinvasion, no LVI,  grade 1 of which 

2.9% developed recurrence with no identifiable associated clinical, pathological or molecular features37. 

Current treatment guidelines, even where molecular features are incorporated, offer little in terms of 

directing management within NSMP endometrial cancers beyond consideration of pathological features, 

leaving clinicians to struggle with optimal management12. A more comprehensive stratification tool within 

NSMP endometrial cancers would be of tremendous value, and AI discernment from histopathological 

images as a tool that can be readily applied to H&E slides that are routinely generated as part of the 

practice is appealing. 

Our proposed AI model also identified a subset of p53abn ECs with marginally superior DSS and 

resemblance to NSMP (NSMP-like p53abn) as assessed by H&E staining. Further investigation of the 

identified groups and deep molecular and omics characterization of this subset of p53abn ECs may in fact 

aid us in refining this subtype and identifying a subset of p53abn cases with statistically superior 

outcomes.  

This study is the first to consider the application of AI in refining endometrial cancer molecular subtypes. 

In general, such studies to generate new knowledge using AI in histopathology are extremely sparse as a 

majority of the effort has focused on recapitulating the existing body of knowledge (e.g., to diagnose 

cancer, to identify histological subtypes, to identify known molecular subtypes). This study moves beyond 

the mainstream AI applications within the current context of standard histopathology and molecular 

classification. This enables us to direct efforts to understand the biological mechanisms of this newly 

identified subset. This could present an exciting opportunity to utilize the power of AI to inform clinical 

trials and deep biological interrogation by adding more precision in patient stratification and selection.  

AI histopathologic imaging-based application within NSMP enables discernment of outcomes within the 

largest endometrial cancer molecular subtype. It can be easily added to clinical algorithms after 

performing hysterectomy, identifying some patients (p53abn-like NSMP) as candidates for treatment 

analogous to what is given in p53abn tumors. Furthermore, the proposed AI model can be easier to 

implement in practice (for example, in a cloud-based environment), leading to greater impact on patient 
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management and even more equitable cancer care if confirmed in diagnostic biopsies. If, from diagnostic 

office biopsy or surgical curettage endometrial cancers could be classified as NSMP tumors and then AI 

stratification applied, we would have the opportunity to guide therapeutic decision making as well as 

surgical management, potentially directing individuals at very low risk of metastases to simple 

hysterectomy in the community and more aggressive p53abn-like NSMP to cancer centers for lymph node 

assessment, omental sampling and directed biopsies given a higher likelihood of upstaging. 

MATERIALS AND METHODS 

Histopathology slide digitization 

Histopathology slide images associated with the TCGA cohort were acquired from the TCGA GDC portal 

(https://portal.gdc.cancer.gov). Histopathology slides associated with the Vancouver cohort as well as the 

Tübingen University Women’s Hospital were scanned using an Aperio AT2 scanner. 

AI tumor-normal classifier and automatic annotation 

The downstream tumor subtype classifier relies on the tumor areas of the tissues. Given that the manual 

annotation of all slides by pathologists is tedious and time-consuming, we first trained a deep learning 

model to identify the tumor areas of the slides automatically (Supplementary Fig. 6). To train the model, 

we utilized 27 slides that were annotated by a board-certified pathologist. First, we split the slides into 

training (51·8%), validation (22·2%), and testing (26%) sets. To identify the tumor regions of WSIs, we 

divided them into smaller tiles referred to as patches and extracted 5,091 (2,167 tumor, 2,924 stroma) 

non-overlapping patches. A maximum of 200 patches with the size of 512×512 pixels at 20x objective 

magnification were extracted from the annotated regions of each slide. As the baseline architecture for 

our classifier, we exploited ResNet1838, a simple and effective residual network, with the pretrained 

ImageNet39 weights. We trained the model with the learning rate and weight decay of 1e-4 for five epochs 

using the Adam optimizer40. As the amount of tumor and stroma patches were not equal, we used a 

balanced sampler with a batch size of 150 which meant that in each batch, the model was trained using 

75 tumor patches and 75 stroma patches. The resulting classifier achieved 99·76% balanced accuracy on 

the testing set, indicating the outstanding performance of this tumor/non-tumor model (Supplementary 

Table 2). The trained model was then applied to detect tumor regions on the rest of the WSIs. To that end, 

we extracted patches with identical size and magnification to the training phase. To achieve smoother 

boundaries for the predicted tumor areas we enforced a 60% overlap between neighbouring patches. In 

addition, to reduce false positives we used a minimum threshold probability of 90% for tumor patches. 

Finally, for consistency, we applied the trained model on the discovery set, including the cases that were 

manually annotated by a pathologist.  
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Deep learning models for tumor subtype classification 

Due to the lack of pixel-wise annotations, we employed variability-aware multiple instance learning 

(VarMIL)31 that utilizes the multiple instance learning technique in which an image is modeled as an 

instance containing a bag of unlabelled patches or tiles. Algorithm 1 elaborates on the prediction 

mechanism of VarMIL in detail. VarMIL consists of three sections: a feature extractor network (ℱ𝒞ℴ𝓃𝓋%𝒟), 

attention layers, and classification layers (ℱℱ𝒞). First, the feature extractor network computes feature 

embeddings (z( ∈ ℝ)) for the extracted patches of an instance (i.e., image), where d is the dimension of 

the embeddings. Second, given that patches of a given image are not necessarily equally important in 

subtype prediction, an attention mechanism calculates the contribution of each patch (a( ∈ ℝ) based on 

its embedding. Subsequently, VarMIL computes the image’s representation (z ∈ ℝ𝟚)) by taking the 

weighted variance of patches (z+ ∈ ℝ)) into account alongside their weighted average (z ∈ ℝ)). Finally, 

the model feeds the derived representation as the input of the classification section to predict the 

subtype. To avoid over-fitting, we employed a variety of augmentation methods including horizontal and 

vertical flipping, color jitter, size jitter, random rotation, and Cutout41. Furthermore, we utilized early 

stopping42 as an additional form of regularization in training, and if the validation loss did not decrease 

after five epochs, we decreased the learning rate. Furthermore, we stopped the training if the validation 

loss did not decrease after 10 consecutive epochs. We devised a two-step training procedure for the 

proposed network, in which the feature extractor network was trained independently from the attention 

and classification layers. First, we trained the feature extractor, ResNet3438, using patches as inputs for 

30 epochs with the learning rate and weight decay of 1e-4 and 1e-5, respectively. To accomplish this, we 

assigned the label of its corresponding slide to each patch. After optimizing the network, we employed its 

convolutional layers as the feature extractor (d = 512). For the attention and classification layers, we 

selected a multilayer perceptron (MLP) with a single hidden layer with 128 nodes (q = 128). We trained 

these layers with the same number of epochs and weight decay as before but with the learning rate of 

1e-5. Models were trained using a single dgxV100 GPU with 32GB RAM. The programming language was 

PyTorch43, and we selected the hyperparameters experimentally. 

 
 

Algorithm 1 subtype prediction 
Input: P! = #p!", . . , p!#!': a set of extracted patches from the i$% image, i.e., I! 

1: for j	 ← 1 to k!	do 
2: z& ← ℱ𝒞ℴ𝓃𝓋+𝒟1p!&2 
3: end for 
4: Let W ∈ ℝ- and V ∈ ℝ-×/ be the attention parameters 
5: for j	 ← 1 to k! do 
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6: a& ← exp1W0 tanh1Vz&22	/	∑ exp(W0 tanh(Vz$))
1!
$2"  

7: end for 
8: z ← ∑ a&

#!
&2" z&  

9: z3 ←
#!
#!4"

∑ a&1z& − z2
+#!

&2"   
10: z ← z⊕ z3  
11: Y! ← ℱℱ𝒞(z)  

Output: Y!: the predicted subtype of I!   
 
We further assessed the robustness of our findings with five other models formulated on distinct 

concepts: (1) Vanilla44,45, (2) Histogram-Based46, (3) Iterative Draw and Rank Sampling (IDaRS)47, (4) 

Attention-based48,49, and (5) Vector of Locally Aggregated Descriptor (VLAD)50,51.  

(1) Vanilla is a simple and frequently used concept in digital pathology44,52 . In this setting, we train a DL 

model on the extracted patches from a histopathology slide in a fully supervised manner. Here, each 

patch's label corresponds to the subtype of its corresponding histopathology slide. The process involves 

passing patches through convolutional layers and feeding the generated feature maps into fully connected 

layers. The model is trained using the cross-entropy loss function53, similar to standard classification tasks. 

(2) IDaRS shares similar assumptions with Vanilla, involving training a model on image patches in a fully 

supervised manner and assigning the image's label to its patches47. However, unlike Vanilla, where all 

extracted patches are used in training, IDaRS employs a selection procedure. Only informative patches 

that contribute to the image's subtype are included during training. The selection algorithm utilizes the 

Monte-Carlo54 sampling approach.  

(3) The Histogram-Based concept46 addresses the task of identifying a slide's subtype, similar to IDaRS and 

Vanilla, by transforming a weakly supervised problem into a fully supervised one. A key distinction of this 

concept is the integration of a histogram and a classification module, instead of relying on majority voting. 

This modification improves the model's interpretability without significantly increasing the parameter 

count.  

(4) DeepMIL55 combines the concepts of MIL and attention. It leverages MIL techniques, treating an image 

as a collection(bag) of unlabelled patches, while the attention-based approach maintains the nature of 

the weakly supervised task, in contrast to the previously mentioned concepts. This perspective removes 

the need to assign labels to individual patches within an image. Moreover, it recognizes that patches 

within an image have varying degrees of importance to its subtype, and their contributions are calculated 

using an attention mechanism.  
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(5) VLAD, a family of algorithms, considers Histopathology images as Bag of Words (BoWs), where 

extracted patches serve as the words. Due to its favorable performance in large-scale databases, 

surpassing other BoWs methods, we adopt VLAD as a technique to construct slide representation50. 

 

Identification of p53abn-like NSMPs 

The initial hypothesis was that NSMP cases with a poor prognosis resemble p53abn morphologically. 

Assuming the hypothesis is correct, subtype classifiers should label cases in this group as p53abn. Using 

the same rationale, we partitioned the NSMP subtype into two subgroups: p53abn-like NSMP and the 

remaining NSMP cases. To this end, we devised a voting system based on the classifiers' consensus. If the 

fraction of classifiers predicting an NSMP case as p53abn exceeded a specified confidence threshold, the 

image was labelled as p53abn-like NSMP; otherwise, the image was labelled as NSMP. In this work, we 

labeled a sample as p53abn-like NSMP when an NSMP sample, based on ProMisE, was classified as p53abn 

in more than seven out of the 10 cross-validation classifiers. 

Unsupervised clustering of NSMP patch representations 

To investigate the robustness of our results in identifying p53abn-like NSMPs and visualize the distribution 

of the patch representations, we employed a two-step approach. In the first step, we applied KimiaNet32 

to the patches that were extracted from the histopathology slides associated with the NSMP EC cases. 

KimiaNet is a deep model trained on a large set of histopathology data, to encode each patch with 

dimensions of 512´512 pixels into a compact 1024´1 vector. By leveraging the embeddings from 

KimiaNet's last pooling layer, we condensed the essential features of each patch into a representative 

vector. In the second step, we applied Uniform Manifold Approximation and Projection (UMAP)56, a 

dimensionality reduction technique, to project the encoded vectors of all the patches within the NSMP 

and p53abn-like NSMP onto a two-dimensional space. UMAP excels at preserving both local and global 

structures of high-dimensional data, enabling us to visualize the relationships and patterns within the 

encoded patches in a more interpretable manner. 

Targeted point mutation profiling 

The exon capture libraries were sequenced using the Illumina Genome Analyzer (GAIIx) as 76bp pair-end 

reads as described in 57. The reads were aligned to the human genome using the BWA aligner version v0·5 

·9. and SNVs were called by a combination of binomial exact test and MutationSeq as previously 

described58,59 . To remove the germline mutations, the predicted SNVs were filtered through dbSNP, 1000 

Genome (http://www.1000genomes.org/) and the control normals. All SNVs were profiled by 

mutationassessor60 for functional impact of the missense mutations. snpEff 
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(http://snpeff.sourceforge.net/) was used to find splice site mutations. All silent mutations were removed. 

The indels were filtered by the control normals and then profiled by Oncotator 

(http://www.broadinstitute.org/oncotator/).  

Survival analysis 

We assessed the significance of subgroups using the Kaplan-Meier (KM) estimator on two survival 

endpoints: Disease Specific Survival (DSS) and Progression Free Survival (PFS). Survival outcomes were not 

accessible for four (1·47%; three NSMP and one p53abn-like NSMP) and two (1·03%; one NSMP and one 

p53abn-like NSMP) patients in the discovery and validation sets, respectively. In some individuals, clinical 

data were partially available (for example, survival data of a patient only contained DSS while PFS was 

unknown), explaining why the number of cases varies among KM curves for the same set. In addition, 

given that the TCGA survival data lacked DSS, the German cohort served as the discovery set for the DSS 

KM curves. 

Shallow whole genome sequencing (cohort and experiments) 

DNA was extracted (GeneRead FFPE DNA kit from Qiagen) from FFPE core tumor samples and was sheared 

to 200bp using a Covaris S220. Libraries were constructed using the ThruPlex DNA-seq kit (Takara) with 

seven cycles of amplification (library prep strategy from Brenton Lab similar to the one published in 

2018)61. Library quality was assessed using the Agilent High Sensitivity DNA kit (Agilent Technologies), and 

pooled libraries were run on the Illumina NovaSeq at the Michael Smith Genome Sciences Centre targeting 

600M reads per pooled batch. The sWGS data was run through basic processing which includes trimming 

with Trimmomatic62, alignment with bwa-mem263, duplicate removal with Picard64, and sorting with 

samtools65. Sequencing coverage and quality were evaluated using fastQC66 and samtools. If acceptable, 

the data was passed along to the next step of determining genomic copy numbers (QDNAseq67 + rascal68) 

and signature calling. The signature calling step uses techniques including mixture modelling and non-

negative matrix factorization and is composed mostly of software from the CN-Signatures61 package 

with a few in-house modifications and additions. Interim data munging and ETL (extract, transform, load) 

are done primarily in bash and R (tidyverse), while visualization and plotting is performed mostly just in R 

using ggplot2 and pheatmap. 

Gene expression analysis 

For expression profiling, we used RNA-seq profiles obtained from the TCGA-UCEC cohort3. Specifically, we 

used the GDC data portal69 to download primary tumors sequenced on the Illumina Genome Analyzer 

platform with patient IDs matching those used in our study. Raw, un-normalized counts were used. 

DeSeq270 was used to process the raw count matrix and perform differential expression analysis (DEA) 
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and hierarchical clustering. Samples were categorized as NSMP, p53abn-like NSMP, and p53abn. Genes 

with total count five or less were removed. Counts were normalized using DeSeq2’s variance-stabilizing 

transform tool. The 500 most variable genes based on DEA were kept for hierarchical clustering. Per-gene 

Z-scaling was applied to normalize the clustering features. Finally, the complete-linkage method was used 

for both gene-clustering and sample-clustering. Subsequent pathway analysis on the list of differentially 

expressed genes was performed using Reactome71 FI plugin in Cytoscape72.  

Statistical assessment 

Log-rank test was utilized to assess the significance of the difference between KM curves for the identified 

patient groups. In addition, the significance of groups for enrichment of specific genomic or molecular 

features was assessed using the Fisher's exact test and the Mann-Whitney U rank test for discrete and 

continuous data, respectively. Throughout all experiments, p < 0·05 was regarded as the significance level. 
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Data sharing. Histopathology data associated with the TCGA cohort can be acquired from TCGA GDC 

portal (https://portal.gdc.cancer.gov). Upon the publication of this manuscript, histopathology slides 

associated with the validation cohort from Vancouver will be released, and code used in this manuscript 

will be made available on GitHub.  

Acknowledgements. This work was supported by Terry Fox Research Institute, Canadian Institute of 

Health Research, Natural Sciences and Engineering Research Council of Canada, Michael Smith 

Foundation for Health Research, OVCARE Carraresi, and VGH UBC Hospital Foundation. The funders had 

no involvement in study conception, data collection, data analysis, data interpretation, writing of the 

report, or publication decision. 

Author contributions. A.D. and H.F. were the research project leaders and led and designed all data 

analysis. A.D. implemented all the deep learning pipelines. M.W. and A.B. performed the gene expression 

analysis. M.A. and A.K. performed image analysis. D.C. and A.J. contributed to clinical review and case 

selection for molecular profiling. D.F. performed the histopathology slide annotations. P.Ah. contributed 

to software infrastructure for slide annotation. M.D. and H.F. performed bioinformatics analysis. P.Ab and 

S.JM.J. provided advice on machine learning analysis and provided computational resources. A.T. and S.L. 

contributed to clinical informatics and biobanking.  C.B.G. and N.S. reviewed all specimens for histological 

and molecular pathology and contributed to manuscript writing. S.K. were responsible for the specimen 

and clinical data from Tübingen University. J.N.M. and C.B.G. contributed to cohort construction, tumor 

banking, and initial draft of the manuscript. A.D., H.F., and A.B. wrote the first draft of the manuscript. 

D.G.H., N.S., J.N.M. conceived the project, provided oversight, edited the manuscript, and are co-senior 

authors of the manuscript. A.B. conceived and oversaw the project and is the senior corresponding author. 

All authors have reviewed and approved the manuscript content. 

Declaration of interests. Authors declare no competing interests. 

Ethics statement. The Declaration of Helsinki and the International Ethical Guidelines for Biomedical 

Research Involving Human Subjects were strictly adhered throughout the course of this study. All study 

protocols have been approved by the University of British Columbia/BC Cancer Research Ethics Board.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2023. ; https://doi.org/10.1101/2023.05.23.23290415doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.23.23290415
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

List of Figures: 
 
Fig. 1: Workflow of the AI-based histopathology image analysis. First, the quality control framework, 
HistoQC73, generates a mask that comprises tissue regions exclusively and removes artifacts. Then, an AI 
model to identify tumor regions within histopathology slides is trained. Next, images are tessellated into 
small patches and normalized to remove color variations. The normalized patches are fed to a deep 
learning model to derive patch-level representations. Finally, a model based on multiple instance learning 
(VarMIL) was utilized to predict the patient subtype. 
 
Fig. 2: Performance statistics and Kaplan Meier (KM) survival curves for AI-identified EC subtypes. (A) 
AUROC and precision-recall plots of average of 10 splits for p53abn vs. NSMP classifier for discovery and 
validation sets, (B) KM curves associated with PFS and DSS for the discovery set, (C) KM curves associated 
with PFS and DSS (where available) in the validation set.  
 
Fig. 3: (A)  Histopathological features from the slides in the validation cohort utilizing KimiaNet feature 
representation from the slides in the validation cohort demonstrate that p53abn-like NSMP and the rest 
of the NSMP cases constitute two separate clusters with no overlap, (B) Clinicopathological features and 
point mutation data for the validation cohort, (C) Clinicopathological features and point mutation data for 
the TCGA cohort. 
 
Fig. 4: Molecular profiling of p53abn-like NSMP cases. Boxplots of copy number burden (i.e., fraction 
genome altered) in NSMP, p53abn-like NSMP, and p53abn cases in the (A) validation (6 NSMP, 7 p53abn-
like NSMP, 5 p53abn) and (B) TCGA (69 NSMP, 21 p53abn-like NSMP, 56 p53abn) cohorts. (C) Gene 
expression profiles associated with the p53abn-like NSMP (n=21), NSMP (n=69), and p53abn (n=56) 
tumors in the TCGA cohort.  
 
Fig. 5: The refined classification scheme that leverages AI screening as a supplementary stratification 
mechanism within the NSMP molecular subtype. 
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AUROC and precision-recall plots of average of 10 splits for p53abn vs. NSMP classifier for discovery and 
validation sets, (B) KM curves associated with PFS and DSS (where available) for the discovery set, (C) KM 
curves associated with PFS and DSS (where available) in the validation set. 
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Fig. 3: (A)  Histopathological features from the slides in the validation cohort utilizing KimiaNet feature 
representation from the slides in the validation cohort demonstrate that p53abn-like NSMP and the rest 
of the NSMP cases constitute two separate clusters with no overlap, (B) Clinicopathological features and 
point mutation data for the validation cohort, (C) Clinicopathological features and point mutation data for 
the TCGA cohort.  

 
 
Fig. 4: Molecular profiling of p53abn-like NSMP cases. Boxplots of copy number burden (i.e., fraction 
genome altered) in NSMP, p53abn-like NSMP, and p53abn cases in the (A) validation (6 NSMP, 7 p53abn-
like NSMP, 5 p53abn) and (B) TCGA (69 NSMP, 21 p53abn-like NSMP, 56 p53abn) cohorts. (C) Gene 
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expression profiles associated with the p53abn-like NSMP (n=21), NSMP (n=69), and p53abn (n=56) 
tumors in the TCGA cohort.  
 

 
Fig. 5: The refined classification scheme that leverages AI screening as a supplementary stratification 
mechanism within the NSMP molecular subtype.   
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Table 1: Clinicopathologic features of the discovery set. 
Variable Total NSMP p53abn 

Total 363 268 (73·83%) 95 (26·17%) 
 
Age at diagnosis    

<60 yrs 121 (33·33%) 110 (41·04%) 11 (11·58%) 
≥60 yrs 242 (66·67%) 158 (58·96%) 84 (88·42%) 

 
Histotype    

Endometrioid 288 (79·34%) 262 (97·76%) 26 (27·37%) 
Non-endometrioid 75 (20·66%) 6 (2·24%) 69 (72·63%) 
 
Tumor grade    

Low grade (G1–2) 258 (71·07%) 246 (91·79%) 12 (12·63%) 
High grade (G3) 105 (28·93%) 22 (8·21%) 83 (87·37%) 

 
FIGO stage    

I-II 291 (80·17%) 239 (89·18%) 52 (54·74%) 
III-IV 71 (19·56%) 28 (10·45%) 43 (45·26%) 

Unknown 1 (0·28%) 1 (0·37%) 0 
 

Table 2: Clinicopathologic features of the validation set.  
 

Variable Total NSMP p53abn 
Total 288 193 (67·01%) 95 (32·99%) 
 
Age at diagnosis    

<60 yrs 81 (28·13%) 72 (37·70%) 9 (9·47%) 
≥60 yrs 205 (71·18%) 119 (62·30%) 86 (90·53%) 

Unknown 2 (0·69%) 2 (1·04%) 0 
 
Histotype    

Endometrioid 195 (67·71%) 172 (89·12%) 23 (24·21%) 
Non-endometrioid 91 (31·60%) 19 (9·84%) 72 (75·79%) 

Unknown 2 (0·69%) 2 (1·04%) 0 
 
Tumor grade    

Low grade (G1–2) 151 (52·43%) 146 (75·65%) 5 (5·26%) 
High grade (G3) 137 (47·57%) 47 (24·35%) 90 (94·74%) 

 
FIGO stage    

I-II 216 (75·00%) 166 (86·01%) 50 (52·63%) 
III-IV 69 (23·96%) 24 (12·44%) 45 (47·37%) 

Unknown 3 (1·04%) 3 (1·55%) 0 
 
 


