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Abstract 

Background Current clinical tests for mycobacterial pulmonary diseases (MPD), such as 

pulmonary tuberculosis (PTB) and non-tuberculous mycobacteria pulmonary diseases (NTM-PD), 

are inaccurate, time-consuming, sputum-dependent, and/or costly. We aimed to develop a simple, 

rapid and accurate breath test for screening and differential diagnosis of MPD patients in clinical 

settings. 

Methods Exhaled breath samples were collected from 93 PTB, 68 NTM-PD and 4 

PTB&NTM-PD patients, 93 patients with other pulmonary diseases (OPD) and 181 healthy controls 

(HC), and tested using the online high-pressure photon ionisation time-of-flight mass spectrometer 

(HPPI-TOF-MS). Machine learning models were trained and blindly tested for the detection of MPD, 

PTB, NTM-PD, and the discrimination between PTB and NTM-PD, respectively. Diagnostic 

performance was evaluated by metrics of sensitivity, specificity, accuracy, and area under the 

receiver operating characteristic curve (AUC). 

Results The breath PTB detection model achieved a sensitivity of 73.5%, a specificity of 

85.8%, an accuracy of 82.9%, and an AUC of 0.895 in the blinded test set (n=141). The 

corresponding metrics for the NTM-PD detection model were 86.4%, 93.2%, 92.1% and 0.972, 

respectively. For distinguishing PTB from NTM-PD, the model also achieved good performance 

with sensitivity, specificity, accuracy, and AUC of 85.3%, 81.8%, 83.9% and 0.947, respectively. 22 
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potential breath biomarkers associated with MPD were putatively identified and discussed, which 

included 2-furanmethanol, ethanol, 2-butanone, etc. 

Conclusions The developed breathomics-based MPD detection method was demonstrated for 

the first time with good performance for potential screening and diagnosis of PTB and NTM-PD 

using a refined operating procedure on the HPPI-TOF-MS platform. 

Introduction 

Tuberculosis (TB) is a chronic infection and one of the top lethal diseases worldwide. Currently 

affecting one quarter of the global population, TB continues to pose a major health threat, with 10.6 

million new cases estimated in 2021 by WHO [1]. Meanwhile, non-tuberculous mycobacteria (NTM) 

pulmonary diseases (PD) (NTM-PD) have recently seen a surge in cases, sharing similar symptoms, 

radiographic findings and pathological characteristics with pulmonary TB (PTB), leading to 

frequent misdiagnoses without strain identification [2]. Additionally, most NTMs possess natural 

resistance to anti-TB drugs, with therapeutic schemes different from TB. 

Current tests for PTB and NTM-PD, including rapid molecular tests, etiological examinations, 

immunodiagnostic tests and chest radiography, are limited by their expenses, inaccuracy, time-

consumption, low-compliance, sputum-dependence, invasiveness or complexity [3]. Therefore, it is 

crucial to develop rapid, easy-to-operate, accurate and sputum-free diagnostic methods in clinical 

practice of mycobacterial PD (MPD) management and control. 

Various studies have demonstrated that specific volatile organic compounds (VOCs) were emitted 

from cultured TB and NTM bacteria [4], and detecting these characteristic VOCs might provide 

new insight into MPD diagnosis. Breath VOC tests have enabled the detection of many human 

infectious diseases [5] [6] as these VOCs are associated with the metabolites in body fluids and 

tissues, offering a simple and non-invasive window into MPDs such as PTB and NTM-PD. 

Several studies have investigated TB screening and diagnosis with breath tests in humans [5] [7]. 

Phillips et al. demonstrated the feasibility of breath tests for PTB detection with 82.6% sensitivity 

and 100% specificity [8], and 85% accuracy in a transcontinental and ethnic group with gas 

chromatography-mass spectrometer (GC-MS) in PTB screening [9]. Subsequent investigations have 

revealed more potential TB breath VOC biomarkers [10] [11] [12] [13]. Recently, Beccaria et al. 

used GC×GC-MS to analyse exhaled VOCs of PTB patients and suspected PTB patients / other 

controls in South Africa / Haiti, achieving high sensitivity and specificity based on 23 / 22 feature 

VOCs [14] [15], respectively. Other recent studies have focused on pediatric [16] and adult PTB 

diagnosis [17] and TB infection (TBI) screening [18]. In addition to the above TB VOC-identified 

studies, sensor-based breath analyses have also shown promise in detecting PTB without biomarkers 

revealed [7]. 

Regarding breath NTM detection, only one pilot study has been conducted thus far. Mani-

Varnosfaderani et al. [19] discovered 17 markers associated with NTM-PD and demonstrated that 

exhaled VOCs could differentiate active NTM-PD from the patients with indolent infection or no 

cultured NTM. However, this study only included 11 subjects. No breath research has differentiated 

NTM-PD from PTB or other pulmonary diseases (OPD) as yet. 
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In this study, for the first time, we investigated the potential of breath analysis to differentiate among 

PTB, NTM-PD, OPD and healthy controls (HC), and identified 22 potential VOC biomarkers 

associated with PTB and NTM-PD, extending our previous PTB breath detection research [17] [18]. 

Moreover, by employing our self-developed on-line mass spectrometer for human breath—the high-

pressure photon ionisation time-of-flight mass spectrometry (HPPI-TOF-MS) [20], we built a rapid 

and simple online breath analysis and modeling method for MPD screening and diagnosis. 

Methods 

Study design and population 

The study was conducted from September 1 to December 31, 2022, at Guangzhou Chest Hospital, 

China, with approval from the Ethics Committee of Guangzhou Chest Hospital (No. 2022-65). 

Written consent was obtained from all participants. 

Illustrated in Fig. 1, subjects were breath-sampled and clinically assessed before being categorized 

into five groups: PTB, NTM-PD, PTB&NTM-PD, OPD, and HC. The data was randomly split for 

machine learning (ML) model training, validation and testing. Various ML models were trained 

based on multiple biomarkers, validated and finally evaluated on a blinded test set. 

PTB and NTM-PD patients were prospectively recruited based on the following criteria: 1) 

diagnosed by Xpert, culture, smear, and/or other molecular tests; 2) before anti-TB/NTM treatment; 

3) absence of OPDs. OPD patients were included if they had other pulmonary infectious diseases 

or noninfectious chronic diseases that shared similar symptoms with PTB or NTM-PD, such as 

pneumonia, lung cancer, lung abscess, etc. HCs had no respiratory symptoms and no pulmonary 

lesions on chest imaging. Note some HCs and OPDs might have TBIs. All participants were aged 

18-70 years and the participants were excluded if their breath airbags leaked or if they were unable 

to inhale sufficient air (<1.2L). 

Breath sampling 

The method has been detailed in our previous breath detection studies [17]. Briefly, breath samples 

were collected according to a predefined protocol and analysed within 24 hours. The sampling 

apparatus comprised a disposable gas nipple and a polyether-ether-ketone bag. Dietary and 

environmental factors were minimised through established sampling requirements, abstinence 

protocols and a consistent collection environment, including abstaining from smoking and alcohol 

before the sampling day, fasting for > 2 h and rinsing their mouths before sampling. Participants 

inhaled deeply and exhaled completely into the sampling bag with a volume ≥ 1.2 L. 

HPPI-TOF-MS analysis 

The basic development and structure of HPPI-TOF-MS has been described in our previous study 

[20] with universal detection operations for breath VOCs [21]. Briefly, the device comprises a 

vacuum ultraviolet lamp-based HPPI ion source and an orthogonal acceleration TOF mass analyser. 
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The gas-phase exhaled breath sample was directly introduced into the 60 °C heated ionisation region 

through a 100 °C heated stainless-steel capillary from the air bag to eliminate condensation and 

adsorption of exhaled VOCs. Then, TOF signals were recorded with a 400-picosecond time-to-

digital converter rate at 25 kHz and accumulated all the mass spectra for 60s. Finally, the bundled 

analysis software calibrated all mass spectrometers and completed noise reducing, baseline 

correction and background air subtraction before further analysis. 

Data analysis 

As depicted in Fig. 1, participants were randomly divided into two groups: 70% for model 

construction and 30% for blinded testing. Given that the enroled datasets was discrete, balanced, 

and with a median feature scale, a multi-strategy feature selection approach was performed before 

the model construction to identify the most important VOC features for modeling. Firstly, the VOC 

ions with no significant differences (p > 0.05) between case and control groups were excluded. Then, 

the VOC ions with low intensity but highly correlated with other selected VOC ions (correlation 

coefficient > 0.9) among all training samples were excluded. Lastly, a random forest (RF) model 

was constructed on the training data, and the ten most important VOC ions were selected based on 

the feature importance or coefficient. Based on the finally selected VOC features, several well-

established ML models were employed as classifiers to distinguish MPD patients from controls. 

These algorithms included RF, logistic regression (LR), extreme gradient boosting (XGB), k-nearest 

neighbours (KNN), decision tree (DT) and ensemble learning. Subsequently, the optimal classifier 

was selected according to the model performance in the internal validation subset, and tested with 

the receiver operating characteristic (ROC) curve analysis. Sensitivity (SEN), specificity (SPE), 

accuracy (ACC), area under the ROC curve (AUC) and their relative 95% confidence interval (CI) 

were calculated to evaluate the performance of MPD detection models on each top characteristic 

VOC ion and on all featured VOC ions in a panel. Brief descriptions and main parameters of all ML 

methods were provided in Table S1. 

Statistical analysis 

All statistical analyses were conducted using the software IBM SPSS Statistics v24 (IBM Corp., 

Armonk, NY, USA) and Origin v2018 (OriginLab Corp., Northampton, MA, USA). Descriptive 

statistics are reported as frequencies (percentages) for categorical data and as medians (interquartile 

range, IQR) for continuous variables. The Mann-Whitney U test was used to compare the 

demographic characteristics between different patient groups for continuous variables and the chi-

square test for categorical variables. All tests were two-tailed. 

Results 

Study population 

We recruited 581 participants from multiple respiratory departments for PTB and NTM-PD in 

Guangzhou Chest Hospital. After excluding participants aged outside 18~70, and those who refused 
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the study or had invalid breath samples, 439 participants were finally eligible for analysis. Of these 

individuals, 93 were diagnosed with PTB (confirmed by aetiological tests), 68 with NTM-PD, 4 

with both aetiological PTB and NTM-PD, 93 with OPD, and 181 HCs were finally enroled. The 

demographics of participants and their clinical information are presented in Table 1. Subjects with 

PTB and NTM-PD were diagnosed based on treatment responses or aetiological tests such as 

sputum smear, culture, and/or molecular tests including Xpert, TB/NTM-RNA, TB-LAMP and 

TB/NTM-PCR tests. 54 of all PTB patients were ultimately confirmed by clinical comprehensive 

diagnosis including 5 PTB&NTM-PD and thus excluded provisionally, suggesting the current 

aetiological tests are not entirely satisfactory. Most OPD participants had aetiological test results to 

exclude the comorbidity of PTB/NTM-PD, and HCs underwent immunological tests and chest 

radiography examinations for inclusion. 

TABLE 1 

Basic demographic data of all enrolled participants and their MPD-related clinical test results 

(negative: positive: untested) 

Groups All (n=439) PTB (n=93) 
NTM-PD 

(n=68) 

PTB&NTM-PD 

(n=4) 

OPD 

(n=93) 
HC (n=181) 

Age Median (IQR) 56(44, 62) 57(36, 65) 60(51, 68) 70(65, 72) 57(47, 65) 53(42, 58) 

Gender (%) Male 187 (42.6%) 58 (62.4%) 18 (26.5%) 2 (50.0%) 57 (61.3%) 52 (28.7%) 

 Female 252 (57.4%) 35 (37.6%) 50 (73.5%) 2 (50.0%) 36 (38.7%) 129 (71.3%) 

BMI Median (IQR) 
21.3 (18.7, 

24.5) 

19.8 (18.0, 

21.3) 

18.1 (16.5, 

20.8) 
19.5 (19.4, 19.8) 

20.2 (18.3, 

21.9) 

24.6 (22.6, 

27.4) 

Smoke (%) 
Non-/Ex-

smoker 
122 (27.8%) 20 (21.5%) 3 (4.4%) 0 (0.0%) 1 (1.1%) 98 (54.1%) 

 Smoker 33 (7.5%) 6 (6.5%) 0 (0.0%) 0 (0.0%) 10 (10.8%) 17 (9.4%) 

 No records 284 (64.7%) 67(72.0%) 65 (95.6%) 4 (100%) 82 (88.2%) 66 (36.5%) 

Immunological 

tests 

PPD 126:10:303 3:5:85 4:1:63 0:0:4 4:4:85 115:0:66 

IGRA/EC 157:49:233 3:24:66 4:3:61 0:0:4 8:6:79 142:16:23 

Aetiological 

tests 

PTB related* 112:97:230 0:93:0 43:0:25 0:4:0 69:0:24 0:0:181 

NTM-PD 

related** 
38:72:329 30:0:63 0:68:0 0:4:0 88:0:5 0:0:181 

MPD: mycobacterial pulmonary diseases, PTB: pulmonary tuberculosis, NTM-PD: non-

tuberculous mycobacteria pulmonary diseases, OPD: other pulmonary diseases, HC: health controls, 

BMI: body mass index, IQR: interquartile range, PPD: purified protein derivative, IGRA: interferon 

gamma release assay, EC: ESAT6-CFP10 test. 

* PTB related tests include smear, culture, Gen-Xpert, TB-RNA, TB-LAMP and TB-PCR tests. ** 

NTM-PD related tests include smear, culture, NTM-RNA and NTM-PCR tests. 

Statistical analyses were performed on the basic demographic characteristics of age, gender, body 

mass index (BMI) and smoking status between case and control groups for four tasks: MPD 

detection, PTB detection, NTM-PD detection and PTB&NTM-PD discrimination. As shown in 

Table S2, there were no significant differences in gender and smoking status between MPD group 

and controls, but with significant differences in age and BMI. For the PTB detection dataset, BMI 

and smoking status were significantly different between cases and controls. The greatest bias was 

observed between NTM-PD group and controls, with significant differences in all four 

characteristics. Although there was no significant difference in smoking status between PTB and 

NTM-PD, age, gender and BMI were all significantly biased for PTB&NTM-PD discrimination. In 

addition, the value of the statistical analysis results for smoking status were limited due to 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 2, 2023. ; https://doi.org/10.1101/2023.05.23.23290378doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.23.23290378


incomplete data collection. 

MPD detection performance 

Firstly, we explored the potential value of breath VOC test in MPD detection. The classification 

performance metrics of six ML models for MPD detection were evaluated using a validation dataset, 

presented in Table S3. Among these results, RF, XGB and ensemble models achieved superior 

performances than other models, with AUC greater than 0.85. Overall, the ensemble model has the 

best performance in the validation set with a SEN of 76.5% (95% CI: 62.2%, 90.7%), a SPE of 89.3% 

(95% CI: 81.2%, 97.4%) and an AUC of 0.909 (95% CI: 0.849, 0.968). Therefore, the ensemble 

algorithm was further analysed in the testing set regarding different controls as shown in Table 2, 

and also employed as the basic classifier for other three tasks. 

TABLE 2 

The performance metrics of ensemble model on the test set in MPD, PTB, NTM-PD detection and 

PTBB&NTM-PD discrimination (95% CI). 

Models Controls SEN(%) SPE(%) ACC(%) AUC 

MPD 

detection 

OPD 73.7(62.3, 85.1) 65.5(48.2, 82.8) 70.9(61.3, 80.5) 0.817(0.735, 0.898) 

HC 73.7(62.3, 85.1) 94.5(88.5, 100) 83.9(77.1, 90.7) 0.946(0.904, 0.988) 

All 73.7(62.3, 85.1) 84.5(76.8, 92.3) 80.1(73.6, 86.7) 0.901(0.852, 0.951) 

PTB 

detection 

NTM-PD 73.5(58.7, 88.4) 72.7(54.1, 91.3) 73.2(61.6, 84.8) 0.816(0.714, 0.917) 

OPD 73.5(58.7, 88.4) 82.8(69.0, 96.5) 77.8(67.5, 88.0) 0.862(0.777, 0.947) 

HC 73.5(58.7, 88.4) 92.7(85.9, 99.6) 85.4(78.1, 92.7) 0.944(0.897, 0.992) 

All 73.5(58.7, 88.4) 85.8(79.2, 92.5) 82.9(76.6, 89.1) 0.895(0.844, 0.946) 

NTM-PD 

detection 

PTB 86.4(72.0, 100) 91.2(81.6, 100) 89.3(81.2, 97.4) 0.965(0.917, 1.000) 

OPD 86.4(72.0, 100) 89.7(78.6, 100) 88.2(79.4, 97.1) 0.953(0.895, 1.000) 

HC 86.4(72.0, 100) 96.4(91.4, 100) 93.5(88.0, 99.0) 0.986(0.960, 1.000) 

All 86.4(72.0, 100) 93.2(88.7, 97.8) 92.1(87.7, 96.6) 0.972(0.944, 0.999) 

PTB vs 

NTM-PD  
NTM-PD 85.3(73.4, 97.2) 81.8(65.7, 97.9) 83.9(74.3, 93.5) 0.947(0.888, 1.000) 

MPD: mycobacterial pulmonary diseases, PTB: pulmonary tuberculosis, NTM-PD: non-

tuberculous mycobacteria pulmonary diseases, OPD: other pulmonary diseases, HC: healthy 

controls, SEN: Sensitivity, SPE: Specificity, ACC: accuracy, AUC: area under the receiver operating 

characteristic curve. CI: confidence intervals. 

 

From Table 2, it can be seen that the ensemble based MPD detection model achieved higher SPE 

and AUC of 94.5% and 0.946 in discriminating MPD from HC than those in distinguishing MPD 

from OPD (65.5% and 0.817), respectively. This may suggest that the metabolic differences between 

MPD and HC were larger than those between MPD and OPD. Overall, the MPD detection model 

achieved a SEN of 73.7% (95% CI: 62.3%, 85.1%), a SPE of 84.5% (95% CI: 76.8%, 92.3%) and 

an AUC of 0.901 (95% CI: 0.852, 0.951) in discriminating MPD and all controls in clinical practice. 

The corresponding ROC curves for MPD detection model is illustrated in Fig. 2 (a), which includes 

MPD recognition from all controls, OPD and HC in validation and test sets. 
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PTB, NTM-PD detection and PTB&NTM-PD discrimination performances  

Based on similar feature selection and modeling processes, a PTB detection model based on 

ensemble method was trained and blindly tested, with performance metrics presented in Table 2. 

The AUCs for PTB discrimination from all control or different subgroups of controls were all greater 

than 0.8 (range: 0.816~0.944). These results indicate that PTB can be distinguished with other 

symptomatically similar diseases, such as NTM-PD and other common lung diseases. Fig. 2 (b) 

illustrates the ROC curves of PTB detection model for distinguishing PTB from NTM-PD, OPD 

and HC. 

Similarly, a NTM-PD detection model was also developed and blindly tested. As shown in Fig. 2 

(c), the AUCs of NTM-PD discrimination from other groups using the panel of characteristic VOCs 

were more satisfactory, ranging from 0.953 to 0.986, suggesting that NTM-PD could be easily 

distinguished in complex clinical settings through breath VOC analysis. 

Additionally, the performance of a diagnosis model for discriminating PTB from NTM-PD was 

shown in Fig. 2 (d) and Table 2. The SEN, SPE, ACC and AUC were 85.3% (95% CI: 73.4%, 97.2%), 

81.8% (95%CI: 65.7%, 97.9%), 83.9% (95% CI: 74.3%, 93.5%) and 0.947 (95% CI: 0.888, 1.000), 

respectively. 

As an extension, we additionally evaluated the performance of aforementioned models on the 49 

excluded clinically diagnosed PTB patients who had negative aetiological TB and NTM results. As 

illustrated in Fig. S1, these models, especially the NTM-PD detection and PTB&NTM-PD 

discrimination models, could tentatively assign these patients with elevated probabilities of PTB. 

Potential VOC biomarkers related to MPD 

Based on the top ten VOCs employed by the above MPD, PTB and NTM-PD detection and 

PTB&NTN-PD discrimination tasks, 22 VOC ions were identified as potential biomarkers 

associated with MPD (one was identified as fragments of carboxylic acids/esters). To evaluate the 

discrimination power of these VOC biomarkers, we trained the detection models in the 

corresponding tasks on each single VOC ion and evaluated them in the test dataset. As illustrated in 

Fig. 3 (a), the classification AUCs of each VOC ions ranged from 0.40 to 0.92 in all tasks, which 

were all inferior to that of the panel of multiple VOC ions in corresponding tasks. There is one VOC 

ion (m/z=99) selected in all four tasks, four VOC ions (m/z=45, 47, 55 and 73) selected in three 

tasks, seven VOC ions (m/z=78, 67, 69, 70, 115, 81 and 106) selected in two tasks, and ten other 

VOC ions selected in only one task. Thus, we ranked the 22 VOC ions by the probability of being 

selected in four tasks as in Fig. 3 (b), where the probability represents the importance of the 

corresponding VOC ion as a biomarker of MPD. The relative concentration (peak area) of all the 

ranked 22 VOC ions in HC, OPD, NTM-PD, and PTB groups was illustrated in Fig. 4. The 

connection line indicates a significant difference between the two groups being connected. It can be 

observed that, (1) there is significant differences between at least two groups in all selected VOC 

ions; (2) there are significant differences between any two groups in three VOC ions (m/z=55, 99 

and 72); (3) there are significant differences between PTB and NTM-PD in all VOC ions except the 

icons with m/z 106, 83, 105 and 91. 
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TABLE 3 

The key VOCs associated with MPD according to selected probability ≥25% in all four tasks. 

No.  m/z 
Related 

tasks* 
Potential VOCs CAS number Molecular weight Molecular formula 

1 99 
A, B, C, 

D 
Furfuryl alcohol 98-00-0 98.100 C5H6O2(+H) 

2 45 A, C, D 
Fragments of carboxylic 

acids/esters 
/ / COOH+ 

3 47 A, C, D Ethanol 64-17-5 46.068 C2H6O(+H) 

4 55 B, C, D 2-Cyanoethyl radical 25840-11-3 54.071 C3H4N(+H) 

5 73 B, C, D Butanal/2-Butanone 
123-72-8/78-

93-3 
72.106 C4H8O(+H) 

6 78 A, B Benzene 71-43-2 78.112 C6H6
 

7 67 A, C 3-Butenenitrile 109-75-1 67.089 C4H5N 

8 69 A, B Isobutyronitrile 78-82-0 69.105 C4H7N 

9 70 C, D 1-Pentene 109-67-1 70.133 C5H10 

10 115 C, D N-Isobutylacetamide 1540-94-9 115.174 C6H13NO 

11 81 C, D 1-Methylpyrrole 96-54-8 81.116 C5H7N 

12 106 A, B m-Xylene/Benzaldehyde 
108-38-

3/100-52-7 
106.165/106.122 C8H10/C7H6O 

13 80 D Pyridine 110-86-1 79.100 C5H5N(+H) 

14 107 B 2,6-Dimethylpyridine 108-48-5 107.153 C7H9N 

15 74 A Propionic acid 79-09-4 74.078 C8H19N 

16 72 B Butanal/2-Butanone 
123-72-8/78-

93-3 
72.106 C3H8O 

17 83 A Pentanenitrile 110-59-8 83.132 C5H9N 

18 91 A 2-Ethoxyethanol 110-80-5 90.121 C4H10O2(+H) 

19 104 B 
2-Methyl-1-

butanethiol/Pentanethiol 

187-18-

8/110-66-7 
104.214 C5H12S 

20 65 C Cyanoallene 1001-56-5 65.073 C4H3N 

21 105 B Isopentanethiol 541-31-1 104.214 C5H12S(+H) 

22 75 D Glycine 56-40-6 75.067 C2H5NO2 

CAS: chemical abstracts service, VOCs: volatile organic compounds, MPD: mycobacterial 

pulmonary diseases. 

*Tasks: A. MPD detection; B. PTB detection, C. NTM-PD detection; D. PTB&NTM-PD 

discrimination. 

 

Given that the TOF-MS can only confirm the m/z of detected VOCs, the possible chemical identities 

of these ions were inferred based on the peak area distribution in addition to m/z data, comparison 

with published potential VOC biomarkers for TB and NTM and the human breathomics database 

[22]. These VOC ions selected in at least two tasks (importance≥50%) were tentatively assigned as 

furfuryl alcohol (m/z=99, CAS number: 98-00-0), fragments of carboxylic acids/esters (m/z=45), 

ethanol (m/z=47, 64-17-5), 2-cyanoethyl radical (m/z=55, 25840-11-3), butanal/2-butanone 

(m/z=73, 123-72-8/78-93-3), Benzene (m/z=78, 71-43-2), 3-butenenitrile (m/z=67, 109-75-1), 

isobutyronitrile (m/z=69, 78-82-0), 1-pentene (m/z=70, 109-67-1), N-isobutylacetamide (m/z=115, 

1540-94-9), 1-methylpyrrole (m/z=81, 96-54-8) and m-Xylene/benzaldehyde (m/z=106, 108-38-

3/100-52-7), among the full list of 22 potential VOC biomarkers detailed in Table 3. 

Discussion 

The diagnosis of MPDs presents a significant challenge, particularly in the detection of PTB and 

NTM-PD. Current diagnostic methods for PTB and NTM-PD, including sputum culture, molecular 
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tests and anti-TB or anti-NTM-PD treatments, are costly, time-consuming, and often inaccurate or 

inconvenient. Breathomics offers a novel approach to MPD detection through exhaled breath VOCs 

analysis, with promising results in PTB detection [5] [7]. In this study, we investigated the diagnostic 

value of breath analysis for MPD in a large cohort and successfully differentiated PTB and NTM-

PD from the controls using breath VOCs for the first time. Models for MPD detection, PTB 

detection, NTM-PD detection and PTB&NTM-PD discrimination were trained and tested blindly 

with satisfactory SENs, SPEs, ACCs and AUCs, which demonstrated the potential diagnostic value 

of breath VOCs in clinical practice of MPD. Additionally, we putatively identified potential VOC 

biomarkers associated with MPD based on the most important model features, a review of the 

literature and breathomics databases, providing a foundation for the development of a breath 

analyser for PTB and NTM-PD in future comprehensive clinical practice. 

For the NTM-PD detection, our study differs from the work of Mani-Varnosfaderani et al. [19], 

which pay attention to differentiating active NTM-PD from patients with indolent infection or no 

cultured NTM using breath analysis. We further focused on the differential diagnosis of NTM-PD 

from other symptom-like diseases including PTB and OPD, and HCs. Regarding PTB detection, we 

previously built a breath VOC model to differentiate 518 Mycobacterium TB (MTB) positive PTB 

patients from 810 HCs and/or 77 OPDs with high AUCs of 0.975 (PTB vs. Control) and 0.961 (PTB 

vs. OPD) and putatively identified 10 breath VOC biomarkers associated to PTB [17]. This study 

further extended this breathomics analysis to NTM-PD and MTB-negative PTB detection and more 

differential diagnosis tests. MTB-negative PTB patients with negative sputum culture and molecular 

test results, are commonly encountered in outpatient departments for TB and are often missed or 

misdiagnosed in practice. To the best of our knowledge, this is the first TB breath study to extend 

etiological sample trained models to these special patients (comprising about 1/3 of the whole 

enroled PTB group) and the elevated performance indicated that breath VOCs may provide a more 

precise diagnosis for the above challenge cases than traditional sputum-based tests. 

Among the potential VOC biomarkers identified in this study, seven VOCs, namely ethanol, butanal, 

benzene, 2-butanone, 3-butenenitrile, isobutyronitrile and benzaldehyde, were found to be associated 

with PTB and/or NTM-PD. Ethanol has been reported as a VOC biomarker in the NTM detection 

study of Mani-Varnosfaderani et al. on human breath, in which a decreased concentration of ethanol 

was observed in the NTM-PD group [19]. In addition, Somashekar et al. [23] found that 

ethanolamine decreased in serum samples of guinea pigs infected with MTB after 30 days, and 

ethanolamine is easily synthesized by NH3 and ethanol. Similarly, Ding et al. [24] observed a 

decrease of ethanol in the blood of both MTB infected human and mice, and the whole zebrafish 

larvae with M. marinum. However, an increase of ethanol was detected in PTB, NTM-PD and OPD 

groups in our study. Weber et al. also found the increase of ethanol in the breath of dairy cows 

infected with M. paratuberculosis [25] and de Laurentiis et al. showed that ethanol increased in the 

breath condensate of patients with chronic obstructive pulmonary disease (COPD) and pulmonary 

Langerhans cell histiocytosis [26]. Furthermore, ethanol was found in the headspace of cultures of 

M. paratuberculosis isolated from goat and cattle tissues and feces [27]. Spooner et al. detected 

widely varied levels of ethanol in serum of wild badgers with M. bovis [28]. Butanal was assigned 

as one of the characteristic breath VOCs in a case control study distinguishing mice infected with 

M. bovis BCG from the healthy [29]. Benzene was reported as a breath biomarker for PTB human 

by Beccaria et al. [15], and 2-butanone [8] [17] and 3-butenenitrile [17] have also been reported as 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 2, 2023. ; https://doi.org/10.1101/2023.05.23.23290378doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.23.23290378


breath biomarkers for PTB patients. Moreover, isobutyronitrile, benzene and 2-butanone have been 

identified as VOC markers in the headspace of MTB cultures [12] [30] and M. bovis BCG cultures 

[31]. Benzaldehyde has been associated with the breath [32] and feces [33] of cattle with M. bovis. 

Our study has several strengths. First, breath testing, as a sputum-free diagnostic method, offers 

advantages in specimen sampling, especially for children and adults who have difficulty in 

producing sputum. Furthermore, we enroled the largest-ever cohort of MPD patients with PTB and 

NTM-PD in this pilot breath analysis. Third, we effectively differentiated NTM-PD from PTB and 

OPD with satisfactory SEN and SPE, and preliminarily extended our models in the clinically-

challenging diagnosis of MTB-negative PTB patients. Finally, we employed the human breath mass 

spectrometer for rapid and convenient detection. While VOC detection has been applied in screening, 

diagnosis and treatment evaluation of numerous diseases, most studies have utilized either time-

consuming and operationally complex GC-MS [34] or sensor-based electronic noses with limited 

receptive range and no qualitative or quantitative capability [35]. Both approaches have been proven 

difficult to translate to the clinical practice. In contrast, our study used the HPPI-TOF-MS for MPD, 

PTB and NTM-PD detections on breath samples. This instrument is designed for online fast breath 

sample analysis (1 min per sample), since it is equipped with an improved photon ionisation source 

and a high-pressure environment for lower detection limits (10 ppt) and high accuracy in human 

VOCs identification [20]. 

However, there are several limitations. Firstly, the potential biomarkers have not been completely 

confirmed. This is a common issue in VOC detection studies due to the early stage of this field and 

the limited capability of online MS. Further investigations and validations are needed to refine more 

consistent and precise panel VOCs for PTB and NTM-PD. Secondly, the metabolic pathways of the 

potential biomarkers are poorly understood. It is less clinically convincing for breath VOC diagnosis 

without clear origins and metabolic mechanisms of these molecules. Further basic biological and 

medical research are very necessary for the area of breathomics. Researchers have initiated 

explorations into the biosynthetic pathways of TB VOC markers using multi-omics and 

computational approaches [36], and links have been found between VOCs of breath of TB patients 

and VOCs in the headspace of MTB cultures [8] [12]. Thirdly, we have only completed the 

discrimination among general PTB, NTM-PD and OPD in adults. Further analysis will be conducted 

regarding subdivided groups, such as patients of MTB-negative PTB, MTB-positive PTB, NTM-

PD with M. avium-intracellulare complex, NTM-PD with M. abscessus, etc. More pilot and 

validation studies are needed for breath detections of extra PTB, NTM infections outside the lung, 

children, people with comorbidities such as diabetes and HIV, etc. Finally, this is a single-centre 

pilot study, and there are some biases in the basic demography characteristics of enrolled 

participants. Multi-centre validations on independent cohorts are required for model and panel 

biomarker optimisation. 

In conclusion, this study developed and evaluated a rapid and accurate breath test for the potential 

diagnosis of PTB and NTM-PD using online HPPI-TOF-MS. The results indicate that the proposed 

breathomics technology and method can discriminate PTB/NTM-PD from complex control group 

with good accuracy. Twenty-two potential VOC biomarkers were identified for MPDs screening 

and diagnosis. Further analysis on subdivided group differentiations and more extensive cohort 

studies are required before clinical application. 
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FIGURE 1 

Enrollment of subjects and data division for model construction and test. 

GZCH: Guangzhou Chest Hospital (China), CT: computed tomography, DR: digital radiography, 

PCR: polymerase chain reaction, TB: tuberculosis, PTB: pulmonary TB, NTM-PD: non-tuberculous 

mycobacteria pulmonary diseases, OPD: other pulmonary diseases, HC: health controls, MPD: 

mycobacterial pulmonary diseases. 
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FIGURE 2 

The performance of ensemble based MPD, PTB, and NTP-PD detection models, and PTB&NTM-

PD discrimination model. (a) ROC curves of MPD detection model in validation and test sets. (b) 

ROC curves of PTB detection model in validation and test sets. (c) ROC curves of NTM-PD 

detection model in validation and test sets. (d) ROC curves of PTB&NTM-PD discrimination model 

in validation and test sets. 

MPD: mycobacterial pulmonary diseases, PTB: pulmonary tuberculosis, NTM-PD: non-

tuberculous mycobacteria pulmonary diseases, ROC: receiver operating characteristic, OPD: other 

pulmonary diseases, HC: health controls. 
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FIGURE 3 

The characteristics analysis of the 22 potential VOC biomarker ions identified in this study. (a) The 

discrimination power and m/z of the 22 VOC ions by bubble chart of involved tasks (bubble color) 

and the probability of being selected in four tasks (bubble size). (b) The ranked VOC ions based on 

the probability of being selected in four tasks. 

VOC: volatile organic compounds, MPD: mycobacterial pulmonary diseases, PTB: pulmonary 

tuberculosis, NTM-PD: non-tuberculous mycobacteria pulmonary diseases, AUC: area under the 

receiver operating characteristic curve. 
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FIGURE 4 

Relative concentrations of the 22 potential VOC biomarker ions ranked by probability detected in 

OPD, NTM-PD and PTB groups. The connection line indicates a significant difference between the 

two groups being connected. 

VOC: volatile organic compounds, MPD: mycobacterial pulmonary diseases, PTB: pulmonary 

tuberculosis, NTM-PD: non-tuberculous mycobacteria pulmonary diseases, HC: health controls. 
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FIGURE S1 

The predicted PTB probability comparison of the proposed models in 49 clinical confirmed PTB 

patients who were not confirmed by aetiological tests. 

MPD: mycobacterial pulmonary diseases, PTB: pulmonary tuberculosis, NTM-PD: non-

tuberculous mycobacteria pulmonary diseases. 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 2, 2023. ; https://doi.org/10.1101/2023.05.23.23290378doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.23.23290378


TABLE S1 

The descriptions and main parameter settings of the employed ML models. 

ML 

models 
Descriptions Main parameter settings* 

RF 

A meta estimator that fits a number of 

decision tree classifiers on various sub-

samples of the dataset and uses averaging to 

improve the predictive accuracy and control 

over-fitting. 

n_estimators=100, max_features=0.5, 

min_samples_split=4, 

min_samples_leaf=10, 

criterion="entropy". 

LR 

It estimates the probability of an event 

occurring based on a given dataset of 

independent variables. 

tol=1e-5, C=5.0, max_iter=1e+4. 

XGB 
A boosting algorithm based on gradient 

boosted decision trees. 

booster: "gbtree", max_depth: 8, 

n_estimators: 100, min_child_weight: 

3, gamma: 0.15, lambda: 2. 

KNN 
It achieves classification or prediction with 

the k-nearest neighbors voting. 

n_neighbors=5, algorithm='auto', 

leaf_size=30, p=2, metric='minkowski'. 

DT 

It employs a divide and conquer strategy by 

conducting a greedy search to identify the 

optimal split points within a tree. 

criterion="gini", splitter="best", 

min_samples_split=2, 

min_samples_leaf=1. 

Ensemble A voting classifier of RF, LR and XGB. 
tol=1e-5, C=5.0, max_iter=10000, 

voting=’soft’. 

ML: machine learning, RF: random forest, LR: logistic regression, XGB: extreme gradient 

boosting, KNN: k-nearest neighbors, DT: decision tree. 

* These algorithms were achieved based on python packages: xgboost 

(https://xgboost.readthedocs.io/en/stable/python/python_intro.html) and sklearn (https://scikit-

learn.org/stable/user_guide.html). 
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TABLE S2 

Statistical analysis of the basic demographic characteristics between the case and control groups in 

the MPD, PTB, and NTM-PD detection, and PTB&NTM-PD discrimination tasks. 

Characteristics 
p-values 

MPD vs Controls PTB vs Controls NTM-PD vs Controls PTB vs NTM-PD 

Age 0.018 0.687 4.3*10-4 0.010 

Gender 0.150 1.000 2.5*10-5 1.4*10-5 

BMI 3.6*10-14 8.2*10-8 1.4*10-5 0.026 

Smoke 1.000 5.7*10-4 0.018 0.856 

BMI: body mass index, MPD: mycobacterial pulmonary diseases include NTM-PD (non-

tuberculous mycobacteria pulmonary diseases) and PTB (pulmonary tuberculosis). 
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TABLE S3 

The performance metrics of six ML methods on the validation dataset in discriminating MPD from 

controls. 

Methods SEN (%) SPE (%) ACC (%) AUC 

RF 76.5(62.2, 90.7) 87.5(78.8, 96.2) 83.3(75.6, 91.0) 0.890(0.826, 0.955) 

LR 64.7(48.6, 80.8) 76.8(65.7, 87.8) 72.2(63.0, 81.5) 0.753(0.663, 0.842) 

XGB 82.4(69.5, 95.2) 89.3(81.2, 97.4) 86.7(79.6, 93.7) 0.901(0.840, 0.963) 

KNN 55.9(39.2, 72.6) 83.9(74.3, 93.5) 73.3(64.2, 82.5) 0.699(0.604, 0.794) 

DT 73.5(58.7, 88.4) 83.9(74.3, 93.5) 80.0(71.7, 88.3) 0.787(0.703, 0.872) 

Ensemble 76.5(62.2, 90.7) 89.3(81.2, 97.4) 84.4(77.0, 91.9) 0.909(0.849, 0.968) 

ML: machine learning, MPD: mycobacterial pulmonary diseases include NTM-PD (non-

tuberculous mycobacteria pulmonary diseases) and PTB (pulmonary tuberculosis), controls include 

OPD (other pulmonary diseases) and HC (healthy controls). RF: random forest, LR: logistic 

regression, XGB: extreme gradient boosting, KNN: k-nearest neighbors, DT: decision tree, SEN: 

sensitivity, SPE: specificity, ACC: accuracy, AUC: area under the receiver operating characteristic 

curve. 
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