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Abstract 23 

The COVID-19 pandemic has resulted in a global public health crisis requiring 24 

immediate acute therapeutic solutions. To address this challenge, we developed a useful 25 

tool deep learning model using the graph-embedding convolution network (GECN) 26 

algorithm. Our approach identified COVID-19-related genes and potential druggable 27 

targets, including tyrosine kinase ABL1/2, pro-inflammatory cytokine CSF2, and pro-28 

fibrotic cytokines IL-4 and IL-13. These target genes are implicated in critical processes 29 

related to COVID-19 pathogenesis, including endosomal membrane fusion, cytokine 30 

storm, and tissue fibrosis. Our analysis revealed that ABL kinase inhibitors, lenzilumab 31 

(anti-CSF2), and dupilumab (anti-IL4Rα) represent promising therapeutic solutions 32 

that can effectively block virus-host membrane fusion or attenuate hyperinflammation 33 

in COVID-19 patients. Compared to the traditional drug screening process, our GECN 34 

algorithm enables rapid analysis of disease-related human protein interaction networks 35 

and prediction of candidate drug targets from a large-scale knowledge graph in a cost-36 

effective and efficient manner. Overall, Overall, our results suggest that the model has 37 

the potential to facilitate drug repurposing and aid in the fight against COVID-19. 38 

 39 

 40 
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1. Introduction 42 

Coronavirus disease 2019 (COVID-19) emerged in December 2019 and has 43 

rapidly spread worldwide, resulting in a global public health crisis. Severe acute 44 

respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, is a 45 

single-stranded positive RNA virus with spikes on its envelope [1]. As of 5 April 2023, 46 

the World Health Organization COVID-19 Dashboard has reported 762,201,169 47 

confirmed cases and 6,889,743 deaths worldwide. Many patients develop pneumonia 48 

within weeks of showing symptoms and increased inflammatory cytokines which can 49 

lead to respiratory failure and death [2]. The traditional drug discovery method, with a 50 

long discovery period (10–15 years) and low success rate (2.01%) [3], has failed to 51 

meet the urgent need for a COVID-19 cure. 52 

Numerous monoclonal antibodies are currently being developed as systemic 53 

therapies for COVID-19; however, their large size, instability, and low density of 54 

binding sites (two per 150 KDa antibody) make them unsuitable for intranasal delivery 55 

[4]. To overcome this challenge, deep learning, a subset of artificial intelligence (AI) 56 

algorithms, can accelerate drug development and repurposing to slow down the 57 

progression of acute disease. Deep learning uses multiple interconnected layers to 58 

recognize complex patterns in data, which is useful for finding correlations between 59 

inputs and outputs for complex problems. Unlike the traditional protein structure 60 

prediction problem, locally connected graph neural networks can accurately model the 61 

structure-to-sequence mapping problem [5]. The Graph Convolutional Network (GCN) 62 

is an approach to graph embedding that transforms graph information into spectral 63 

domains for convolutional calculation. This is done using the Laplacian matrix, 64 

Chebyshev polynomials, or other methods [6-10]. GCNs are powerful in processing 65 

network data, and their representative tasks include node classification, link prediction, 66 

and graph generation., as they can combine features with a hidden layer to aggregate 67 

important information from different nodes. By combining features with a hidden layer, 68 

GCNs can effectively aggregate important information from different nodes. This 69 

ability to recognize complex patterns in data and find correlations between inputs and 70 

outputs for complex problems makes GCNs an excellent choice for prediction models. 71 

Additionally, GCNs' locally connected graph neural networks can accurately model the 72 

structure-to-sequence mapping problem, providing greater accuracy compared to 73 

traditional protein structure prediction methods. Moreover, recent studies have shown 74 
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that deep learning, including GCNs, outperforms classic machine learning methods in 75 

assisting drug repurposing, allowing the screening of existing drugs as potential 76 

treatments for SARS-CoV-2. The development of affordable approaches for the 77 

effective treatment of COVID-19 is challenging without foreknowledge of the complex 78 

networks connecting drugs, targets, SARS-CoV-2, and diseases. Current studies 79 

suggest that using the in-silico method to identified some potential antiviral drugs such 80 

as remdesivir [11, 12], mefuparib [13], and toremifene [14, 15], while drugs like 81 

baricitinib [16], melatonin [17], and dexamethasone [18, 19] have been identified as 82 

potential host-targeted therapies to attenuate cytokine storms in COVID-19 patients. 83 

The results of clinical trials for these drugs are controversial [20]. However, most of 84 

these studies focused on SARS-CoV-2 proteins with known functions, such as the spike 85 

protein and 3C-like (3CL) protease, or a host protein with a known interaction with 86 

viruses, such as ACE2 and TMPRSS2. The approach of focusing only on SARS-CoV-87 

2 proteins and host proteins with known interactions with viruses significantly limits 88 

the potential targets for drug development because the role and functional annotations 89 

of many other host proteins are mostly ignored. In this study, we propose a new AI-90 

assisted drug development method, the graph-embedding convolution network (GECN), 91 

that utilizes the functional annotations of host proteins to identify potential druggable 92 

targets for SARS-CoV-2 pathogenic mechanisms. By investigating tissue specificity, 93 

physiological functions, and cell signaling pathways, our approach aims to expedite 94 

drug discovery new insights into the druggable targets and pathogenic mechanisms of 95 

COVID-19. 96 

97 
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2. Materials and Methods 98 

2.1 Data preprocessing 99 

The protein interaction data were extracted from the STRING dataset (v 11.0) [21] with 100 

Homo sapiens axotomy (ID 9606), and edges between pairs of all associated genes 101 

were constructed, regardless of whether it was physically binding or not. The edges 102 

were not weighted, and no edge attributes were added. GO terms, such as cell 103 

components, biological processes, and molecular functions, were extracted and 104 

clustered using the semantic similarity method [22, 23]. In our study, semantic 105 

similarity was represented by the minimum number of steps across the graph required 106 

to connect two terms, weighted by how specific or general the terms are, and was 107 

calculated with the following formula (2): 108 

𝑆𝑖𝑚(𝑔𝑜𝑖 , 𝑔𝑜𝑗) =  
2∙ 𝑚𝑎𝑥

𝑔𝑜∈𝑆(𝑔𝑜𝑖,𝑔𝑜𝑗)
{𝐼𝐶(𝑔𝑜)}

𝐼𝐶(𝑔𝑜𝑖)+𝐼𝐶(𝑔𝑜𝑗)
  (2) 109 

where goi  and 𝑔𝑜𝑗  are a pair of GO terms and  Sim(goi, goj)  are their semantic 110 

similarities.  S(goi, goj) is the subset of GO terms shared between goi and 𝑔𝑜𝑗  after 111 

propagating up the GO DAG using the “is_a” and “part_of” relations. 𝐼𝐶(𝑔𝑜𝑖) is the 112 

information content (IC) of a GO term, which is defined as the frequency of 𝑔𝑜𝑖 , 113 

relative to the total number of GO terms in the UniProt Gene Ontology Annotation 114 

(GOA) database [24, 25], specifically calculated using the formula (3): 115 

𝐼𝐶(𝐺𝑂𝑖) =  − 𝑙𝑜𝑔 (
{𝑔𝑜:𝑔𝑜𝑖∈𝐺𝑂𝐴}

{𝑔𝑜:𝑔𝑜∈𝐺𝑂𝐴}
)  (3) 116 

Pathway IDs from Reactome were clustered by propagating along the Reactome [26, 117 

27] graph and were mapped to the top super pathway. Finally, the “probability of loss 118 

of function intolerance” extracted from ExAC (v 1.0) [28] was normalized. 119 

 120 

2.2 Graph convolution network (GCN) 121 

The GCN algorithm included a feature matrix and an adjacency matrix [9]. A feature 122 

matrix was N × F⁰ dimension, with N being the number of nodes and F⁰ being the feature 123 

numbers in each node. An adjacency matrix represented the structure of the graph, and 124 

the dimension was N x N.  125 

Each neural network layer can be written as a non-linear function (4)[29], as shown 126 

below, where H (0) = X and H(l) = Z (or z for graph-level outputs), and l is the number 127 

of layers.  128 

 129 
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Here, W(l) is a weight matrix for the l-th neural network layer.  Additionally, Â = A + 130 

I, where I is the identity matrix, 𝐷ˆ is the diagonal node degree matrix of Â, and σ(·) is 131 

a non-linear activation function, like ReLU. 132 

Besides, we use multilayer GCN to combine neighboring node features with self-loops 133 

by summing and taking weighted average of their feature vectors which employ a 134 

multilayer GCN with the following layer-wise propagation rule: 135 

 136 

 137 

The Variational Graph Autoencoder (VGA) is a type of neural network used for 138 

generating molecular graphs and consists of an encoder and a decoder. The encoder of 139 

the VGA, which employs edge condition convolution, embeds the original graph into a 140 

continuous vector space. The decoder generates a probabilistic fully connected graph 141 

according to the predefined number of nodes and updates the parameters through 142 

approximate graph matching to improve the reconstruction ability of the autoencoder. 143 

We constructed the VGA model using three layers of Graph Convolutional Network 144 

(GCN) encoder with hidden unit dimensions of 512, 256, and 256, respectively. We 145 

used an inner product decoder to produce the output. The VGA is a type of Variational 146 

Autoencoder (VAE) that projects input features into a multivariate latent distribution 147 

and samples the values of latent features from this distribution. To make the sampling 148 

process differentiable and enable reliable training of the model, the reparameterization 149 

trick is used. The reparameterization trick involves sampling from a standard normal 150 

distribution and then transforming the sampled values to produce the latent features. 151 

The formula for the reparameterization trick is given as (1): 152 

z = μ + ε × σ  (1) 153 

where  ε~N(0,1) and  z  is the latent feature. By using the reparameterization trick, the 154 

model can backpropagate gradients through the sampling process, allowing for end-to-155 

end training of the variational autoencoder. 156 

 157 

A neighbor sampler with a batch size of 1,024 was applied, and the loss function 158 

contained reconstruction loss and KL loss. Reconstruction loss is the cross-entropy loss 159 

of positive edges (interactions) and negative edges (non-interactions), whereas KL loss 160 

is the KL divergence between the output distribution of encoder N(μ, σ) and standard 161 

normal distribution 𝑁(0,1). The AdamW optimizer was used [30], and 100 training 162 
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epochs were trained without early termination. Finally, the model with the best AUC 163 

value was saved.  164 

To predict potential links and appropriate evaluation of the performance of our 165 

model, fixed-threshold metrics and test set sampling were required. We sampled those 166 

negative edges where the geodesic distances were equal to 2. The shortest paths 167 

between these pairs of nodes were equal to two, and improvements in these pairs were 168 

weighted more than at greater distances. To decrease the computational complexity of 169 

spectral graph convolution, the Chebyshev polynomial was used to replace the eigen-170 

decomposition of a Laplacian matrix [31]. The Chebyshev polynomial utilized the 171 

recurrence relation to approach the value of eigen-decomposition and increase the 172 

efficiency of model training. The hyperparameter k in the Chebyshev convolution 173 

represents a receptive field that can lead the algorithm to see more local values. In our 174 

model, we set k to 2. Cluster-GCN is a type of GCN algorithm that is suitable for 175 

training by exploiting the graph clustering structure [32], In this study, a graph 176 

clustering algorithm identified a block of nodes associated with a dense subgraph. It 177 

then restricted the neighborhood search within this subgraph. This simple but effective 178 

strategy led to significantly improved memory and computational efficiency while 179 

achieving a test accuracy comparable to that of previous algorithms. 180 

 181 

2.3 K-fold cross-validation 182 

K fold cross-validation was used to verify the performance of the model. It split the 183 

data into five groups and randomly selected one of them as the test set. This approach 184 

estimated the performance of the model using the new data. 185 

 186 

2.4 Protein-protein docking using MOE software 187 

In silico protein-protein docking of ABL1 against TNF and ABL2 against BTK was 188 

performed using the MOE software [33]. PDB files of ABL1 (PDB ID: 1AWO), TNF 189 

(PDB ID: 1TNF), ABL2 (PDB ID: 5NP3), and BTK (PDB ID: 5XYZ) were 190 

downloaded from the RCSB PDB and imported into the MOE software. The pre-bound 191 

ligands were first removed from the PDB structures. Protein structures were then 192 

prepared using the MOE “Protein Preparation” tool (to correct atom lost issues) and 193 

MOE “Protonate 3D” tool (to add hydrogen atoms and to assign ionization states 194 

throughout the system). Water molecules farther than 4.5 Å from proteins were deleted. 195 

Active sites of TNF and BTK were found using the MOE “Site Finder” tool (Compute, 196 
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Site Finder), and ABL1 or ABL2 were docked to all these sites later. Prepared structures 197 

were docked by MOE “Dock” tool (Compute, Dock, Protein-protein). Docking 198 

structures with a minimum S score indicated that the highest binding affinity was 199 

selected for further interaction analyses. Interaction bond type, bond length, and bond 200 

energy were indicated by MOE “Protein Contacts” tool (Protein, Protein Contacts). 201 

  202 
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3. Results  203 

3.1 Experiment setting of the graph embedding convolution network algorithm 204 

The GECN algorithm consists of two deep learning methods: GE and GCN, as shown 205 

in Fig. 1. The GE model uses a Variational Graph Autoencoder (VGA) to extract latent 206 

features from raw data, which are then used as input node features for the second deep 207 

learning model, DeepGCN, to perform GCN as a classifier. The VGA encoder maps 208 

raw data into a latent distribution with means and standard deviations, and a 209 

reparameterization trick is employed to make the VGA suitable for backpropagation. 210 

This makes the process of stochastic sampling of latent features from the latent 211 

distribution differentiable. The decoder of the VGA reconstructs the latent features into 212 

the adjacency matrix. The unsupervisedly trained VGA utilizes the reconstruction error 213 

and Kullback-Leibler divergence to encode latent features, which are then fed as node 214 

feature inputs into the supervisedly trained DeepGCN for classification. In brief, 215 

DeepGCN utilizes a combination of latent features as nodes, PPI network as graph 216 

structure, and disease-related genes as labels for training. The model is then trained 217 

with focal loss to minimize the difference between predicted and true labels and is 218 

enhanced with residual and dense connections for improved performance in comparison 219 

to traditional GCN with a deeper structure. It predicts potential protein targets that 220 

interact with COVID-19. 221 

 222 

In this study, we conducted experiments on a biological network dataset consisting of 223 

a total of 533,138 data points. These data points were divided into a training set and a 224 

test set. The training set contained 479,825 positive edges, representing interactions 225 

between pairs of genes. The test set included 53,313 positive edges and an equal number 226 

of negative edges, representing the absence of interactions between pairs of genes. To 227 

select the negative edges, we chose unconnected node pairs that had a geodesic distance 228 

of two. This sampling strategy was employed to mitigate the effects of class imbalance 229 

and to allow for a more accurate assessment of the model's performance in link 230 

prediction. 231 

 232 

We employed a VGA to compress the data and retrieve the latent features. The VGA 233 

was evaluated on a complete version of the graph without removing any edges. To train 234 

the model, we used the Adam optimization algorithm with an initial learning rate set to 235 

a predefined value. The batch size was fixed at 1024, and we trained the model for a 236 
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total of 100 epochs. To mitigate the risk of overfitting, we applied L2 regularization 237 

(weight decay) with a specified weight value. The learning rate adjustment function 238 

used was the cosine annealing function, and the loss function employed was the cross-239 

entropy loss function. During training, we calculated the loss between the predicted 240 

values and the ground truth. The model's parameters were then optimized by the Adam 241 

optimization algorithm based on the calculated loss. To address the data imbalance 242 

problem, we used a cost matrix to give more attention to false positives and omissions.243 
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Fig. 1. Overview of the graph-embedding convolution network (GECN) 245 

algorithm. The GECN algorithm combines graph embedding and graph 246 

convolution network. A variational graph autoencoder learned embedding 247 

gene features and protein interaction networks to latent features. DeepGCN 248 

predicts disease-associated genes based on latent features. 249 

250 
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3.2 Performance of the graph embedding convolution network algorithm 251 

The performance of our deep learning model was evaluated using various metrics, 252 

including the area under the receiver operating characteristic curve (AUC) and fixed-253 

threshold metrics such as accuracy, recall, precision, F1 score, and F2 score.  The test 254 

set achieved an AUC of 0.92 (Fig. 2a), while the accuracy of the model with the 255 

threshold applied was 0.84, with a recall of 0.87 and a precision of 0.82 (Fig. 2b). The 256 

F1 and F2 scores were 0.84 and 0.86, respectively. The confusion matrix of the test set 257 

revealed 10,488 new predicted links, suggesting potential interactions between pairs of 258 

genes that were not constrained to physical binding due to the nature of the STRING 259 

dataset and may include metabolic pathways or cellular processes. 260 

 261 

 262 

Fig. 2. Evaluation of link prediction of the protein interaction network. 263 

The receiver operating characteristic (ROC) curve (a) and confusion matrix 264 

(b) of link prediction were evaluated from the test set. 265 

266 
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3.3 Predicting and Assessing Protein-Protein Interactions between COVID-19 267 

and Associated Genes through Molecular Docking Analysis 268 

To understand virus-host protein interactions have found that SARS-CoV-2 269 

can interfere with various signaling pathways in host cells. The immune evasion of 270 

SARS-CoV-2 improves viral survival and triggers pathogenic mechanisms in host 271 

cells. Analyzing the host protein associated with the known COVID-19 related 272 

genes can reveal new druggable targets and can help heal COVID-19 patients by 273 

blocking pathogenic signaling pathways or potential virus-host protein interactions. 274 

Our analysis identified several predicted interacting genes that showed potential 275 

associations with COVID-19-related genes ABL1 (39.13%) and ABL2 (26.09%). 276 

Less than 1% of genes interacted with other COVID-19-related genes (see 277 

Supplementary Table 1). Notably, ABL1-TNF and ABL2-BTK had the highest 278 

probabilities of predicted links for ABL1 and ABL2, respectively. 279 

To estimate the likelihood of physical binding in the predicted association, we 280 

used the Molecular Operating Environment (MOE) software [34, 35]. We selected the 281 

links with the highest probabilities of prediction and the docking structures of ABL1-282 

TNF and ABL2-BTK as candidates. Our analysis revealed that the best docking 283 

structure of ABL1-TNF achieved an S score of -67.63 and a root-mean-square deviation 284 

(RMSD) of 0.98, while ABL2-BTK achieved an S score of -51.39 and RMSD of 1.16, 285 

indicating a high probability of physical interaction between these two pairs. 286 

The 2D interaction diagram (Fig. 3) shows the three phenomena. First, amino acid 287 

residues are exposed in solution. Second, binding pockets are formed. Finally, the 288 

important amino acid residues are involved in protein interactions. For example, the 289 

side chain of Arg131 on TNF forms a hydrogen bond with the side chain of His95 on 290 

ABL1 (bond length = 3.345 Å, energy = 4.500 kcal/mol), the backbone of Gln88 on 291 

TNF forms a hydrogen bond with the side chain of Asn94 on ABL1 (bond length = 292 

3.205 Å, energy = 3.100 kcal/mol), and the side chain of Glu23 on TNF forms an ionic 293 

bond with the side chain of Lys87 on ABL1 (bond length = 4.006 Å, energy = 0.501 294 

kcal/mol). The backbone of Glu640 on BTK forms a hydrogen bond with the side chain 295 

of Lys87 on ABL2 (bond length = 3.439 Å, bond energy = 1.300 kcal/mol), and the 296 

side chain of Gln496 on BTK forms a hydrogen bond with the side chain of Arg103 on 297 

ABL2 (bond length = 3.199 Å, bond energy = 0.700 kcal/mol). 298 
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299 

 300 

Fig. 3. Docking structure with the lowest energy simulated by 301 

Molecular Operating Environment. The docking positions of the two 302 

proteins are clearly shown in Fig. 3 in the protein surface diagram (upper 303 
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left panel) and ribbon diagram (upper right panel). (a) Docking structures 304 

of ABL1- tumor necrosis factor (TNF) and ABL1 (Protein Data Bank 305 

(PDB) ID: 1AWO) are shown as blue ribbons, whereas those of TNF (PDB 306 

ID: 1TNF) are shown as green ribbons; the skeletons are binding sites. (b) 307 

Docking structures of ABL2- Bruton’s tyrosine kinase (BTK) and ABL2 308 

(PDB ID: 5NP3) are shown as pink ribbons and those of BTK (PDB ID: 309 

5XYZ) are shown as green ribbons; the skeletons are binding sites. 310 

 311 

3.4 Predicting Potential Target Genes in SARS-CoV-2 Affected Host Protein 312 

Networks using GECN Algorithm  313 

The GECN algorithm was tested using 15 COVID-19 associated genes from CTD 314 

in 2019 as a graph center to construct SARS-CoV-2 affected host protein networks. The 315 

algorithm embedded the latency features from the autoencoder, with an accuracy of 316 

0.99 ± 0.01 (mean ± SD), precision of 0.64 ± 0.11, recall of 0.77 ± 0.15, and F1 of 0.69 317 

± 0.08. The top five predicted targets were Interleukin (IL)-4, Colony-stimulating factor 318 

2 (CSF2), IL-13, CXCL8, and PRL; CXCL8 was confirmed as a COVID-19 associated 319 

gene in 2021.  320 

In the second stage, COVID-19 associated genes from CTD in 2021 were used as 321 

the graph center to construct a SARS-CoV-2 affected host protein network. The 322 

algorithm embedded the latency features from the autoencoder, with an accuracy of 323 

0.99 ± 0.01 (mean ± SD), precision of 0.69 ± 0.06, recall of 0.80 ± 0.10, and F1 of 0.74 324 

± 0.06. The top three predicted targets were CSF2, IL-4, and IL-13. These target genes 325 

include ALB1/ALB2 (which might be involved in the entry of SARS-CoV-2 into host 326 

cells), CSF2 (which might participate in the cytokine storm, inducing severe 327 

syndrome), and IL-4 and IL-13 (which might participate in pulmonary fibrosis). 328 

329 
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4. Discussion  330 

The efficacy and safety of the COVID-19 pandemic has resulted in significant 331 

societal challenges. However, clinicians have no drug recommendations without a 332 

proper understanding of the virus and its mechanisms. In this context, in silico 333 

approaches led to the advancement of machine learning techniques and docking 334 

methods in drug repurposing. In this study, we developed a deep learning algorithm, 335 

the GECN, to predict COVID-19 related genes integrated with functional annotations 336 

of human genes. However, focusing on specific targets such as spike protein, 3CL 337 

protease, and MPro in SARS-CoV-2 or ACE2 and TMPRSS2 would restrict the 338 

candidate screening scope. Most interactive proteins in humans are associated with 339 

endomembrane compartments or vesicle trafficking pathways, indicating the essential 340 

role of human proteins during infection. Therefore, this study identified 332 physical 341 

interactions which provide form COVID-19 Research Group of Quantitative 342 

Biosciences Institute between human proteins and SARS-CoV-2 proteins, providing a 343 

comprehensive view of the host-pathogen interactome.  344 

Our GECN algorithm predicted ABL1, ABL2, CSF2, IL-4, and IL-13 as 345 

candidates for COVID-19 treatment target genes, which were successfully identified as 346 

having a binding affinity with COVID-19-related proteins. The use of deep learning 347 

algorithms, such as the GECN used in this study, can be a powerful tool for analyzing 348 

large amounts of data and identifying patterns that may not be apparent to humans. 349 

Previous studies [36, 37] on the ABL family and coronavirus the ABL kinase inhibitor, 350 

GNF2, GNF5 [36], imatinib [36, 37], imatinib mesylate [38], nilotinib [38], and 351 

dasatinib [38] can reduce the viral titer of coronavirus by preventing syncytia formation. 352 

These results also suggest that ABL1 and ABL2 are involved in the process of 353 

coronavirus infection. Experiments on ABL kinase inhibitor treatment of SARS-CoV-354 

2 have shown promising results that imatinib mesylate suppresses the replication of 355 

SARS-CoV-2 in Vero-E6 cell[39]. Moreover, study on nilotinib, dasatinib, and 356 

imatinib reported antiviral activity only of nilotinib but not of dasatinib or imatinib in 357 

Vero-E6 cells and Calu-3 cells [40]. Imatinib did not exhibit any antiviral activity in 358 

Caco-2 cells, as documented in a previous study [41]. Three randomized clinical trials 359 

are currently underway to study imatinib's efficacy in treating COVID-19. 360 

NCT04357613 (France), NCT04394416 (USA), and EudraCT2020-001236-10 (The 361 

Netherlands), are currently underway to study the therapeutic efficacy of imatinib in 362 

COVID-19 patients, controversial results are derived from different ABL kinase 363 
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inhibitors, and more studies are needed to determine its therapeutic effect. Furthermore, 364 

the GECN-predicted targets, CSF2, IL-4, and IL-13, have been associated with 365 

COVID-19 in previous clinical studies [42-44]. GM-CSF is involved in the 366 

inflammatory phase, which induces a cytokine storm, and IL-4 and IL-13 are involved 367 

in the tissue repair phase, which causes pulmonary fibrosis. Therefore, clinical trials 368 

have focused on these three targets. Lenzilumab is a monoclonal antibody against GM-369 

CSF with high binding affinity and low immunogenicity [45]. Lenzilumab neutralizes 370 

the GM-CSF effect and blocks signal transduction to myeloid progenitor cells. 371 

Lenzilumab has been shown to reduce the risk of death or respiratory failure in 372 

hospitalized COVID-19 patients [45]. Dupilumab is an IL-4Rα antagonist used in the 373 

treatment of atopic dermatitis, which blocks IL-13 and IL-4 signaling, may have 374 

potential as a treatment for COVID-19. A retrospective analysis of a trial of two-cohorts 375 

of patients infected with SARS-CoV2- confirmed the benefit with a lower risk of death 376 

in patients.  377 

In addition, recent studies have developed innovative models for designing picomolar 378 

miniprotein inhibitors [4]. These models leverage computer-generated scaffolds 379 

designed to optimize target binding, folding, and stability around an ACE2 helix that 380 

interacts with the spike receptor binding domain or are docked against the RBD to 381 

identify new binding modes. These de novo design approaches offer a innovative and 382 

promising solution to the COVID crisis. However, clinicians have the critical timing of 383 

the pandemic outbreak, there is a dire need for potent therapeutics immediatly. 384 

Although designing drugs specific to SARS-CoV-2 is the gold standard solution, it 385 

requires complex and time-consuming procedures. Our GECN algorithm is built up 386 

with a knowledge database to further extend drug repurposing by summarizing 387 

information on FDA-approved drugs that could be applied immediately. 388 

 389 

5. Conclusions 390 

This study highlights the potential of using deep learning algorithms to discover 391 

potential therapeutic targets for COVID-19. Although our results were consistent with 392 

those of several studies, our predictions were difficult to confirm without more 393 

knowledge of virus-host interactions. The GECN identified several genes that may be 394 

targets for COVID-19 treatment, including ABL1, ABL2, CSF2, IL-4, and IL-13. 395 

Clinical trials have shown promising results for Lenzilumab, a monoclonal antibody 396 

against GM-CSF. However, more studies are needed to confirm the effectiveness of 397 
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these drugs and their potential side effects. These findings provide a starting point for 398 

further research into potential treatments for COVID-19.  399 

 400 

401 
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Key Points 402 

The graph-embedding convolution network (GECN), a novel deep learning 403 

model, was developed to identify COVID-19-related genes and druggable 404 

targets by analyzing COVID-19-related human protein interaction networks. 405 

GECN identified several target genes, including ALB1/ALB2, CSF2, IL-4, and 406 

IL-13, that are meaningfully correlated with COVID-19, potentially involved in 407 

the entry of SARS-CoV-2 into host cells, cytokine storm, and pulmonary 408 

fibrosis. 409 

The GECN algorithm can predict COVID-19 drug targets rapidly, accurately, 410 

and explainably, demonstrating its potential to expand our knowledge of disease 411 

pathologies and accelerate drug discovery at a low cost. 412 
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