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 2 

ABSTRACT 30 
 31 
Early evidence that paOents with (mulOple) pre-exisOng diseases are at highest risk for severe 32 

COVID-19 has been instrumental in the pandemic to allocate criOcal care resources and later 33 

vaccinaOon schemes. However, systemaOc studies exploring the breadth of medical 34 

diagnoses, including common, but non-fatal diseases are scarce, but may help to understand 35 

severe COVID-19 among paOents at supposedly low risk. Here, we systemaOcally harmonized 36 

>12 million primary care and hospitalisaOon health records from ~500,000 UK Biobank 37 

parOcipants into 1448 collated disease terms to systemaOcally idenOfy diseases predisposing 38 

to severe COVID-19 (requiring hospitalisaOon or death) and its post-acute sequalae, Long 39 

COVID. We idenOfied a total of 679 diseases associated with an increased risk for severe 40 

COVID-19 (n=672) and/or Long COVID (n=72) that spanned almost all clinical specialOes and 41 

were strongly enriched in clusters of cardio-respiratory and endocrine-renal diseases. For 57 42 

diseases, we established consistent evidence to predispose to severe COVID-19 based on 43 

survival and geneOc suscepObility analyses. This included a possible role of symptoms of 44 

malaise and faOgue as a so far largely overlooked risk factor for severe COVID-19. We finally 45 

observed parOally opposing risk esOmates at known risk loci for severe COVID-19 for 46 

eOologically related diseases, such as post-inflammatory pulmonary fibrosis (e.g., MUC5B, 47 

NPNT, and PSMD3) or rheumatoid arthriOs (e.g., TYK2), possibly indicaOng a segregaOon of 48 

disease mechanisms. Our results provide a unique reference that demonstrates how 1) 49 

complex co-occurrence of mulOple – including non-fatal – condiOons predispose to increased 50 

COVID-19 severity and 2) how incorporaOng the whole breadth of medical diagnosis can guide 51 

the interpretaOon of geneOc risk loci. 52 
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INTRODUCTION 54 

From the outset of the COVID-19 pandemic it was evident that underlying condiOons were 55 

associated with both the risk of infecOon with SARS-CoV-2, the cause of COVID-19, and the 56 

risk of it being severe, based on the risk of hospitalisaOon, to venOlaOon and death1. IniOal 57 

focus was on the small number of diseases known to put people at higher risk of other 58 

respiratory viral infecOons, such as influenza. The Center for Disease Control in the US and 59 

other naOonal bodies published lists of diseases associated with COVID-19 and in the UK more 60 

than 1 million people were idenOfied as clinically extremely vulnerable and required 61 

‘shielding’ based on having one or more specified diseases2. This included older individuals, 62 

men, and those with the presence of mulOple, pre-exiOng long-term condiOons, such as 63 

impaired immunity, type 2 diabetes, hypertension, or chronic kidney disease (CKD)1.  64 

However, the vast body of COVID-19 risk factor studies were based on a candidate approach 65 

(e.g., diseases known to be associated with immune compromise), studying common diseases 66 

in limited numbers (usually fewer than 100 diseases)3–6. Studies that systemaOcally 67 

invesOgated diseases across clinical specialOes, including those primarily managed and 68 

treated in primary care are largely lacking, but are needed to understand why some paOents 69 

with COVID-19 suffer from a severe outcome or dead, albeit at supposedly low-risk. Such a 70 

systemaOc, ‘diseasome’-wide study can further improve our understanding of how variaOon 71 

in the host genome7,8 confers risk for severe COVID-19 and guide drug target prioriOsaOon 72 

strategies. 73 

Here, we collated millions of health records from primary care, hospitalizaOons and cancer 74 

registraOons, and death records among ~500,000 parOcipants of the UK Biobank (UKB) into 75 

medical diagnosis concept terms, so-called ‘phecodes’9, to systemaOcally assess the risk for 76 

severe COVID-19 and its post-acute sequalae, Long COVID, across the breadth of medical 77 

diagnosis. Apart from well-recognized high-risk paOent groups, such as those with chronic 78 

kidney disease or those with compromised immune funcOon, we demonstrate consistent 79 

evidence for the possible role of less recognized diseases and symptoms, including malaise 80 

and faOgue, based on survival and geneOc suscepObility analyses. We finally observed that 81 

some genomic regions conferring a higher risk for severe COVID-19 might be protecOve for 82 

diseases that parOally share pathomechanisms with COVID-19, or vice versa, with possible 83 
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implicaOons for drug development programs, such as TYK2-inhibitors that may increase the 84 

risk for severe COVID-19. 85 

RESULTS 86 
 87 
Here, we systemaOcally invesOgated the risk conferred by the presence and potenOal causal 88 

relevance of 1448 diseases for COVID-19 severity (hospitalisaOon, severe respiratory failure, 89 

and death) and Long COVID (Fig. 1), based on medical disorder concepts10,11 defined and 90 

collated from >12 million medical records from primary (general pracOce), secondary care 91 

(hospital admissions), and disease registry (cancer registry), death cerOficates, and paOent-92 

reported condiOons among 502,460 UKB parOcipants (Fig. 1 and Supplemental Tab. 1). 93 

IncorporaOng primary care data more than doubled case numbers for more than half (n=817; 94 

56.4%) of the diseases considered (Supplemental Tab. 1). 95 

 96 
Disease risk profiles for COVID-19 and Long COVID 97 
 98 
We collated EHRs up unOl 01/01/2020 to define pre-exisOng diseases at any Omepoint before 99 

and defined severe COVID-19 based on hospital admissions and death cerOficates up unOl 100 

31/12/2022 totalling 7,507 (hospitalisaOon), 662 (respiratory failure), and 1,546 cases (death), 101 

with first cases occurring end of January 2020. Due to restricted availability of primary care 102 

data, we only included records up unOl 30/09/2021 to idenOfy 470 cases of Long COVID.  103 

We idenOfied 1,128 significant (p<1.1x10-5) disease – COVID-19 outcome associaOons, 104 

including almost half (n=679) of the diseases considered with at least one of the four COVID-105 

19 outcomes derived (Fig. 2 and Supplemental Tab. 2). Pre-exisOng diseases were almost 106 

exclusively associated with a higher risk for COVID-19 endpoints (median hazard raOo (HR): 107 

2.39, range: 0.59 - 17.3), only two diseases (benign neoplasm of skin and varicella infecOon) 108 

were associated with a decreased risk. Associated diseases spanned almost all chapters of the 109 

ICD-10 (17 out of 18) but were consistently enriched in the chapters ‘respiratory’ (odds raOo 110 

[OR]: 5.96; p-value: 2.7x10-8), ‘circulatory’ (OR: 2.95; p-value: 3.5x10-7), and 111 

‘endocrine/metabolic’ diseases (OR: 2.76; p-value: 9.1x10-4) when associated with severe 112 

COVID-19. In contrast, pre-exisOng disease-codes classified as ‘symptoms’ were more than 13-113 

fold enriched among diseases associated with an increased risk for Long COVID (OR: 13.2; p-114 

value: 3.6x10-8) but also hospitalisaOon (OR: 5.53; p-value: 9.9x10-5) and death (OR: 3.06; p-115 

value: 7.3x10-3). 116 
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For COVID-19 requiring hospitalisaOon, we replicated and refined known associaOons with 117 

serious pre-exisOng diseases that have been previously used to idenOfy clinically extremely 118 

vulnerable people. This included respiratory diseases like pseudomonal pneumonia (HR: 7.53, 119 

95%-CI: 4.74-11.97; p-value<1.2x10-17), acute renal failure (HR: 4.02, 95%-CI: 3.74-4.32, p-120 

value: <10-300) or type 2 diabetes with renal complicaOons (HR: 7.44; 95%-CI: 5.67 – 9.76; p-121 

value: 1.5x10-47), as well as immune deficiencies (e.g., deficiency of humoral immunity HR: 122 

6.02; 95%-CI: 4.36 – 8.31; p-value: 1.3x10-27) or paOents under immune suppression (e.g., liver 123 

transplants HR: 7.25 95%-CI: 4.51 – 11.68, p-value: 3.4x10-16). However, we further observed 124 

strong associaOons with so far less recognized pre-exisOng mental health and psychiatric 125 

diseases and condiOons with effect sizes comparable to those previously considered to 126 

idenOfy extremely vulnerable people. This included symptoms of malaise and faOgue (HR: 127 

2.17, 95%-CI: 2.07 - 2.27, p-value: 4.4x10-222) or suicide a@empts (HR 5.33, 95%-CI: 4.45 - 6.39, 128 

p-value: 3.6x10-73). Most diseases (n=641, 95.5%, phetero>10-3) associated with similar 129 

magnitude across all three different definiOons of COVID-19 severity, with different forms of 130 

demenOas (phetero<2.1x10-24) being among the few excepOons, associaOng with hospitalisaOon 131 

(HR: 3.83; 95%-CI: 3.38 - 4.34; p-value: 2.3x10-97) and death (HR: 10.82; 95%-CI:  9.15 - 12.80; 132 

p-value: 1.4x10-170), but not severe respiratory failure (HR: 1.15; 95%-CI: 0.51 - 2.57; p-value: 133 

0.74) due to COVID-19.  134 

In contrast, pre-exisOng diseases associated with an increased risk for Long COVID only 135 

parOally overlapped with those increasing the risk for severe COVID-19. Most notably, we 136 

replicated associaOons with anxiety disorders12 (HR: 2.59; 95%-CI: 2.09 - 3.20; p-value:1.8x10-137 
18) and other mental health symptoms, but most prominently with symptoms of malaise and 138 

faOgue (HR: 2.78; 95%-CI: 2.29 - 3.37; p-value:1.5x10-25) that are hallmarks of Long COVID and 139 

were also strongly associated with severe COVID-19. 140 

Almost all significant associaOons (99.8%, n=1126) were consistent when considering all-cause 141 

death as a compeOng event (Supplementary Tab. 3), and more than half (63.6%; n=718) 142 

remained staOsOcally significant (p<4.4x10-5) when accounOng for a large set of potenOal 143 

confounders in mulOvariable Cox-models (Supplementary Tab. 3). This suggests that 144 

potenOally unreported associaOons, such as the increased risk for severe COVID-19 among 145 

paOents reporOng symptoms of malaise and faOgue (adjusted HR: 1.66, 95%-CI: 1.58 - 1.74, 146 

p-value=7.3x10-92), are not just a reflecOon of a general disease burden or other chronic 147 

diseases associated with a greater risk for severe COVID-19.  148 
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We observed limited evidence for effect modificaOons by sex (n=7), non-European ancestry 149 

(n=1), or age (n=8), but not social deprivaOon, with 16 disease – COVID 19 pairings showing 150 

evidence of significant differences (Supplementary Tab. 4; p<3.6x10-6). All included stronger 151 

effects in women compared to men, e.g., gout for hospitalised COVID-19 (women: HR: 2.56, 152 

95%-CI 2.21 - 2.96, p-value: 1.3x10-36; men: HR: 1.46, 95%-CI: 1.34 – 1.58, p-value: 2.1x10-19), 153 

among Europeans reporOng vitamin D deficiencies (Europeans: HR: 2.31, 95%-CI: 2.13 – 2.51, 154 

p-value: 2.1x10-87; non-Europeans: HR: 1.31, 95%-CI: 1.08 – 1.60, p-value=5.5x10-3), or among 155 

younger parOcipants, e.g., disorders of magnesium metabolism and death with COVID-19 as 156 

a likely result of renal failure (age ≤65 years: HR: 42.98, 95%-CI: 20.10 – 91.90, p-value: 3.0x10-157 
22; age >65 years: HR: 5.35, 95%-CI: 3.51 - 8.16, p-value: 5.9x10-15).  158 

 159 

Complex pa;erns of mul=morbidity are associated with increased risk 160 

We next derived a disease-disease network13 (Fig. 3A) to understand, whether the large set 161 

of diseases associated with an increased risk for severe COVID-19 act independently or rather 162 

reflect an increased risk among parOcipants suffering from mulOple pre-exisOng condiOons, 163 

i.e., mulOmorbidity. The network contained a total of 1,381 diseases connected through 5,212 164 

edges based on non-random co-occurrence (Supplementary Tab. 5a and b; see Methods). 165 

Diseases segregated into 31 ‘communiOes’ being more strongly connected to each other 166 

compared to the rest of the network (Fig. 3B and C).  167 

Two disease communiOes were consistently and strongly enriched for diseases associated 168 

with severe COVID-19. The first (e.g., OR: 5.20; p-value= 2.2x10-10; for severe respiratory 169 

failure) community was strongly enriched for circulatory (OR: 17.6; p-value: 4.4x10-39) and 170 

respiratory (OR: 10.3; p-value: 7.8x10-16) diseases, closely resembling the cardio-respiratory 171 

risk profile already described above (Fig. 3B). The second community consisted of diverse 172 

endocrine (OR: 6.19; p-value: 1.9x10-13) and circulatory disease (OR: 3.75; p-value: 5.4x10-8), 173 

and largely reflected the renal-diabeOc risk profile (Fig. 3C). Accordingly, for each disease 174 

acquired during lifeOme within the la@er disease community, parOcipants’ risk increased by 175 

18% and 20% to be hospitalised (HR: 1.18; 95%-CI: 1.17 - 1.18; p-value: p<10-300) or die with 176 

COVID-19 (HR: 1.20; 1.19 - 1.20; p-value<10-300), respecOvely. 177 

Diseases increasing the risk for severe COVID-19, but not Long COVID further significantly 178 

correlated with hub status (e.g., hospitalisaOon: r=0.59; p-value: 2.8x10-124) in the disease-179 

disease network (Fig. 3D), that is, diseases that connect a large cluster of diseases to the rest 180 
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 7 

of the network and might hence be considered as mulOmorbidity hotspots. For example, 181 

acute renal failure, strongly associated with severe COVID-19 (Fig. 3D), showed strong parOal 182 

correlaOons with 30 other diseases and paOents are hence prone to complex mulOmorbidity. 183 

However, the imperfect correlaOon between hub status and disease-associaOon profiles 184 

indicates that certain forms of mulOmorbidity, such those related secondary malignancies of 185 

lymph nodes, are possibly less related to severe COVID-19.  186 

 187 

Convergence of associated disease risk and gene=c liability 188 

We next systemaOcally characterised whether diseases idenOfied to be associated with 189 

COVID-19 severity or Long COVID shared geneOc similarity with host geneOc suscepObility to 190 

severe COVID-19 to understand potenOal underlying causal mechanisms. We computed 191 

geneOc correlaOon esOmates for all 1128 disease – COVID-19 outcome pairs (see Methods) 192 

and observed 75 pairs (6.6%) that showed evidence for significant (p<4.4x10-5) and 193 

direcOonally consistent geneOc correlaOons (Fig. 4 and Supplemental. Tab 6), indicaOng a 194 

putaOvely causal link of any of 57 unique diseases on severe COVID-19. We did not observe 195 

evidence of convergence for Long COVID, which might likely be explained by the sOll low 196 

staOsOcal power for the respecOve genome-wide associaOon study14. 197 

The diseases with consistent evidence from survival and geneOc analysis included well-198 

described risk-increasing effects of pre-exisOng endocrine (e.g., type 2 diabetes), respiratory 199 

(e.g., respiratory failure), or renal (e.g., chronic kidney disease) diseases, but also digesOve 200 

(e.g., gastriOs and duodeniOs), or musculoskeletal (e.g., rheumatoid arthriOs) diseases, and 201 

further symptoms of malaise and faOgue (rG=0.26; p-value=4.7x10-6) and abdominal pain 202 

(rG=0.33; p=2.5x10-11), as well as adverse reacOons to drugs (e.g., poisoning by anObioOcs: 203 

rG=0.38; p-value=2.2x10-6). Findings that collecOvely demonstrated the need for a 204 

comprehensive assessment of disease-risk beyond few, selected common chronic condiOons. 205 

Among the 41 diseases for which we had sufficient geneOc instruments to perform more 206 

stringent Mendelian randomizaOon (MR) analyses to assess causality (see Methods), we 207 

observed at least nominally significant evidence for gout and hospitalisaOon (OR: 1.03; 95%-208 

CI: 1.01 – 1.05, p-value: 0.03), as well as arthropathy not elsewhere specified (OR: 1.28; 95%-209 

CI: 1.06 – 1.55; p-value: 0.02) and unspecified monoarthrOOs (OR: 1.21; 95%-CI: 1.04 – 1.41; 210 

p-value: 0.02) for severe COVID-19 (Supplementary Tab. 7). While we might have been sOll 211 
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underpowered for many diseases, this leaves the possibility that convergence of survival and 212 

geneOc correlaOon analysis might, in part, be explained by shared risk factors. 213 

 214 
Evidence for par=ally opposing roles of shared molecular mechanisms between severe 215 

COVID-19 and related disorders 216 

To finally understand possible molecular mechanisms linking the ‘diseasome’ to COVID-19, we 217 

systemaOcally profiled disease associaOons across 49 independent genomic regions linked to 218 

COVID-19 or Long COVID. We observed strong and robust evidence of a geneOc signal shared 219 

between severe COVID-19 and a total of 33 diseases at nine loci (posterior probability (PP) > 220 

80%) (Fig. 5A and Supplemental Tab. 8). Apart from known pleiotropic loci, such as ABO and 221 

FUT2 coding for blood group types, this included respiratory risk loci, albeit with contradicOng 222 

effect esOmates for three loci (Fig. 5B). While COVID-19 risk increasing alleles at LZTFL1 and 223 

TRIM4 were consistently associated with a higher risk for viral pneumonia and post-224 

inflammatory pulmonary fibrosis, respecOvely, risk-increasing alleles at MUC5B, NPNT, and 225 

PSMD3 were inversely associated with post-inflammatory pulmonary fibrosis and asthma. An 226 

observaOon that extended even beyond shared loci (Fig. 5C) illustraOng a general trend of 227 

phenotypic divergence of geneOc effects on diseases that share pathological features with 228 

severe COVID-19.  229 

A notable observaOon was the TYK2 locus that has previously been suggested to indicate the 230 

efficacy of successfully repurposed drugs for severe COVID-1915. Briefly, TYK2 encodes for 231 

tyrosine kinase 2 (TYK2) a protein parOally targeted by Janus kinase (JAK) inhibitors like 232 

bariciOnib, that have been approved for rheumatoid arthriOs and successfully repurposed for 233 

severe COVID-19, although predaOng possible evidence from geneOc studies16–18. Accordingly, 234 

we observed that the same geneOc variant, rs34536443 (PP=99.8%), associated with the risk 235 

for severe COVID-19 was also associated with, amongst others, the risk of rheumatoid 236 

arthriOs, but in opposing effect direcOons (Fig. 5B). Rs34536443 is a loss-of-funcOon missense 237 

variant (p.Pro1104Ala) for TYK2 and the funcOonally impairing minor C allele was associated 238 

with a 50% increased risk for severe COVID-19 (odds raOo: 1.50; 95%-CI: 1.40 - 1.62, p-239 

value=4.3x10-29) but a 23% reduced risk for rheumatoid arthriOs (odds raOo: 0.77; 95%-CI: 240 

0.72 – 0.83; p-value=2.4x10-12) as well as other autoimmune diseases, in parOcular psoriasis 241 

(Supplementary Tab. 8). While the discrepancy between the success of the drug and geneOc 242 

inference might be explained by the rather weak affinity of bariciOnib for TYK219, paOents 243 
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 9 

undergoing trials with TYK2-inhibitors for psoriasis20 might be at an elevated risk for severe 244 

COVID-19. This observaOon seemingly aligns with studies on Tyk2-/- mouse models reporOng 245 

an impaired immune response to viral infecOons21. 246 

  247 
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DISCUSSION 248 

An immediate understanding which paOents are at greatest risk for severe COVID-19 and 249 

possibly death has proven to be instrumental to triage paOents early in the pandemic to 250 

allocate criOcal care resources, such as venOlaOon or extracorporeal membrane oxygenaOon 251 

and, later, vaccinaOon as well. The vast majority of studies3–6, however, focussed on a rather 252 

narrow set of common, usually chronic, condiOons in the risk assessment leaving a 253 

considerable number of severe COVID-19 cases unexplained. We demonstrate here how 254 

capitalizing on the whole breadth of medical diagnoses through electronic health record 255 

linkage revealed 1) so far largely neglected paOent populaOons at considerable risk, including 256 

those reporOng symptoms of malaise and faOgue, and 2) that paOents with mulOple pre-257 

exisOng condiOons, in parOcular cardio-respiratory and endocrine-renal diseases, are probably 258 

at highest risk. Via integraOon of host geneOcs, we further provide evidence that a 259 

considerable set of diverse diseases may causally drive, or at least share causal drivers with, 260 

the risk for severe COVID-19, and exemplify how disease-wide characterisaOon of specific risk 261 

loci can inform disease mechanism and derivaOon of potenOally druggable targets or adverse 262 

effects.  263 

Among the diseases for which we observed consistent evidence from survival and geneOc 264 

analysis to be linked to severe COVID-19 were mulOple examples that have been rarely if at all 265 

reported. For example, we observed consistent evidence that symptoms of malaise and 266 

faOgue, as well as chronic faOgue, predispose to severe COVID-19. While the vast amount of 267 

literature currently discusses or reported these symptoms and disease as characterisOcs for 268 

COVID-19 and its post-acute sequelae12,22, li@le to nothing is known why paOents reporOng 269 

faOgue might be at higher risk. While our definiOon of ‘malaise and faOgue’ covered a broad 270 

range of parOally unspecific medical codes with most cases (n=83,316 out of 87,908, 92.4%) 271 

originaOng from primary care, we observed consistent evidence for the refined diagnosis of 272 

chronic faOgue classified as post-viral faOgue symptom (Supplemental Tab. 2). A hypothesis 273 

might be, that paOents that are already suffering from post-viral symptoms are at a greater 274 

risk in general to suffer from more severe courses of viral infecOons through yet to be 275 

idenOfied mechanisms, that may well comprise an altered immune response. However, the 276 

evidence we provide does not preclude the existence of general, currently inaccessible, risk 277 

factors that predispose to more severe long-term consequences of viral infecOons. 278 
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Our extensive geneOc analysis revealed some parOally contradicOng findings that may point 279 

to a segregaOon of overall geneOc suscepObility and risk conferred by specific loci and 280 

mechanisms, replicaOng and augmenOng findings from a previous study in the Million 281 

Veterans Study23. For example, we observed consistent evidence that pre-exisOng post-282 

inflammatory pulmonary fibrosis, likely represenOng cases of idiopathic pulmonary fibrosis, is 283 

a strong risk factor for severe COVID-19 and death, and genome-wide effects were highly 284 

correlated between both (rG=0.45, p=2.3x10-5), but effects at one of the strongest risk loci for 285 

post-inflammatory pulmonary fibrosis were protecOve for severe COVID-19. Our results 286 

thereby extend previous observaOons of misaligning effects at the MUC5B locus and 287 

idiopathic pulmonary fibrosis24,25. Results that might be explained by a latent, genome-wide 288 

risk component (as genome-wide significant loci do not contribute to geneOc correlaOon 289 

analysis) that predisposes to severe lung fibrosis irrespecOve of the exact trigger, and specific 290 

molecular pathways characterisOc for each disease that differ based on the required immune 291 

response to combat the infecOon. Cell-type and state-specific effects of shared geneOc 292 

variants or possible design artefacts of GWAS studies of infecOous disease, by which certain 293 

paOent groups are ‘underrepresented’ due to tailored shielding efforts to minimize viral 294 

exposure, are other possible explanaOons. A similar paradoxical effect at the TYK2 locus 295 

highlights the unique potenOal of integraOng electronic health care records with geneOc data 296 

to guide drug target idenOficaOon and risk esOmaOon, including emerging diseases and targets 297 

in clinical trials.  298 

There are a number of limitaOons that need to be taken in consideraOon when interpretaOng 299 

our results. Firstly, the COVID-19 pandemic was characterised by strong disrupOons of social 300 

life and health care, with different waves of new SARS-CoV-2 variants of different 301 

pathogenicity, lockdowns, and implementaOon of vaccines programs, all of which will have 302 

influenced the general risk to develop severe COVID-19 for which we could not control for in 303 

survival analysis. However, we observed generally li@le evidence of violaOon of the 304 

proporOonal hazard assumpOons and filtered associaOons with evidence for strong violaOons. 305 

Secondly, we cannot exclude the possibility that the mulOtude of diseases associated with 306 

severe COVID-19 might also be explained by shared, generic risk factors, such as obesity or 307 

smoking, and we implemented sensiOvity analysis and comprehensive geneOc analysis to 308 

miOgate possible confounding, although even larger geneOc studies are needed to idenOfy 309 
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robust geneOc signals for diseases like chronic faOgue and other rare diseases that we linked 310 

to COVID-19. Thirdly, while we obtained li@le evidence that disease-risk pa@erns differ across 311 

ancestries, the UK Biobank cohort is not a representaOve sample of the general populaOon 312 

and does not sufficiently cover underrepresented populaOons, e.g., ethnic minoriOes, and 313 

addiOonal work is needed to verify our observaOons in other populaOons. Lastly, while our 314 

effort to collate and harmonize electronic health records across various sources into medical 315 

concept terms covered almost 1,500 diseases, it is sOll only an approximaOon of the 316 

complexity of medical diagnosis and more work, using electronic health records at a naOonal 317 

scale, is needed to refine and augment the space of diseases to invesOgate.  318 

Our results demonstrate the unique potenOal of integraOng health records from primary and 319 

secondary care with host geneOc data to 1) rapidly idenOfy paOents at highest risk beyond 320 

commonly assessed risk groups, 2) understand pathological pathways, and 3) inform 321 

druggable strategies for emerging health threats, such as COVID-19.  322 

METHODS 323 
 324 
Study populaHon 325 

UK Biobank (UKB) is a prospecOve cohort study from the UK, which contains more than 326 

500,000 volunteers between 40 and 69 years of age at inclusion. The study design, sample 327 

characterisOcs and genome-wide genotype data have been described in Sudlow et al.26 and 328 

Bycro} et al.27. The UKB was approved by the NaOonal Research Ethics Service Commi@ee 329 

Northwest MulO-Centre Haydock and all study procedures were performed in accordance 330 

with the World Medical AssociaOon DeclaraOon of Helsinki ethical principles for medical 331 

research. We included 502,460 individuals who had not withdrawn their consent. For survival 332 

analysis we considered a set of 438,917 individuals who were sOll alive at the beginning of the 333 

COVID-19 pandemic (01/01/2020) and had geneOcally inferred ancestry also beyond white 334 

Europeans. We chose the enOre set of white Europeans (n=441,671) that passed standard 335 

quality control for geneOc analysis to maximise staOsOcal power.  336 

 337 

COVID-19 and Long COVID outcome definiHons 338 

We defined a total of four different COVID-19 related outcomes closely aligned with previous 339 

studies8,14,28. We used hospital episode staOsOcs to idenOfy parOcipants who had been 340 
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‘hospitalised’ with COVID-19 based on ICD-10 codes U07.1 and U07.2, and the same ICD-10 341 

codes to idenOfy parOcipants who have died from/with COVID-19 based on death registries. 342 

We did not require a posiOve PCR COVID-19 test due to differences in local reporOng of test 343 

results. We adopted a slightly more sophisOcated definiOon for ‘severe respiratory failure’, 344 

demanding a posiOve COVID-19 test (based on test results released for England, Scotland, and 345 

Wales provided by UKB through the COVID-19 Second GeneraOon Surveillance System) within 346 

a month of acute respiratory failure, defined by ICD-10 codes J80, J96.00, J96.09, Z99.1 from 347 

hospital episode staOsOcs or E85.1 and E85.2 when admi@ed to the intensive care unit. To 348 

define ‘Long COVID’ we used primary care data released by UKB 349 

(covid19_emis_gp_clinical.txt, covid19_tpp_gp_clinical.txt) searching for codes indicaOng 350 

suspected diagnosis [CTV3: Y2b89 – “Referral to post-COVID assessment clinic”, Y2b8a – 351 

“Referral to Your COVID Recovery rehabilitaOon pla�orm”, Y2b87 – “Post-COVID-19 352 

syndrome”, and Y2b88 – “SignposOng to Your COVID Recovery”; SNOMED-CT: 353 

1325161000000102 – “Post-COVID-19 syndrome”, 1325031000000108 – “Referral to post-354 

COVID assessment clinic”, 1325041000000104 – “Newcastle post-COVID syndrome Follow-up 355 

Screening QuesOonnaire”, 1325181000000106 – “Referral to Your COVID Recovery 356 

rehabilitaOon pla�orm”, 1325021000000106 – “Ongoing symptomaOc disease caused by 357 

severe acute respiratory syndrome coronavirus 2”, 1325141000000103 – “SignposOng to Your 358 

COVID Recovery”, 1325081000000107 – “Assessment using Post-COVID-19 FuncOonal Status 359 

Scale structured interview”, 1325061000000103 – “Assessment using COVID-19 Yorkshire 360 

RehabilitaOon Screening tool”, 1325071000000105 – “Assessment using Newcastle post-361 

COVID syndrome Follow-up Screening QuesOonnaire”, 1325051000000101 – “COVID-19 362 

Yorkshire RehabilitaOon Screening tool”]. For each event, we took the earliest record to define 363 

disease onset. 364 

 365 

Disease ascertainment 366 

We collated electronic health records (EHRs) from primary and secondary care, cancer 367 

registries, and death cerOficates based on tables provided by UK Biobank (gp_clinical.txt, 368 

covid19_emis_gp_clinical.txt, covid19_tpp_gp_clinical.txt, hesin_diag.txt, death.txt) 369 

downloaded in June 2021. We parsed all records to exclude codes with a recorded date before 370 

or within the year of birth of the parOcipant to minimize coding errors from EHRs. We used 371 

mappings provided by UK Biobank to include self-reported condiOons based on ICD-10 codes. 372 
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For each data set separately we generated mapping tables that link ICD-10, ICD-9, Read 373 

version 2, Clinical Terms Version 3 (CTV3) terms, or SNOMED-CT codes to a set of 1560 374 

summarized clinical enOOes called phecodes11,29 (Supplementary Tab. 1). For example, more 375 

than 90 ICD-10 codes can indicate parOcipants with type 1 diabetes that are here collecOvely 376 

summarized under the phecode ‘type 1 diabetes’30. We subsequently fused all data sources 377 

based on a common set of phecodes and retained for each parOcipant and each phecode only 378 

the earliest entry across all EHR resources. We idenOfied a total of 1448 phecodes with at least 379 

100 cases in the overall UKB sample. For each parOcipant and phecode, we kept only the 380 

earliest date as an indicator for disease onset and defined all events occurring before 381 

01/01/2020 as prevalent, while we considered any event for geneOc analysis. To increase the 382 

accessibility of our results, we used the term ‘disease’ instead of ‘phecode’ throughout the 383 

paper. 384 

 385 

Survival analysis 386 

We used Cox-proporOonal hazard models to esOmate the risk associated with each disease 387 

and any of the four COVID-19 related outcomes with age as the underlying scale, adjusOng for 388 

sex (omi@ed for sex-specific diseases) and geneOcally inferred ancestry. For each COVID-19 389 

outcome, we defined controls separately as all those parOcipants without a corresponding 390 

record during the Ome course of the study. We repeated Cox-proporOonal hazard models 391 

considering all-cause death as a compeOng event rather than censoring as a sensiOvity 392 

analysis. We selected 01/03/2020 as the starOng point of our study and used 31/12/2022 393 

(COVID-19 endpoints) or 30/09/2021 (Long COVID) as endpoints of the observaOon period 394 

depending on the availability of health record linkage. We computed Schoenfeld residuals to 395 

test for the proporOonal hazard assumpOon, and further computed Ome varying effects of 396 

diseases by introducing 6 months breaks. For each disease – COVID-19 model, we considered 397 

all parOcipants that passed inclusion criteria. We applied stringent mulOple tesOng correcOon 398 

(p<0.05/4*1448=4.8x10-8) and further filtered results for those possibly violaOng the 399 

proporOonal hazard assumpOon (p<10-3). To establish endpoint-specific associaOons, we 400 

performed meta-analysis across disease associaOons for all three COVID-19 endpoints derived 401 

using the R package metafor (v.3.8.1). We performed addiOonal sensiOvity analysis using an 402 

extended set of confounders similar to previous work31, including self-reported smoking status 403 

and alcohol consumpOon, body mass index, and Townsend deprivaOon index (all based on 404 
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baseline values), healthcare uOlizaOon in the five years before the pandemic (number of stays 405 

and total days in hospital), as well as a variable indicaOng parOcipants with two or more long-406 

term condiOons.  407 

We tested for a potenOal modifying effect of sex, non-European ancestry, age (≤65 years vs 408 

>65 years), and social deprivaOon (Townsend index above median vs below median; median 409 

= -2.22) on the results by systemaOcally performing interacOon tesOng, i.e., introducing a 410 

disease – sex/non-European ancestry interacOon term into Cox-models. For the la@er, we 411 

requested to have at least 50 observaOons in each group to ensure model convergence. We 412 

subsequently corrected for a total of 13,728 tests (p<3.6x10-6). All staOsOcal analysis were 413 

implemented using R v4.1.2. 414 

 415 

Disease network 416 

We computed a sex-aware disease network using parOal correlaOons as implemented in the 417 

R package ppcor (v.2.1.1) following previous work13. Briefly, parOal correlaOons (rP) account 418 

for the fact, that a correlaOon, or co-occurrence, between two diseases might be driven by a 419 

third or any other disease considered. We retained only parOal correlaOons passing stringent 420 

mulOple tesOng (p<4.9x10-8) and rP > 0.02 as we reasoned that a disease-disease network likely 421 

exhibits scale-free properOes32 with node degrees following a power law. The la@er step 422 

omi@ed many significant, but very weak and potenOally arOficial edges. The final network 423 

contained 5212 edges connecOng 1381 diseases. We then performed community detecOon 424 

based on the Girvan-Newman algorithm to idenOfy groups of diseases that were more closely 425 

connected with each other compared to all other diseases in the network. We finally 426 

computed different node characterisOcs to idenOfy diseases with important roles in the 427 

network. We implemented and visualized this analysis with the R package igraph (v.1.3.1). 428 

 429 

Genotyping, quality control, and parHcipant selecHon 430 

Details on genotyping for UKBB have been reported in detail by Bycro} et al.27. Briefly, we 431 

used data from the ‘v3’ release of UKBB containing the full set of Haplotype Reference 432 

ConsorOum (HRC) and 1000 Genomes imputed variants. We applied recommended sample 433 

exclusions by UKBB including low quality control values, sex mismatch, and heterozygosity 434 

outliers. We defined a subset of ‘white European’ ancestry by clustering parOcipants based on 435 

the first four geneOc principal component derived from the genotyped data using a k-means 436 
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clustering approach with k=5. We classified all parOcipants who belonged to the largest cluster 437 

and self-idenOfied as of being ‘white,’ ‘BriOsh’, ‘Any other white background’, or ‘Irish’ as ‘white 438 

European’. A}er applicaOon of quality control criteria and dropping parOcipants who have 439 

withdrawn their consent, a total of 441,671 UKBB parOcipants were available for analysis with 440 

genotype and phenotype data. 441 

We used only called or imputed genotypes and short inserOons/deleOons (here commonly 442 

referred to as SNPs for simplicity) with a minor allele frequency (MAF) > 0.001%, imputaOon 443 

score >0.4 for common (MAF≥0.5%) and >0.9 for rare (MAF<0.5%), within Hardy-Weinberg 444 

equilibrium (pHWE>10-15), and minor allele count (MAC) > 10. This le} us with 15,519,342 445 

autosomal and X-chromosomal variants for staOsOcal analysis. GRCh37 was used as reference 446 

genome assembly. 447 

 448 
Genome-wide associaHon studies 449 

We performed genome-wide associaOon studies (GWAS) for a total of 1,445 diseases with at 450 

least 80 cases (n>100 prior geneOc exclusions; 3 diseases dropped out) using REGENIE v2.2.4 451 

via a two-step procedure to account for populaOon structure as described in detail 452 

elsewhere33. We used a set of high-quality genotyped variants (MAF>1%, MAC>100, 453 

missingness <10%, pHWE>10-15) in the first step for individual trait predicOons using the leave 454 

one chromosome out (LOCO) scheme. These predicOons were used in the second step as 455 

offset to run logisOc regression models with saddle point approximaOon to account for 456 

case/control imbalance and rare variant associaOons. Each model was adjusted for age, sex, 457 

genotyping batch, assessment centre, and the first ten geneOc principal components. For 458 

diseases reported in only one sex (n=113 in women, n=26 in men), we excluded the respecOve 459 

sex from GWAS to avoid inflaOon by inappropriate controls. In general, we included all 460 

parOcipant with a disease in their records as case and treated all other parOcipants as controls 461 

to make best use of the computaOonal efficacy of REGENIE. TesOng for reported SNPs showed 462 

highly consistent results whether related diseases were included as controls rather than 463 

omi@ed. We used LD-score regression to test for genomic inflaOon (LDSC v1.0.1)34.  464 

 465 
COVID-19 geneHc correlaHon and Mendelian randomizaHon 466 

We downloaded GWAS summary staOsOcs for two different endpoints related to COVID-19 467 

(A2 – criOcal illness; B2 – hospitalisaOon) and Long COVID (stringent case definiOon vs broad 468 
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control set) provided by the COVID-19 Host GeneOcs IniOaOve (release 7)8,14. We used 469 

summary staOsOcs excluding UKB to avoid sample overlap. We computed geneOc correlaOons 470 

as implemented by LD-score regression (LDSC v1.0.1)34 with precomputed LD-scores, 471 

excluding the extended MHC region. To test for potenOally causal associaOons of diseases onto 472 

COVID-19, we used geneOc instruments idenOfied in the present study for a total of 41 473 

diseases with at least five geneOc variants and evidence for significant geneOc correlaOons in 474 

a two-sample MR se�ng. We used MR-PRESSO35 as a first line tool as previously suggested36 475 

to account for possible pleiotropy and subsequently report effect esOmates from inverse-476 

variance weighted analysis as the primary results. We flagged MR results that showed signs 477 

of heterogeneity across instruments using Cochran Q staOsOc. We excluded any variants 478 

mapping to the MHC regions for all analysis and implemented MR using the R packages 479 

MendelianRandomizaHon (v0.6.0)37 and TwoSampleMR (v0.5.6)38.  480 

 481 

ColocalisaHon at COVID-19 risk loci 482 

We collected associaOon staOsOcs for a total of 49 independent risk loci for COVID-19 (selected 483 

based on regional clumping (±500kb) of COVID-19 HGI GWAS staOsOcs excluding UKB 484 

parOcipants, but SNPs available among imputed geneOc data in UKB) across all 1445 diseases 485 

included in the geneOc analysis. For variant – disease pairings passing a moderate significance 486 

threshold (p<10-6), we implemented staOsOcal colocalizaOon39 accounOng for mulOple causal 487 

geneOc variants via fine-mapping40 using the R packages coloc (v.5.3.2) and susieR (v.0.11.92). 488 

We allowed for a maximum of five causal variants during fine-mapping of the disease and 489 

linked COVID-19 outcome (via a potenOally shared geneOc variant) and subsequently tested 490 

each credible set for colocalizaOon. We applied a stringent prior to consider a shared signal 491 

(p12=5x10-6) and further filtered signals with evidence that the lead signal (r2 with best 492 

remaining signal >0.8) for COVID-19 was dropped from the set of overlapping geneOc variants 493 

between our UKB GWAS and the COVID-19 GWAS. 494 

  495 
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FIGURE LEGENDS 547 
 548 
Figure 1 Outline of the study design. Scheme of the study design and analysis done, illustra5ng our 549 
workflow to define disease mechanisms that may causally contribute to severe COVID-19 or Long 550 
COVID. SNPs = single nucleo5de polymorphisms; SPA = saddle point approxima5on; MAF = minor allele 551 
frequency; *COVID-19 HGI = COVID-19 Host Gene5c Ini5a5ve, but excluding contribu5ons from UK 552 
Biobank 553 
 554 
Figure 2 Associa8on results for three different COVID-19 outcomes and long COVID. Each panel 555 
contains associa5on sta5s5cs, p-values, from Cox-propor5onal hazard ra5os tes5ng for an associa5on 556 
between the disease on the x-axis and three different COVID-19 outcomes, as well as Long COVID. 557 
Disease associa5ons passing the mul5ple tes5ng correc5on (doZed line, p<1.1x10-5) are depicted by 558 
larger triangles of which facing up ones indicate posi5ve, e.g., increased disease risk, associa5ons and 559 
downward facing vice versa. The diseases are ordered by ICD-10 chapters (colours) and the top ten for 560 
each endpoint annotated. The underlying sta5s5cs can be found in Supplemental Table 2. 561 
 562 
Figure 3 Disease-disease network and hub score. A Disease – disease network based on significant 563 
(p<4.8x10-8) posi5ve par5al correla5ons. Nodes (diseases) are coloured by ICD-10 chapters and 564 
strength of par5al correla5on depicted by width of the edges. B/C Same network, but only highligh5ng 565 
two disease communi5es strongly enriched for associa5ons with severe COVID-19. D Hub score for the 566 
30 diseases with highest values and associated associa5on sta5s5cs, hazard ra5os with 95%-567 
confidence intervals, from Cox-propor5onal hazard models. Significant associa5ons are indicated by 568 
filled boxes. Colours according to ICD-10 chapters. 569 
 570 
Figure 4 Convergence of Cox-models and gene8c correla8ons. The first three panels show associa5on 571 
sta5s5cs, hazard ra5os (box) and 95%-confidence interval (lines), for 57 diseases with evidence of 572 
convergence with gene5c correla5on analysis, that are shown in the last two panels (box – gene5c 573 
correla5on; lines – 95%-confidence intervals). Disease have been grouped by ICD-10 chapters and 574 
coloured accordingly (see Fig. 2 or 3 for legend). 575 
 576 
Figure 5 Shared gene8c architecture at COVID-19 risk loci. A Network representa5on of significant 577 
(PP>80%) colocaliza5on results. Loci are depicted as white rectangles and diseases as coloured nodes 578 
according to ICD-10 chapters. Edges represent strong evidence for colocalisa5on, and solid lines 579 
indicate a risk-increasing effect of the COVID-19 risk increasing allele, whereas dashed lines indicate 580 
protec5ve effects. B Forest plot displaying hazard ra5os with 95%-confidence intervals for each variant 581 
and different COVID-19 and colocalising disease outcomes. C Heatmap of effect es5mates across 49 582 
independent gene5c loci associated with increased risk for sever COVID-19 and corresponding effects 583 
on six selected traits that showed evidence of colocaliza5on at least one other locus. Black rectangles 584 
indicate genome-wide significant effects (p<5x10-8). 585 
  586 
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GWAS for 1,445 diseases

Cancer registry
(n=88,787 cases)

Death certificates
(n=34,912 cases)

Hospital episode statisics
(n=431,522 cases)

Primary care
(n=464,254 cases)

Self-report
(n=258,440 cases)

ICD-9 and ICD-10 ICD-10 ICD-10 Read 2/3, CTV3, SNOMED-CT ICD-10 

Diseases 
1448 diseases (n>100 cases) 

113 women only, 26 men only

Genome-wide association studies
• Logistic regression model with SPA; n≥80 

cases; MAF ≥ 0.1%; ~15mil SNPs
• N=441,671  white Europeans

COVID-19 (n=438,917)
• Hospitalisation (n=7507)
• Severe respiratory failure (n=662)
• Death (n=1546)
• Long COVID (n=470)

Disease-Disease Network
• Community detection
• Multimorbidity exposure

Survial Analysis
• Time-to-event

Enrichment

COVID-19 HGI*
• Hospitalisation (n=40,929cases/   

1,924,400 controls)
• Critical illness (n=17,472 cases/        

725,695 controls) 
• Long COVID (n=3108 cases/ 

994,582controls)

Genetic analysis
• Genetic correlation
• Mendelian 

randomisation
• Colocalisation

Convergence

UK Biobank  (n=502,460)
Electronic Health Record Linkage

Selection criteria
• Alive 01/01/2020
• Genetically-inferred ancestry
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