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Abstract 

Endometrial cancer (EC) has four molecular subtypes with strong prognostic value and therapeutic 

implications. The most common subtype (NSMP; No Specific Molecular Profile) is assigned after exclusion 

of the defining features of the other three molecular subtypes and includes patients with heterogeneous 

clinical outcomes. In this study, we employed artificial intelligence (AI)-powered histopathology image 

analysis to identify a novel sub-group of NSMP EC patients that had markedly inferior progression free 

and disease free survival in a discovery cohort of 368 patients and an independent validation cohort of 

290 patients from another center. Shallow whole genome sequencing revealed a higher burden of copy 

number abnormalities in the identified group, compared to other NSMP EC, in our discovery and validation 

cohorts. Taken together, our work demonstrates the power of AI to discover new knowledge, identifying 

a prognostically relevant subset of EC that is unrecognizable with conventional histopathological 

assessment, refining image-based tumor classification.  
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Introduction 

The clinicopathological parameters used for decades to classify endometrial cancers (EC) and guide 

management have been sub-optimally reproducible, particularly in high-grade tumors1,2. Specifically, 

inconsistency in grade and histotype assignment has yielded inaccurate assessment of the risk of disease 

recurrence and death. As a result, many women affected by EC may be over-treated or are not directed 

to treatment that might have reduced their risk of recurrence. In 2013, the Cancer Genome Atlas (TCGA) 

project demonstrated that endometrial cancers could be stratified into four distinct prognostic groups 

using a combination of whole genome and exome sequencing, microsatellite instability (MSI) assays, and 

copy number analysis3. These subtypes were labelled according to dominant genomic abnormalities and 

included ‘ultra-mutated’ ECs harboring POLE mutations, ‘hypermutated’ identified to have microsatellite 

instability, copy-number low, and copy-number high endometrial cancers. 

Inspired by this initial discovery, our team and a group from the Netherlands independently and 

concurrently developed a pragmatic, clinically applicable molecular classification system that classifies ECs 

into : (i) POLE mutant (POLEmut) with pathogenic mutations in the exonuclease domain of POLE (DNA 

polymerase epsilon, involved in DNA proofreading repair), (ii) mismatch repair deficient (MMRd) 

diagnosed based on the absence of key mismatch repair proteins on immunohistochemistry (IHC), (iii) p53 

abnormal (p53abn) as assessed by IHC, and (iv) NSMP (No Specific Molecular Profile), lacking any of the 

defining features of the other three subtypes4,5. Categorization of ECs into these subtypes recapitulates 

the survival curves/prognostic value of the four TCGA molecular subgroups and enhances 

histopathological evaluation, offering an objective and reproducible classification system with strong 

prognostic value and therapeutic implications. In 2020, the World Health Organization (WHO) 

recommended integrating these key molecular features into standard pathological reporting of ECs when 

available6.   

POLEmut endometrial cancers have highly favorable outcomes with almost no deaths due to disease. 

While the three other molecular subtypes are associated with more variable outcomes (MMRd and NSMP 

are considered ‘intermediate risk’ and p53abn ECs have the worst prognosis), within each subtype there 

are clinical and prognostic outliers7–10. This is particularly true within the largest subtype, NSMP 

(representing ~50% of ECs).  The majority of NSMP tumors are early stage, low grade, estrogen driven 

tumors likely cured by surgery alone.  However, a subset of patients with NSMP EC experience a very 

aggressive disease course, comparable to what is observed in patients with p53abn ECs. At present, no 

tools exist to identify these aggressive outliers and current clinical guidelines do not stratify or direct 
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treatment within NSMP EC beyond using pathologic features11,12. Thus, for half of diagnosed endometrial 

cancers, i.e., NSMP EC, assumption of indolence is inappropriate and clinicians need tools for accurate risk 

stratification of individual patients when making treatment decisions.  

With the rise of artificial intelligence (AI) in the past decade, deep learning methods (e.g., deep 

convolutional neural networks and their extensions) have shown impressive results in processing text and 

image data13. The paradigm shifting ability of these models to learn predictive features from raw data 

presents exciting opportunities with medical images, including digitized histopathology slides14–16. In 

recent years, these models have been deployed to reproduce or improve pathology diagnosis in various 

disease conditions (e.g.,17–19), explore the potential link between histopathologic features and molecular 

markers in different cancers including EC20–23 , and directly link histopathology to clinical outcomes24–27.  

We hypothesized that within the NSMP molecular subtype of endometrial cancer, there is a subset of 

patients with aggressive disease whose tumors have histological features similar to p53abn EC and that 

these tumors can be identified by deep learning models applied to hematoxylin & eosin (H&E)-stained 

slides. As such, we have built a deep learning-based H&E image classifier that can identify distinctive 

histological patterns associated with p53abn and NSMP subtypes and consequently is able to identify 

NSMP cases that have similar histological features as p53abn EC. Our results show that these cases 

(referred to as p53abn-like NSMP) have inferior outcomes compared to the other NSMP ECs, similar to 

that of p53abn EC, in two independent cohorts. Furthermore, the genomic architecture of the p53abn-

like NSMP differs from other NSMP EC, showing increased copy number abnormalities, a characteristic of 

p53abn EC. 

Results 

Patient cohort selection and description. 1,678 H&E-stained hysterectomy tissue sections from 658 

patients with histologically confirmed endometrial carcinoma of NSMP or p53abn subtypes were included 

in this study3–5. Our discovery cohort included 155 whole section slides (WSI) from 146 patients from 

TCGA3 and 431 WSIs (222 patients) from another center5. Our validation set included tissue microarray 

(TMA) data corresponding to 290 patients from our own center4. Tables 1 and 2 show the 

clinicopathological features of the discovery and validation cohorts.  

Histopathology-based machine learning classifier to differentiate NSMP and p53abn ECs. Fig. 1 depicts 

our AI-based histopathology image analysis pipeline. A subset of 27 whole section H&E slides from the 

TCGA cohort were annotated by a board-certified pathologist (DF) using a custom in-house histopathology 
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slide viewer (cPathPortal) to identify areas containing tumor and stromal cells. A deep convolutional 

neural network (CNN)-based classifier was then trained to acquire pseudo-tumor and benign annotations 

for the remaining slides in the discovery cohort (see the AI tumor-normal classifier and automatic 

annotation section of the Methods). The identified tumor regions were then divided into 512x512 pixel 

patches at 20x objective magnification. The number of extracted patches from each subtype and 

performance measure for the tumor stroma classifier can be found in Supplementary Tables 1 and 2. To 

address variability in slide staining due to differences in staining protocols across different centres, and 

inter-patient variability, we utilized the Vahadane color normalization technique28. We then trained a 

VarMIL model29 based on multiple instance learning (MIL) to differentiate H&E image patches associated 

with p53abn and NSMP ECs (see the Deep learning model for tumor subtype classification section of the 

Methods). 

In a “group 10-fold” cross-validation strategy, the patients in our discovery cohort were divided into 10 

groups and in various combinations, 60% were used for training, 20% for validation, and 20% for testing; 

resulting in 10 different binary p53abn vs. NSMP classifiers. These 10 classifiers were then used to label 

the cases as p53abn or NSMP and their consensus was used to come up with a label for a given case. For 

patients with multiple slides, to prevent data leakage between training, validation, and test sets, we 

assigned slides from each patient to only one of these sets. 

Fig. 2A and Supplementary Table 3 show the receiver operating characteristics (ROC) and precision/recall 

curves as well as performance metrics of the resulting classifiers for the discovery and validation sets, 

respectively. These results suggest that our p53abn vs. NSMP classifier achieves more than 89.4% and 

79.8% mean balanced accuracy (across the 10 classifiers) in both the discovery and validation sets, 

respectively (for details see Supplementary Table 4 and Extended Data Fig. 1).  

Identification of a subset of NSMP ECs with inferior survival. Our proposed ML-based models classified 

17.65% and 20% of NSMPs as p53abn for the discovery and validation cohorts, respectively 

(Supplementary Table 5 and the Identification of p53abn-like NSMPs section of the Methods). These cases 

(referred to as p53abn-like NSMP group) show p53abn histological features in the assessment of H&E 

images even though immunohistochemistry did not show mutant-pattern p53 expression and these were 

therefore classified as NSMP by the molecular classifier. We hypothesized that such cases may in fact 

exhibit similar clinical behavior as p53abn ECs. 

Fig. 2B,C show the progression free survival (PFS) and disease specific survival (DSS) of the discovery and 

validation sets (Survival analysis section of the Methods). Compared to the rest of the NSMP cases, 
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p53abn-like NSMPs had markedly inferior PFS (10-year PFS 55.7% vs. 89.6% (p < 2.7e-7)) and DSS (10-year 

DSS 62.6% vs. 93.7% (p < 1.8e-7)) in our discovery cohort. These findings were confirmed in the validation 

cohort, with 20% of the 195 patients categorized as p53abn-like tumors, showing 10-year PFS of 65.4% 

vs. 91.2% (p < 1.1e-4) and DSS of 58.3% vs. 84.3% (p < 5.3e-5). Additionally, comparison of the PFS and 

DSS between p53abn-like NSMP and p53abn ECs revealed a trend, though not statistically significant, in 

which p53abn-like NSMPs had better outcome compared to p53abn ECs in both the discovery and 

validation cohorts (Extended Data Fig. 2A,B).  

Of note, our model identified a subset of p53abn ECs (representing 20%; referred to as NSMP-like p53abn) 

with resemblance to NSMP as assessed by H&E staining. While we observed marginally superior disease-

specific survival in the identified cases compared to the rest of the p53abn group both in the discovery 

and validation cohorts, progression free survival was not significantly different between the groups 

(Extended Data Fig. 3A,B).  

Comparison of NSMP and p53abn-like NSMP. To further investigate the differences between NSMP and 

p53abn-like NSMP cases, we compared various clinical, pathological, and molecular variables 

(Supplementary Tables 6 and 7B). Our analysis showed an enrichment of p53abn-like NSMP cases with 

higher grade and higher stage tumors (p < 1.4e-25; p < 2.4e-4, respectively). In a multi-variate Cox 

regression analysis, the prognostic significance of the p53abn-like NSMP group remained significant in the 

presence of grade and stage (p = 0.02 and Hazard Ratio = 2.44; Supplementary Table 8). Furthermore, 

Fig. 3A shows an enrichment for estrogen receptor (ER) and progesterone receptor (PR) positive cases in 

the p53abn-like NSMPs in the subset of the cohort that the status these markers were available (p < 5.2e-

3 and p < 2.3e-4, respectively).  

Independent pathology review of selected NSMP cases. Two expert gynepathologists (NS, CBG) 

independently reviewed whole section slides of a subset of NSMP cases including the p53abn-like NSMP 

subtype. They specifically assessed whether tumors showed nuclear features that have been previously 

described as being associated with TP53 mutation/mutant pattern p53 expression in endometrial 

carcinoma30. The p53abn-like NSMP cases were enriched with tumors showing increased nuclear atypia, 

as assessed by altered chromatin pattern, nucleolar features, pleomorphism, atypical mitoses, or giant 

tumor cells (p < 0.00005 for both reviewers).  

Genomic characterization of p53abn-like NSMP cases. We next sought to investigate the molecular 

profiles of p53abn-like NSMP cases in our validation set for which we had access to tissue material. 

Targeted sequencing of exonic regions in a number of genes (more details in the Targeted point mutation 
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profiling section of the Methods) revealed enrichment of p53abn-like NSMP cases with TP53 mutations 

and enrichment of NSMP cases with CTNNB1 mutations (Fisher’s exact test p-values = 3.14e-4 and 0.01, 

respectively; Fig. 3A). More specifically, we identified eight p53abn-like NSMP tumors that had normal 

p53 IHC results (hence classified as NSMP by ProMisE classifier) but in fact harbored TP53 mutations by 

sequencing. These cases are examples of the well-known phenomenon of normal p53 protein levels 

despite there being a pathogenic mutation, which occurs in <5% of cases. However, even after removing 

these eight TP53 mutant cases, the worse prognosis of p53abn-like NSMP tumors persisted (Fig. 3B). Our 

ML model, therefore, identifies tumors with false negative immunostaining for p53 ,i.e., they lack mutant 

pattern protein expression despite having a TP53 mutation, but also identifies a subset of NSMP cases 

with features of p53abn morphology by H&E but neither mutation pattern immunostaining nor a mutation 

in sequencing TP53, and these have inferior survival compared to the rest of the NSMP cases. Exonic point 

mutation data for the TCGA subset of the discovery cohort were available and suggested a lack of 

enrichment of the p53abn-like NSMP group with specific gene mutations including CTNNB1 (Fig. 3C).  

We next selected representative samples of NSMP, p53abn, and p53abn-like NSMP cases in our validation 

cohort and performed shallow whole genome sequencing (sWGS). Overall, copy number profile analysis 

of these cases revealed that p53abn-like NSMP cases harbor a higher fraction of altered genome 

compared to NSMP cases but still lower than what we observe in p53abn cases (Fig. 4A; p < 0.035). These 

findings were further validated in the TCGA cohort (Fig. 4B; p < 5.46e-5). 

We next investigated the gene expression profiles associated with the p53abn-like NSMP, NSMP, and 

p53abn tumors within the TCGA cohort. Unsupervised clustering of patients based on gene expression 

profiles of their tumors showed that eleven of the 21 p53abn-like NSMPs had similar expression profiles 

to p53abn tumors, while the remaining 10 cases clustered together with the NSMP group (Fig. 4C). While 

p53abn and NSMP groups were clustered separately, unsupervised analysis of the gene expression 

profiles did not reveal any differences between p53abn-like NSMP group and other subtypes, i.e., they 

did not have a unique gene expression profile but instead clustered with one of the known molecular 

subtypes. We then performed pairwise differential expression analysis and pathway analysis, separately 

comparing p53abn-like NSMP and p53abn groups against NSMP cases. These results suggested the 

upregulation of PI3k-Akt, Wnt, and Cadherin signaling pathways both in p53abn-like NSMP and p53abn 

groups (compared to NSMP). Interestingly, while these pathways were up-regulated in both groups, we 

found little to no overlap between the specific down- and up-regulated genes in the p53abn-like NSMP 

and p53abn groups (compared to NSMP) suggesting that the molecular mechanisms associated with 
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p53abn and p53abn-like tumors might be different even though p53abn and p53abn-like NSMP groups 

had similar histopathological profiles as assessed based on H&E slides (the Gene expression analysis 

section of the Methods). 

Discussion 

Although many patients with endometrial carcinoma may be cured by surgery alone, about 1 in 5 patients 

have more aggressive disease and/or have the disease spread beyond the uterus at the time of diagnosis. 

Identifying these at-risk individuals remains a challenge, with current tools lacking precision. Molecular 

classification offers an objective and reproducible classification system that has strong prognostic value; 

improving the ability to discriminate outcomes compared to conventional pathology-based risk 

stratification criteria. However, it has become apparent that within molecular subtypes and most 

profoundly within NSMP ECs, there are clinical outcome outliers. The current study addresses this 

diversity by employing AI-powered histopathology image analysis, in an attempt to identify clinical 

outcome outliers within the most common molecular subtype of endometrial cancer (Fig. 5). Our results 

have several clinical and biological implications.  

To be clear, for some molecular subtypes, such as POLEmut endometrial cancers with almost uniformly 

favourable outcomes, no further stratification, at least within Stage I-II disease (encompassing >90% of 

POLEmut ECs), is needed. Multiple studies, as well as meta-analyses31, have shown that in patients with 

POLEmut endometrial cancers, additional pathological or molecular features are not associated with 

outcomes, i.e., are not prognostic, as POLE is the overriding feature that determines survival. However, 

for NSMP endometrial cancers, additional stratification tools are greatly needed. Designation of NSMP is 

the last step in molecular classification, only defined by what molecular features it does not have; that is 

without pathogenic POLE mutations, without mismatch repair deficiency or p53 abnormalities as assessed 

by IHC. This leaves a large group of pathologically and molecularly diverse tumors with markedly varied 

clinical outcomes.   

Our AI-based histomorphological image analysis model identified a previously unrecognized subset of 

NSMP endometrial cancers with inferior survival. This subset of patients encompassed approximately 20% 

of NSMP tumors which are the most common molecular subtype, representing half of endometrial 

cancers diagnosed in the general population, and thus account for 10% of all ECs. Our results suggest that 

clinicopathological, IHC, gene expression profiles, or NGS molecular markers (except for copy number 

burden to some extent) may not be able to identify these p53abn-like outliers. The AI classifier was able 

to identify those tumors with TP53 mutations (but normal p53 immunostaining), a result we view as 
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encouraging, in that these are “false negative” cases using the IHC classification and more appropriately 

assigned as p53abn, but even when these were removed from consideration AI imaging discerned other 

patients with NSMP EC where no molecular or pathological features would have identified them as having 

inferior outcomes. AI applied to histomorphological images of routinely generated H&E slides appears to 

enable a more encompassing and easily implementable stratification of NSMP tumors and provides 

greater value than any single or combined pathological/molecular profile could achieve.  

Molecular characterization of the identified subtype using sWGS suggests that these cases harbor an 

unstable genome with a higher fraction of altered genome, similar to the p53abn group but with lesser 

degree of instability. In spite of the fact that similar gene expression pathways were implicated in both 

groups and H&E images of both groups as assessed by AI had resemblances, expression data analysis 

revealed minimal overlap between the differentially expressed genes in both p53abn and p53abn-like EC 

compared to NSMP cases. This suggests that they may have different etiologies and warrants further 

biological interrogation of these groups in future studies. 

Certainly, others have attempted to refine stratification within early-stage endometrial cancers, including 

within the molecularly defined NSMP subset. PORTEC4a used a combination of pathologic and molecular 

features (MMRd, L1CAM overexpression, POLE,  CTNNB1 status) to identify low, intermediate, and high 

risk individuals assigned to favourable, intermediate, and unfavourable risk groups which then 

determined observations vs. treatment32. TAPER/EN.10 also stratifies early-stage NSMP tumors by 

pathological (e.g., histotype, grade, LVI status) and molecular features (TP53, ER status) to identify those 

individuals appropriate for de-escalated therapy33. In retrospective series, key parameters of ER and grade 

have been suggested to discern outcomes within NSMP. However, even in-depth profiling of apparent 

low risk ECs has failed to find pathogenomic features that would discern individuals who develop 

recurrence from other apparent indolent tumors34. Stasenko et al.34 assessed a series of 486 cases of 

‘ultra-low risk’ endometrial cancers defined as stage 1A with no myoinvasion, no LVI,  grade 1 of which 

2.9% developed recurrence with no identifiable associated clinical, pathological or molecular features34. 

Current treatment guidelines, even where molecular features are incorporated, offer little in terms of 

directing management within NSMP endometrial cancers beyond consideration of pathological features, 

leaving clinicians to struggle with optimal management12. A more comprehensive stratification tool within 

NSMP endometrial cancers would be of tremendous value, and AI discernment from histopathological 

images as a tool that can be readily applied to H&E slides that are routinely generated as part of the 

practice is appealing. 
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Our proposed AI model also identified a subset of p53abn ECs with marginally superior DSS and 

resemblance to NSMP (NSMP-like p53abn) as assessed by H&E staining. Further investigation of the 

identified groups and deep molecular and omics characterization of this subset of p53abn ECs may in fact 

aid us in refining this subtype and identifying a subset of p53abn cases with statistically superior 

outcomes.  

This study is the first to consider the application of AI in refining endometrial cancer molecular subtypes. 

In general, such studies to generate new knowledge using AI in histopathology are extremely sparse as a 

majority of the effort has focused on recapitulating the existing body of knowledge (e.g., to diagnose 

cancer, to identify histological subtypes, to identify known molecular subtypes). This study moves beyond 

the mainstream AI applications and more specifically identifies a new prognostic subset of EC, which also 

then enables us to direct efforts to understand the biological mechanisms of this newly identified subset. 

This could present an exciting opportunity to utilize the power of AI to inform clinical trials and deep 

biological interrogation by adding more precision in patient stratification and selection.  

AI histopathologic imaging-based application within NSMP offers the chance to discern outcomes within 

the largest endometrial cancer molecular subtype. It can be easily added to clinical algorithms after 

performing hysterectomy, identifying some patients (p53abn-like NSMP) as candidates for treatment 

analogous to what is given in p53abn tumors. Furthermore, the proposed AI model can potentially have 

greater impact on patient management and equitable cancer care if confirmed in diagnostic biopsies. If, 

from diagnostic office biopsy or surgical curettage endometrial cancers could be classified as NSMP 

tumors and then AI stratification applied, we would have the opportunity to guide what surgery is 

warranted, potentially directing individuals at very low risk of metastases to simple hysterectomy in the 

community and more aggressive p53abn-like NSMP to cancer centers for lymph node assessment, 

omental sampling and directed biopsies given a higher likelihood of upstaging. 
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Fig. 3: (A) Clinicopathological features and point mutation data for the validation cohort, (B) KM curves 
associated with PFS and DSS for the validation cohort after removal of the samples with TP53 mutations, 
(C) Clinicopathological features and point mutation data for the TCGA cohort.  
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indicates the median, with the box representing the first to third quartile and the whiskers extending 1.5 
times the interquartile range. (C) Gene expression profiles associated with the p53abn-like NSMP (n=21), 
NSMP (n=69), and p53abn (n=56) tumors in the TCGA cohort.  
 

 
Fig. 5: The refined classification scheme that leverages AI screening as a supplementary stratification 
mechanism within the NSMP molecular subtype.  
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Table 1: Clinicopathologic features of the discovery set. 
 

Variable Total NSMP p53abn 
Total 363 268 (73.83%) 95 (26.17%) 
 
Age at diagnosis    

<60 yrs 121 (33.33%) 110 (41.04%) 11 (11.58%) 
≥60 yrs 242 (66.67%) 158 (58.96%) 84 (88.42%) 

 
Histotype    

Endometrioid 288 (79.34%) 262 (97.76%) 26 (27.37%) 
Non-endometrioid 75 (20.66%) 6 (2.24%) 69 (72.63%) 
 
Tumor grade    

Low grade (G1–2) 258 (71.07%) 246 (91.79%) 12 (12.63%) 
High grade (G3) 105 (28.93%) 22 (8.21%) 83 (87.37%) 

 
FIGO stage    

I-II 291 (80.17%) 239 (89.18%) 52 (54.74%) 
III-IV 71 (19.56%) 28 (10.45%) 43 (45.26%) 

Unknown 1 (0.28%) 1 (0.37%) 0 
 

Table 2: Clinicopathologic features of the validation set. 
 

Variable Total NSMP p53abn 
Total 288 193 (67.01%) 95 (32.99%) 
 
Age at diagnosis    

<60 yrs 81 (28.13%) 72 (37.70%) 9 (9.47%) 
≥60 yrs 205 (71.18%) 119 (62.30%) 86 (90.53%) 

Unknown 2 (0.69%) 2 (1.04%) 0 
 
Histotype    

Endometrioid 195 (67.71%) 172 (89.12%) 23 (24.21%) 
Non-endometrioid 91 (31.60%) 19 (9.84%) 72 (75.79%) 

Unknown 2 (0.69%) 2 (1.04%) 0 
 
Tumor grade    

Low grade (G1–2) 151 (52.43%) 146 (75.65%) 5 (5.26%) 
High grade (G3) 137 (47.57%) 47 (24.35%) 90 (94.74%) 

 
FIGO stage    

I-II 216 (75.00%) 166 (86.01%) 50 (52.63%) 
III-IV 69 (23.96%) 24 (12.44%) 45 (47.37%) 

Unknown 3 (1.04%) 3 (1.55%) 0 
 
 


