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ABSTRACT  24 

Background: Human genetic studies suggest that the branched chain amino acids (BCAA) 25 

valine, leucine and isoleucine have a causal association with type 2 diabetes. However, 26 

inferences are based on analyses of a limited number of genetic loci associated with BCAAs. 27 

Whether these conclusions are supported when using instrumental variables for BCAAs that 28 

capture a broad set of genetic mechanisms is not known. Methods: We constructed and 29 

validated instrumental variables for each BCAA using large well-powered datasets and tested 30 

their association with type 2 diabetes using the two-sample inverse variance weighted (IWV) 31 

Mendelian randomization (MR) approach. Sensitivity analyses were performed to ensure the 32 

accuracy of the findings. Instrumental variables for type 2 diabetes, fasting insulin and body 33 

mass index (BMI) were also tested for associations with BCAA levels. Results: There were no 34 

significant associations with diabetes for valine (beta=0.17 change in log-odds per standard 35 

deviation change in valine, [95% CI, -0.28 - 0.62], p=0.45), leucine (beta=0.19 [-0.30 - 0.68] 36 

p=0.45) or isoleucine (beta=0.02 [-0.54 - 0.59], p=0.94). In contrast, type 2 diabetes was 37 

associated with each BCAA (valine: beta=0.08 per standard deviation change in levels per log-38 

odds change in type 2 diabetes, [0.05 - 0.10], p=1.8x10-9), (leucine: beta= 0.06 [0.04 - 0.09], 39 

p=4.5x10-8) and isoleucine (beta= 0.06 [0.04 - 0.08], p=2.8x10-8). The type 2 diabetes 40 

associations were replicated in an independent population, but not in a second population where 41 

type 2 diabetes cases were removed, highlighting the consistency and specificity of the 42 

association. Similar positive associations were seen for fasting insulin and BMI with the BCAAs. 43 

In multivariable MR analyses, type 2 diabetes and fasting insulin had consistent independent 44 

associations with each BCAA. Conclusions: These data suggest that the BCAAs are not 45 

mediators of type 2 diabetes risk but are biomarkers of diabetes and higher insulin. 46 
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INTRODUCTION 47 

The branched chain amino acids (BCAA) valine, leucine and isoleucine are essential amino acids 48 

with functional roles that include regulation of lipid, glucose and protein metabolism.1 It has long 49 

been recognized that BCAA levels in blood are elevated in individuals with impaired insulin 50 

secretion and obesity.2 These early observations have prompted interest as to whether the 51 

BCAAs may have an etiological role in insulin resistance and metabolic disease, including type 2 52 

diabetes. Human studies suggesting roles for the BCAAs as upstream drivers of metabolic 53 

disease include a prospective study of normoglycemic participants that found individuals with 54 

the highest baseline BCAA levels were at 5-fold increased risk of incident diabetes.3 However, 55 

findings from epidemiological studies have not been consistent in all populations.4–8 56 

 57 

Support for an etiological role of the BCAAs in the development of type 2 diabetes has also 58 

come from human genetics studies. Genetic methodologies, such as Mendelian randomization, 59 

use single nucleotide polymorphisms (SNPs) as instrumental variables to determine whether an 60 

exposure may have a causal association with an outcome.9 An advantage of these studies is that 61 

they can be less prone to biases such as reverse causation, which can lead to incorrect inferences 62 

in epidemiological studies.10 One study focused largely on SNPs flanking the gene PPM1K, 63 

which encodes a protein phosphatase which activates the branched chain α-ketoacid 64 

dehydrogenase complex (BCKDC) that catalyzes the first irreversible step in the BCAA 65 

metabolism.11 The investigators identified a significant positive association between genetically 66 

predicted BCAA levels and type 2 diabetes risk, suggesting that BCAAs are upstream mediators 67 

of risk.12 A subsequent study examined 3 genetic instruments near the PPM1K, SLC1A4, ASGR1 68 

genes and did not find an association with Homeostatic Model Assessment for Insulin Resistance 69 
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(HOMA-IR).13 Rather they found a polygenic predictor of HOMA-IR was positively associated 70 

with the BCAAs, suggesting that the BCAAs are elevated as a consequence of insulin resistance. 71 

These results were supported by a later study showing a positive association between genetic 72 

predictors of insulin resistance phenotypes and BCAAs. A common unifying interpretation of 73 

these findings is that BCAAs may be the causal down-stream mediators linking insulin resistance 74 

and obesity phenotypes to type 2 diabetes risk.12,14 75 

 76 

A limitation of the prior genetic studies is that they examined a small number of genetic loci 77 

associated with BCAA levels, thereby limiting the strength of evidence for a causal role of the 78 

BCAAs on type 2 diabetes. Recent large-scale genome-wide association studies (GWAS) of 79 

BCAAs have identified considerably more genetic loci associated with the BCAAs, providing an 80 

opportunity to investigate etiological relationships using robust predictors that represent 81 

heterogenous genetic mechanisms modulating BCAA levels.15  We developed genetic 82 

instruments for the BCAAs and metabolic phenotypes using data derived from contemporary 83 

large-scale GWAS and applied Mendelian randomization approaches to define the relationships 84 

among these phenotypes. 85 

 86 

 87 

METHODS 88 

GWAS Summary Statistics data sets 89 

Single nucleotide polymorphisms (SNPs) associated with valine, leucine and isoleucine used in 90 

the primary analyses were derived from GWAS summary statistics generated by a study 91 

examining 115,082 UK Biobank European Ancestry participants with NMR metabolomics from 92 
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Nightingale Health (biomarker quantification version 2020).15 Prior to GWAS, metabolite levels 93 

were inverse rank-normalized and set to a standard deviation of 1. Data were downloaded from 94 

the NHGRI-EBI GWAS Catalog (GCST90092891, GCST90092843, GCST90092995).16 GWAS 95 

summary statistics used for validation of SNP genetic instruments were obtained from the 96 

Metabolic Syndrome in Men (METSIM) consortium, a study of 6136 Finnish men without 97 

prevalent or incident type 2 diabetes and with metabolites measured using the relative 98 

quantitative liquid chromatography–tandem mass spectrometry (LC-MS/MS) Metabolon 99 

DiscoveryHD4 platform.17 Metabolite level residuals were inverse-normalized and summary 100 

statistics were downloaded from https://pheweb.org/metsim-metab/. Summary statistics were 101 

also obtained a study of 7,824 European ancestry participants from the TwinsUK and 102 

Cooperative Health Research in the Region of Augsburg (KORA) cohort who underwent 103 

metabolite acquisition by Metabolon using GC-MS or UPLC-MS/MS. Summary statistics based 104 

on log10 transformed metabolite levels were obtained from http://metabolomics.helmholtz-105 

muenchen.de/gwas/.18 106 

 107 

Summary statistics for type 2 diabetes from a study of 898,130 cases and controls of European 108 

ancestry were obtained from the DIAGRAM consortium (https://diagram-109 

consortium.org/downloads.html.19 Summary statistics were from a subset of the cohort that did 110 

not include the UK Biobank population. Summary statistics of log-transformed fasting insulin 111 

from a study of 151,188 individuals of European ancestry without type 2 diabetes20 were 112 

obtained from the MAGIC consortium (https://magicinvestigators.org/downloads/). Summary 113 

statistics for body mass index (BMI) were from a study of 339,224 adults of European ancestry 114 

and obtained from the GIANT consortium 115 
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(https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files).2116 

1 None of these data sets included participants from the UK Biobank to ensure there was no 117 

overlap with the UK Biobank metabolite cohort. 118 

 119 

Analysis 120 

Lead SNP identification  121 

Lead SNPs associated with valine, leucine and isoleucine were selected from the UK Biobank 122 

summary statistics using a clumping algorithm that selected a linkage disequilibrium (LD)-123 

reduced set of SNPs (r-squared <0.001, selection window of 3000 Kb) and a minor allele 124 

frequency (MAF) >1%.  125 

 126 

Annotation 127 

The FUMA webserver (https://fuma.ctglab.nl/), with default settings, was used to identify nearby 128 

genes and expression QTLs (based on GTEx v8.0) associated with candidate SNPs.22 The 129 

DAVID program was used to identify ontologies, cellular locations and pathways associated 130 

with candidate genes.23,24 These data in conjunction with a manual literature review was used to 131 

identify the likely candidate genes located near associated SNPs. If a single likely candidate gene 132 

could not be identified, all plausible candidate genes are presented. Visualization of the cellular 133 

locations of candidate genes were created with BioRender.com. 134 

 135 

Mendelian Randomization  136 

Mendelian randomization (MR) approaches were used to test associations between genetic 137 

instruments for the BCAAs and outcomes. MR is an analytic framework that uses SNPs 138 
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associated with diverse pleiotropic mechanisms as instrumental variables to test the association 139 

between an exposure and outcome.9,10 The validity of the approach relies on the following 140 

assumptions: (1) Relevance: the SNP instrumental variables are associated with the exposures; 141 

(2): Independence: the instrumental variables are not associated with confounders; and (3) 142 

Exclusion restriction: the instrumental variables association with the outcome is only through the 143 

exposure.25  We demonstrate the relevance assumption by validating that our BCAA genetic 144 

instruments associated with their corresponding BCAAs in an independent population. We 145 

conducted a range of MR sensitivity analyses, as well as multivariable analyses to decrease the 146 

likelihood of violating the other assumptions. 147 

 148 

SNP genetic instruments were constructed for each BCAA from the UK Biobank GWAS. Non-149 

palindromic common (MAF>5%) SNP instruments were selected using a clumping algorithm 150 

and SNPs that were available on each set of summary statistics for the METSIM BCAAs, type 2 151 

diabetes and fasting insulin levels. Two-sample MR approach was used to test the association 152 

between BCAA and outcome (the corresponding BCAA in METSIM and type 2 diabetes) using 153 

inverse-variance weighted regression (IVW).26 The Cochran’s Q statistic and its associated p-154 

value, was used to assess for horizontal pleiotropy, and p<0.05 was deemed suggestive of 155 

pleiotropy. In addition, sensitivity analyses were performed using MR-Egger to assess for 156 

horizontal pleiotropy and the weighted median method.27,28 A leave-one-out analyses was also 157 

performed for the BCAA/type 2 diabetes associations. Associations were tested using the 158 

Mendelian Randomization R package.29 MR-PRESSO was used to assess for horizontal 159 

pleiotropy (global test) and distortions in IVW estimates (distortion test) with exclusion of SNPs 160 

identified as outliers at p<0.05/(# of genetic instruments).30  161 
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The same MR approaches were used to assess whether instrumental variables for type 2 diabetes, 162 

fasting insulin and BMI were associated with each BCAA. The association between type 2 163 

diabetes and each BCAA was also examined using metabolites measured in the KORA and 164 

METSIM studies.  165 

Pairwise multivariable MR (MVMR) was used to test for whether the associations between type 166 

2 diabetes and the BCAAs was independent of fasting insulin and BMI. 167 

All statistical tests were two-sided and a nominal p<0.05 was considered significant.31 168 

 169 

 170 

RESULTS 171 

We identified independent common SNPs (MAF>1%) significantly associated (p<5x10-8) with 172 

the BCAAs from GWAS performed on 115,082 European Ancestry UK Biobank participants. 173 

There were 18, 15 and 8 associated SNPs for valine, leucine and isoleucine, respectively (Table 174 

1 and Supplemental Table 1). Five SNPs were located near genes examined in prior BCAA 175 

association studies (GCKR, PPM1K, DDX19A, SLC1A4 and ASGR1 [which is near 176 

SLC2A4]).12,13  Two associations were near gene loci that have direct roles in BCAA metabolism 177 

(PPM1K, BCAT2), while others had known functionality related to intermediate metabolism 178 

(SLC1A4, PRODH, GLS2, GLUD1, PCCB), insulin signaling (IRS1, GRB14, GCKR) and 179 

glucose regulation (GCKR, SLC2A4) (Figure 1). HNF4G and RLN3 have previously been 180 

associated with adiposity traits. We did not observe associations previously reported near 181 

TRMT61A and CBLN1 in the UK biobank or METSIM cohorts (Supplemental Table 2).12 182 

We constructed genetic instruments for each BCAA in the UK Biobank set (Supplemental 183 

Table 3). To validate these predictors, we tested their associations with corresponding BCAAs 184 
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measured in the METSIM data set. Effect sizes for each SNP instrument were generally linearly 185 

related for each BCAA between the studies (Figure 2), and MR analyses demonstrated 186 

significant (p<0.05), positive associations for each BCAA, without heterogeneity (Cochran’s Q 187 

statistic p>0.05)  (Figure 2, Supplemental Table 4). 188 

 189 

There was no genetic association between the BCAA predictors and type 2 diabetes by IVW for 190 

valine (beta=0.17 change in log-odds per standard deviation change in valine, [95% CI, -0.28 - 191 

0.62], p=0.45), leucine (beta=0.19 [-0.30 - 0.68] p=0.45) or isoleucine (beta=0.02 [-0.54 - 0.59], 192 

p=0.94) by the IVW method (Figure 3). Similar results were seen in sensitivity analyses using 193 

the leave-one-out, MR-Egger and weighted median methods (Supplementary Figure 1, 194 

Supplemental Table 5). There was significant heterogeneity (Cochran’s Q statistic p<0.05) for 195 

each association, but the MR-Egger intercept values were not significant (p>0.05), and outlier 196 

removal by the MR-PRESSO method did not identify significant distortion (p>0.05) in the effect 197 

estimates (Supplemental Table 5). 198 

 199 

We next constructed instrumental variables for type 2 diabetes (n=95 SNPs) to determine 200 

whether the type 2 diabetes was associated with altered BCAA levels. There were significant 201 

positive associations with each BCAA (valine: beta=0.08 per standard deviation change in levels 202 

per log-odds change in type 2 diabetes, [95% CI: 0.05 - 0.10], p=1.8x10-9), (leucine: beta= 0.06 203 

[0.04 - 0.09], p=4.5x10-8) and isoleucine (beta= 0.06 [0.04 - 0.08], p=2.8x10-8) (Figure 5, 204 

Supplemental Table 6). Sensitivity analyses showed consistent results. Similar significant 205 

positive associations were seen when testing associations with with BCAA levels measured in 206 

the KORA study (Supplementary Figure 2, Supplemental Table 7). We tested associations 207 
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with BCAA levels in METSIM. In this set, all participants with prevalent or incident type 2 208 

diabetes were excluded from the BCAA GWAS, which would be expected to attenuate or 209 

eliminate an association with type 2 diabetes if the association was due to this disease. As 210 

expected, while the directions for all associations were consistent with those observed in the UK 211 

Biobank and KORA sets, they were not significant for valine and leucine and nominally 212 

significant for isoleucine (p=0.03) (Supplementary Figure 3, Supplemental Table 8). 213 

 214 

The SNPs associated with BCAA levels are associated with insulin regulation and adiposity, 215 

suggesting that the BCAAs may be up-stream of these traits. To test this hypothesis, we 216 

constructed instrumental variables for fasting insulin levels (n=34 SNPs) and BMI (n=69 SNPs). 217 

Similar to type 2 diabetes, there were significant positive associations with each phenotype and 218 

each BCAA (Supplemental Figure 4, Supplemental Table 9). In sensitivity analyses the MR-219 

Egger results for fasting insulin demonstrated discordant results with wide confidence intervals 220 

(Supplemental Table 9). However, the intercept p-values were not significant. MR-PRESSO 221 

analysis did not show significant distortion (p>0.05) after removing outliers. It has previously 222 

been observed the MR-Egger can produce unreliable discordant estimates with wide confidence 223 

intervals in the presence of SNPs with a direct effects on the outcome.28,32 This was the case 224 

here, as, for instance, excluding 2 outlying SNPs identified by MR-PRESSO brought the MR-225 

Egger estimate (0.61) in line with the IVW (0.60) and weighted median (0.70) estimates for 226 

leucine. In sum, these results suggest that BCAA levels are higher with higher type 2 diabetes 227 

risk, fasting insulin levels and BMI.Multivariable MR was used to determine whether the 228 

associations with type 2 diabetes was independent of BMI and levels. Type 2 diabetes was 229 

associated with each BCAA, independent of BMI and fasting insulin levels (Figure 5, 230 
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Supplemental Table 8). However, associations between BMI and the BCAAs were not 231 

significant (p>0.05) after adjustment for type 2 diabetes. 232 

 233 

 234 

DISCUSSION 235 

We constructed and validated genetic instruments for the BCAAs valine, leucine and isoleucine 236 

and tested whether they were associated with type 2 diabetes using standard MR approaches. 237 

While the genetic instruments robustly associated with positive control phenotypes, they did not 238 

associate with type 2 diabetes. This contrasts with a prior MR study which demonstrated 239 

associations for each BCAA.12 In line with prior studies, we found that fasting insulin and BMI 240 

were positively associated with BCAA levels.13,33 In addition, we found that genetic instruments 241 

for type 2 diabetes were also robustly associated with BCAA levels, suggesting that the BCAAs 242 

are biomarkers, rather than causal mediators of type 2 diabetes. Multivariable MR suggested that 243 

the associations with BMI are likely mediated through increasing type 2 diabetes risk. 244 

 245 

We did not replicate findings from a prior study that observed associations between genetic 246 

instruments of the BCAAs and type 2 diabetes.12 There are important differences between that 247 

study and this one. The BCAA predictors in that study were heavily weighted with SNPs in high 248 

linkage-disequilibrium around the PPMK1 gene, whose gene product regulates catabolism of 249 

each of the BCAAs. Their valine and leucine predictors only used SNPs around that gene locus, 250 

and thus were only testing for an association based on a single genetic mechanism. Favoring an 251 

association was the fact that there was a suggestive association around the PPMK1 gene in their 252 

type 2 diabetes GWAS and the high representation of SNPs in high LD in this region. We did not 253 
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observe a type 2 diabetes association at the PPMK1 locus in the DIAGRAM Consortium GWAS 254 

data set. Their isoleucine predictor additionally included SNPs around the TRMT61A, CBLN1 255 

and DDX19A, but not GCKR. We did not observe associations and found directional 256 

inconsistency between the BCAAs and their lead SNPs around the TRMT61A and CBLN1 genes 257 

in the UK Biobank and METSIM cohorts. Thus, we could not replicate their findings due to 258 

these non-replicating SNP associations related to isoleucine and type 2 diabetes. 259 

 260 

 261 

We used a larger set of SNPs measuring diverse genetic mechanisms associated with levels of 262 

BCAAs in plasma than prior studies. In general, MR results are most robust when the genetic 263 

instruments measure a broad set of independent genetic mechanisms associated with an 264 

exposure, as this decreases the likelihood of spurious associations that can result from examining 265 

a small number of genetic loci.26 Attesting to the validity of the BCAA genetic instruments, we 266 

found that the SNP effect sizes corresponded to those measured in an independent cohort. When 267 

testing for the type 2 diabetes association, we employed a two-sample design to reduce the 268 

chance of identifying associations based on reverse causality and we performed a number of 269 

sensitivity analyses to ensure that outlying SNPs were not obscuring an association. Thus, we 270 

believe these findings more accurately describe the genetic relationship between the BCAAs and 271 

type 2 diabetes. 272 

 273 

The SNPs associated with the BCAAs highlight a number of genetic mechanisms influencing 274 

circulating BCAA levels, many of which have functions within the mitochondria. In addition to 275 

PPMK1, the protein product of BCAT2 transanimates the BCAAs to α-ketoacids while 276 
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converting α-ketoglutarate (αKG) to glutamate.34 The gene products of GLUD1, PRODH and 277 

GLS2 also impact glutamate metabolism.35 PCCB contributes to BCAA breakdown by 278 

catabolism of propionyl-CoA.36 Several genes are related to glucose regulation, including GCKR 279 

which inhibits glucose metabolism by glucokinase, SLC2A4 (GLUT4) which allows glucose 280 

entry into cells in response to insulin signaling, and glucose signaling including MLXIP which 281 

modulates transcription in response to intracellular glucose levels.37 IRS1 and GRB14 both 282 

regulate signaling through the insulin receptor.38 There were also genes associated to adiposity 283 

including HNF4G, a transcription factor found to be associated with BMI in GWAS studies and 284 

RNL3, which may have a role in appetite regulation.39–41 There were also SNPs located at loci 285 

that identified genomic regions where the link to BCAAs was not clear including SNPs near 286 

MOK, DDX19A-DT, SUOX42 and DHODH. 287 

 288 

Collectively, the SNP associations support the hypothesis that BCAA levels are influenced not 289 

only by gene products directly involved in BCAA catabolism, but also physiological processes 290 

related to insulin signaling, glucose regulation and adiposity.43 Consistently, we found that 291 

genetic instruments related to BMI, fasting insulin levels and type 2 diabetes associated with 292 

each BCAA. The associations were in a positive direction, consistent with well-established 293 

epidemiological observations. For leucine and isoleucine, the BMI association was not 294 

significant after multivariable adjustment, and remained only nominally associated with valine. 295 

These results suggest that the BMI association was most likely related to the influences of 296 

adiposity on insulin resistance and penetrance of type 2 diabetes.44 297 

 298 
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There are limitations to the current study. False positive associations can arise from the use of 299 

weak genetic instruments or the use of pleiotropic SNPs that associate with a risk factor through 300 

mechanisms unrelated to the exposure. To mitigate this possibility, we used a range of sensitivity 301 

analyses to ensure that associations were consistent across a range of assumptions. These 302 

findings also conflict with some epidemiological and experimental data, which could suggest 303 

that non-genetically determined BCAA levels may contribute to type 2 diabetes and insulin 304 

resistance through mechanisms not captured by these studies. The analyses also relied on 305 

existing data that predominantly represents individuals of European ancestries, which limits 306 

generalization to other ancestry groups. 307 

 308 

In summary, we did not find evidence supporting a causal role for BCAAs on type 2 diabetes 309 

risk. Rather, these data support the hypothesis that the BCAAs levels are increased as a 310 

consequence of diabetes and insulin resistance. 311 

 312 
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TABLES 453 

 454 

Table 1. Genomic loci and candidate genes associated with circulating valine, leucine or 455 

isoleucine levels. 456 

 457 

Chromosome: 
Position 
(Hg37) Lead SNP(s) 

Lead 
candidate 
gene(s)1 Function2 

2:27730940 
Val: rs1260326 
Leu: rs1260326 
Ile: rs1260326  

GCKR Inhibits glucokinase in liver and pancreatic islet cells. 

2:65219030 Val: rs2007061  SLC1A4 
Sodium-dependent neutral amino acid transporter for 
alanine, serine, cysteine, and threonine. 

2:165501927 - 
2:165528876 

Val: rs13389219 
Leu: rs5835988 
Ile: rs5835988 

GRB14 
Interacts with insulin receptors and inhibits insulin 
receptor signaling. 

2:227108446 
Val: rs2943652 
Leu: rs2943652 

IRS1 
Transmits signal between the insulin receptor and 
phosphoinositide 3-kinase. 

3:136328270 
Val: rs1471740 
Leu: rs1471740 

PCCB  
Breaks down amino acids including isoleucine and 
valine. 

4:88920985 

Val: rs10018448 
Leu: 

rs114796149, 
rs10018448 

Ile: rs114796149 

PPM1K 
Activates branched chain α-ketoacid dehydrogenase 
complex that catalyzes the first step in the BCAA 
metabolism. 

8:76443463 - 
8:76454025 

Leu: rs2977929 
Ile: rs2941456 

HNF4G 
Enables DNA-binding transcription activator activity. 
Associated with BMI by GWAS. 

10:88820592 Val: rs17096421  GLUD1 
Mitochondrial matrix enzyme that catalyzes the 
oxidative deamination of glutamate to alpha-
ketoglutarate and ammonia. 

12:56393337 
Val: rs1081975  
Leu: rs1081975  

SUOX Breaks down sulfur-containing amino acids. 

12:56861458 - 
12:56865056 

Val: rs2638315 
Leu: rs2638315  
Ile: rs7302925 

GLS2 
Catalyzes the hydrolysis of glutamine to glutamate and 
ammonia.  

12:122607112 Val: rs12368387  
MLXIP 
(MONDOA) 

Transcriptional activation of glycolitic target genes in 
response to cellular glucose levels. 

14:102718052 Val: rs2274815  
WDR20, 
MOK, 
ZNF839 

Multiple. Lead SNP intronic in MOK. 
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16:70270907 - 
16:70368909 

Val: rs12325419 
Leu: rs35452938  
Ile: rs12325419 

Multiple, 
including 
DDX19A-
DT and 
DDX19B 

Multiple. Intronic in DDX19A-DT and 3' UTR in 
DDX19B. DDX19A identified on prior isoleucine 
GWAS.    

16:72149923 Leu: rs9930957 

DHODH,TX
NL4B,HP,H
PR,DHX38,
PMFBP1 

Multiple. 

17:7185779 

Val: 
rs117643180 

Leu: 
rs117643180 

Ile: rs117643180 

SLC2A4 
(GLUT4) 

Insulin-regulated facilitative membrane glucose 
transport into cells.  

17:79636653 Val: rs62080209  
SLC25A10 
(DIC) 

Translocates small metabolites (e.g. malate, succinate) 
across the mitochondrial membrane for metabolic 
processes including the TCA cycle and fatty acid 
synthesis. 

19:14139004 Leu: rs1982632  RLN3 
Insulin-superfamily hormone regulating appetite, food 
intake, and weight gain. 

19:49300431 - 
19:49317459 

Val: rs35230038, 
rs117048185 

Leu: rs4801776 
Ile: rs71179052 

BCAT2 
Mitochondrial branched chain aminotransferase that 
catalyzes production of the BCAAs. 

22:18915282 - 
22:18915347 

Val: rs2238732 
Leu: rs5747934 

PRODH 
Mitochondrial protein that catalyzes the first step in 
proline degradation. 

 458 

Footnotes: 459 

1. Lead candidate genes shown were selected based on their proximity to lead the lead SNP, 460 

eQTL analyses and known relevance of cellular functions to BCAA metabolism. 461 

2. Known cellular functions for loci where a single lead candidate gene is identified. 462 

  463 
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FIGURE LEGENDS 464 

 465 

Figure 1: Cellular functions of proteins for genes associated with circulating valine, leucine 466 

and isoleucine levels. Genes located near lead SNPs are highlighted in red.  467 

 468 

469 

 470 

  471 
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Figure 2: Associations between SNP instruments for the BCAAs and validation 472 

phenotypes. (A-C) Scatter plots showing comparing the GWAS effect sizes between the valine 473 

(n=13 SNPs), leucine (n=13 SNPs) and isoleucine SNP (n=7 SNPs) genetic instruments 474 

identified in the UK Biobank cohort and their corresponding amino acid in the METSIM cohort. 475 

The lines represent the association based on the IVW method. (D) Summary of associations from 476 

MR analyses testing the association between the genetic instruments in UK Biobank and their 477 

corresponding amino acid level in METSIM. IVW=inverse variance weighted method. 478 

 479 

 480 
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Figure 3: Associations between SNP instruments for the BCAAs and type 2 diabetes. (A-C) 481 

Scatter plots showing comparing the associations between the valine, leucine and isoleucine SNP 482 

genetic instruments and with type 2 diabetes. The lines represent the association based on the 483 

IVW method. (D) Summary of associations from MR analyses testing the association between 484 

the genetic instruments for each BCAA and type 2 diabetes. IVW=inverse variance weighted 485 

method. 486 

 487 

 488 
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Figure 4: Associations between SNP instruments for metabolic phenotypes and BCAAs. (A-489 

C) Scatter plots showing of the associations between genetic instruments for type 2 diabetes 490 

(n=95 SNPs) and valine, leucine and isoleucine. The lines represent the association based on the 491 

IVW method. (D) Forest plot summarizing the associations by the inverse variance weighted 492 

(IVW) method between genetic instruments for type 2 diabetes, fasting insulin (n=34 SNPs) and 493 

body mass index (BMI) (n=69 SNPs) and valine, leucine and isoleucine.  494 

 495 

 496 
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Figure 5: Multivariable MR associations between type 2 diabetes and BCAAs. Forest plots 497 

summarizing the multivariable MR associations by the inverse variance weighted (IVW) method 498 

between genetic instruments for type 2 diabetes and valine, leucine and isoleucine, adjusted for 499 

either BMI or fasting insulin. 500 

 501 

 502 

 503 
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Supplementary Figure 1

Supplementary Figure 1. Summary of a leave-one-out analysis for the associations between 

genetic instruments for (A) valine, (B) leucine and (C) isoleucine and type 2 diabetes. Each 

figures shows the IVW estimate (95% CI) after exclusion of the indicated SNP. Note that the 

name of the closest gene was substituted for the SNP name, when available.
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Supplementary Figure 2. Associations between SNP instruments for type 2 diabetes and 

BCAAs measured in the KORA population. (A-C) Scatter plots showing of the associations 

between genetic instruments for type 2 diabetes (n=90 SNPs) and valine, leucine and 

isoleucine. The lines represent the association based on the IVW method. (D) Forest plot 

summarizing the associations by the inverse variance weighted (IVW) method between genetic 

instruments for type 2 diabetes and valine, leucine and isoleucine.

D

Supplementary Figure 2
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Supplementary Figure 3. Associations between SNP instruments for type 2 diabetes and 

BCAAs measured in the METSIM population. (A-C) Scatter plots showing of the associations 

between genetic instruments for type 2 diabetes (n=95 SNPs) and valine, leucine and 

isoleucine. The lines represent the association based on the IVW method. (D) Forest plot 

summarizing the associations by the inverse variance weighted (IVW) method between genetic 

instruments for type 2 diabetes and valine, leucine and isoleucine.

D

Supplementary Figure 3
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Supplementary Figure 4
Fasting insulin

BMI associations

Supplementary Figure 4. Associations between SNP instruments for fasting insulin or 

BMI, and the BCAAs measured in the UK biobank population. Scatter plots showing of the 

associations between genetic instruments for fasting insulin (top panels) and BMI (bottom 

panels) and each BCAA. The lines represent the association based on the IVW method.
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