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 2 

Abstract 1 

Functional and morphological architectures of major human organs have been well 2 

characterized using imaging biomarkers. Nevertheless, deciphering the causal 3 

relationships between imaging biomarkers and major clinical outcomes, as well as 4 

understanding the causal interplay across multiple organs, remains a formidable 5 

challenge. Mendelian randomization (MR) presents a framework for inferring causality by 6 

using genetic variants as instrumental variables. Here we report a systematic multi-organ 7 

MR analysis between 402 imaging biomarkers and 88 clinical outcomes. We identified 488 8 

genetic causal links for 62 diseases and 130 imaging biomarkers from 9 organs, tissue, or 9 

systems, including the brain, heart, liver, kidney, lung, pancreas, spleen, adipose tissue, 10 

and skeleton system. We prioritized crucial intra-organ causal connections, such as the 11 

bidirectional genetic links between Alzheimer’s disease and brain function, as well as 12 

inter-organ causal effects, such as the adverse impact of heart diseases on brain health. 13 

Our findings uncover the genetic causal links spanning multiple organs, offering a more 14 

profound understanding of the intricate relationships between organ imaging biomarkers 15 

and clinical outcomes.  16 

 17 

Keywords: Brain imaging; Clinical outcomes; FinnGen; GWAS; Heart imaging; Mendelian 18 

randomization; MRI; Organ imaging; UK Biobank.   19 
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 3 

Medical images, such as magnetic resonance imaging (MRI), provide noninvasive 1 

assessments of the health of major human organs, such as the brain, heart, liver, and 2 

kidney. Imaging biomarkers have been widely used in clinical research and applications. 3 

For example, Alzheimer's disease-related abnormalities have been consistently observed 4 

in structural and functional imaging traits extracted from brain MRI, especially in the 5 

hippocampal region1. The cardiovascular MRI (CMR) provides reliable information on 6 

alterations in ventricular function, cardiovascular morphology, and myocardial perfusion, 7 

all of which are closely related to cardiovascular diseases2. Skeleton dual-energy X-ray 8 

absorptiometry (DXA) helps discover novel genetic variants which influence the human 9 

skeletal form and uncover a major evolutionary aspect of human anatomical change to 10 

pathogenesis3. Several large-scale organ imaging datasets (on the scale of over 10,000 11 

participants) have recently been made publicly available, revealing details about human 12 

organ morphology and function4-8. A variety of complex traits and clinical outcomes are 13 

found to be associated with organ imaging biomarkers based on these well-powered 14 

population-based studies9,10. Despite these efforts, due to the inherent limitations of 15 

observational data, it remains challenging to definitively determine causal relationships 16 

between imaging biomarkers and clinical outcomes, as well as to fully understand the 17 

causal interconnections across multiple organs11. 18 

 19 

By using genetic variants as instrumental variables, Mendelian randomization (MR) can 20 

infer causality from observational data12,13. With assumptions regarding genetic, 21 

exposure, and outcome variables, MR aims to examine causal relationships between the 22 

exposure and the outcome variables while controlling for unwanted confounding factors. 23 

Family and population-based studies have shown that many imaging biomarkers and 24 

complex diseases are strongly influenced by genetics, with hundreds of associated genetic 25 

loci being identified in large-scale genome-wide association studies (GWAS)8,14-29. 26 

Leveraging these GWAS summary-level data (summary statistics), MR methods can 27 

uncover causality between imaging measurements and clinical endpoints. Several recent 28 

MR studies have examined the genetic causality of imaging biomarkers11,30-35. The major 29 

limitation of most of these MR studies has been focusing on one single organ (or imaging 30 

modality) and/or one single disease, or diseases in one single domain, such as brain 31 

imaging and psychiatric disorders30. It is known, however, that many diseases serve as the 32 
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 4 

causes and/or consequences of functional and structural changes in multiple organs of 1 

the human body. Cross-organ analysis aids in understanding the complexity of human 2 

physiology, subsequently enhancing our ability to diagnose, treat, and prevent a variety 3 

of diseases. Therefore, MR analysis from a multi-organ perspective is needed to uncover 4 

the clinical implications of imaging biomarkers in the context of the complex interplays of 5 

organ systems.  6 

 7 

In this paper, we performed a systematic two-sample MR analysis of multi-organ images 8 

and clinical endpoints. We aggregated GWAS summary statistics from 402 multi-organ 9 

imaging biomarkers (average sample size n » 35,000) from the UK Biobank (UKB)36 study 10 

and 88 clinical outcomes (number of cases > 10,000) collected by the FinnGen project27 11 

(Fig. S1 and Tables S1-S2). Specifically, we examined three major brain MRI modalities: 1) 12 

101 regional brain volumes21 from brain structural MRI (sMRI); 2) 110 diffusion tensor 13 

imaging (DTI) parameters23 from brain diffusion MRI (dMRI); and 3) 90 functional activity 14 

(amplitude37) and connectivity traits from functional MRI (fMRI)25. In addition, we used 15 

82 CMR traits extracted from short-axis, long-axis, and aortic cine cardiac MRI38,39. We 16 

also evaluated 11 abdominal MRI biomarkers, which gauged the volume, fat, or iron 17 

content in seven organs and tissues8, as well as eight DXA imaging biomarkers that 18 

measured the lengths of all long bones and the width of the hip and shoulder29. The 19 

Methods section provides more details on these multi-organ imaging biomarkers. We 20 

applied 8 MR methods40-48 to explore the bidirectional genetic causal links. The study 21 

design is presented in Figure 1A and a high-level summary of our findings can be found in 22 

Figure 1B. 23 

 24 

RESULTS 25 

Genetic causality between brain imaging and multi-organ diseases 26 

In this section, we examined the causal relationship between brain imaging biomarkers 27 

and multi-organ diseases. At the Bonferroni significance level (P < 5.18´10-6, multiple 28 

testing adjustment for both directions), MR suggested 127 significant genetic causal 29 

effects on 58 brain imaging biomarkers from 20 diseases in 8 major categories, including 30 

mental and behavioral disorders, diseases of the nervous system, diseases of the 31 

circulatory system, cardiometabolic endpoints, interstitial lung disease endpoints, 32 
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 5 

diseases marked as autoimmune origin, diseases of the eye and adnexa, and diseases of 1 

the genitourinary system (Fig. S2 and Table S3). Among all the diseases, heart-related 2 

diseases were the most frequent (66/127) and were predominantly associated with DTI 3 

parameters and a smaller number of regional brain volumes. No significant causal effects 4 

were observed from heart diseases to fMRI traits. The top three heart diseases that 5 

exhibited causal genetic impacts on brain structures included peripheral artery disease 6 

(15/66), hypertension (14/66), and hypertensive diseases (12/66) (Figs. S2-S4). For 7 

example, peripheral artery disease played a causal role in altering the white matter 8 

microstructure within the anterior limb of the internal capsule (ALIC, |b|>0.15, P < 9 

3.04´10-8), the body of corpus callosum tract (BCC, |b|>0.14, P < 8.44´10-7), and the genu 10 

of corpus callosum tract (GCC, |b|>0.13, P < 4.24´10-6). Hypertension and hypertensive 11 

diseases were causally associated with the superior corona radiata (SCR, |b|>0.07, P < 12 

9.47´10-8). In addition to DTI parameters, hypertension also negatively affected the total 13 

grey matter volume (|b|>0.02, P < 1.26´10-8) (Figs. 2C and S2-S3). In addition to heart-14 

related diseases, several other non-neurological clinical endpoints also influenced brain 15 

health. For example, negative causal effects of asthma were found on the SCR (|b|>0.05, 16 

P < 7.26´10-7) and volume of the right inferior lateral ventricle (|b|>0.09, P < 8.66´10-7) 17 

(Fig. S5). 18 

 19 

Brain disorders also causally affected the brain imaging biomarkers (49/127), with 20 

dementia and Alzheimer's disease being the most common brain-related diseases (Fig. 21 

S2). Interestingly, brain disorders were primarily associated with fMRI traits. For example, 22 

Alzheimer’s disease was consistently found to be causally related to decreased functional 23 

activity in the dorsal attention (|b|>0.04, P < 5.07´10-8), frontoparietal, and secondary 24 

visual network (|b|>0.04, P < 4.70´10-8), as well as DTI parameters of the SCR (|b|>0.03, 25 

P < 1.85´10-6) (Figs. 2A and S6). Both functional MRI and DTI parameters have been 26 

extensively used to study Alzheimer's disease49. Abnormalities in white matter, such as 27 

those in the left SCR, as well as decreased functional connectivity in attention-related 28 

networks, have been identified in patients with Alzheimer's disease50,51. Similar to 29 

Alzheimer’s disease, dementia demonstrated negative causal genetic effects on 30 

functional activity in multiple networks, including the cingulo-opercular, default mode, 31 

dorsal attention, frontoparietal, language, posterior multimodal, and secondary visual 32 
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 6 

networks (|𝛽|>0.12, P < 4.74´10-8) (Figs. 2B and S7). In addition, mood disorders affected 1 

brain volume traits, such as the left and right putamen (|𝛽|>0.04, P < 5.64´10-7) (Fig. S8). 2 

More results on causal genetic links from clinical endpoints to brain imaging traits were 3 

summarized in Figures S3-S9. 4 

 5 

Brain and other organ diseases may also be caused by structural or functional changes in 6 

the brain. We investigated this direction by using brain imaging traits as exposure 7 

variables and clinical endpoints as the outcome variables. At the Bonferroni significance 8 

level (P < 5.18´10-6), we found 85 significant pairs between 22 brain imaging biomarkers 9 

and 20 clinical endpoints (Fig. S10 and Table S3). Most of the significant imaging-disease 10 

pairs were related to fMRI traits. Specifically, 66 of the 85 pairs were associated with fMRI 11 

traits, 10 with DTI parameters, and 9 with regional brain volumes. The majority of the 12 

significant findings were related to brain diseases (65/85), with a minor proportion linked 13 

to heart diseases (13/85), autoimmune diseases (4/85), COPD and related endpoints 14 

(1/85), diseases of the eye and adnexa (1/85), and diseases of the genitourinary system 15 

(1/85). For example, decreased activity in multiple functional networks was related to a 16 

higher risk of Alzheimer’s disease, such as the default mode and dorsal-attention 17 

networks (|𝛽|>0.5, P < 5.65´10-13) (Figs. 3A and S11). We also identified genetic causal 18 

effects from DTI parameters on Alzheimer’s disease, such as the BCC and SCR (|b|>0.49, 19 

P < 6.79´10-7) (Figs. 3A and S11). 20 

 21 

Dementia exhibited a similar pattern to Alzheimer's disease, being causally influenced by 22 

decreased activity in multiple networks, such as the default mode, dorsal-attention, and 23 

secondary visual network (|b|>0.002, P < 2.77´10-7) (Fig. 3B and S12). fMRI traits, 24 

including the functional activity of the secondary visual network and functional 25 

connectivity of the default mode network, were also causally linked to other brain 26 

diseases, such as neuropsychiatric disorders (|b|>0.09, P<8.88´10-16) and neurological 27 

diseases (|b|>0.06, P < 1.72´10-6) (Figs. S13 and S14). Finally, we found that brain 28 

structural alterations may also influence other non-neurological diseases. For example, 29 

the left basal forebrain posed a negative causal effect on hypertensive diseases (|b|>0.12, 30 

P < 8.47´10-9) and hypertension (|b|>0.15, P < 6.19´10-11). The left lingual negatively 31 

affected female genital prolapse (|b|>0.75, P < 8.68´10-7).  32 
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 7 

 1 

Causal genetic relationships between CMR traits and clinical outcomes 2 

We first examined the causal effects from clinical endpoints to CMR measures of heart 3 

structure and function. We identified 111 significant results at the Bonferroni significance 4 

level (P < 6.85´10-6), covering 41 unique CMR traits of the ascending aorta (AAo), 5 

descending aorta (DAo), left atrium (LA), and left ventricle (LV). Significant causal effects 6 

were found from 13 unique clinical endpoints in three categories: diseases of the 7 

circulatory system (8/13), cardiometabolic endpoints (4/13), as well as COPD and related 8 

endpoints (1/13). The majority of significant findings were related to heart-related 9 

diseases, with 66 out of 111 being diseases of the circulatory system and 44 out of 111 10 

being cardiometabolic endpoints (Fig. S15 and Table S4).  11 

 12 

The most frequently observed genetic effects were related to hypertensive diseases and 13 

hypertension (Figs. 4A and S16). Specifically, hypertensive diseases had negative causal 14 

effects on AAo and DAo distensibility (|b|>0.10, P < 1.26´10-7), whose genetic 15 

associations have been found in previous studies52-54. Hypertensive diseases also affected 16 

LV and LA traits, such as the global radial strain (|b|>0.06, P < 4.47´10-9), LA stroke 17 

volume (|b|>0.07, P < 3.04´10-8), and LV myocardial mass (|b|>0.11, P < 3.04´10-15). 18 

These findings were consistent with previous results derived from genetic association 19 

studies55,56. Hypertension exhibited a similar pattern to hypertensive diseases, having a 20 

causal impact on various AAo and DAo traits, such as DAo distensibility, along with LA and 21 

LV traits, such as the LA minimum volume (LAmin volume, |b|>0.03, P < 7.11´10-6).  22 

 23 

In addition, angina pectoris causally influenced AAo maximum and minimum areas 24 

(AAomax and AAomin areas, |b|>0.71, P < 1.44´10-7). The aortic aneurysm had a positive 25 

causal effect on DAo maximum and minimum areas (DAomax and DAomin areas, |b|>0.71, 26 

P < 1.63´10-24) and AAomax and AAomin areas (|b|>0.16, P < 2.22´10-6). These results align 27 

with clinical observations. Atrial fibrillation and flutter mainly affected LA traits, such as 28 

the LA ejection fraction (|b|>0.07, P < 5.88´10-8), LA maximum volume (LAmax volume, 29 

|b|>0.07, P < 1.62´10-6), and LAmin volume (|b|>0.08, P < 8.26´10-8). Atrial fibrillation is 30 

considered to result in a decrease in ejection fraction as well as an increase in LA 31 

volumes57,58. In addition to heart-related diseases, COPD and related endpoints were 32 
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 8 

found to influence CMR traits, such as the negative effect of COPD on DAomax area 1 

(|b|>0.10, P < 4.45´10-11, and Fig. S16). Emphysema, a form of COPD distinguished by the 2 

degradation of lung tissue, may contribute to the dilatation of the thoracic aorta59. This 3 

could be attributed to emphysema's involvement in the degradation of elastic fibers 4 

within the lungs, potentially triggering alterations in the aortic wall's elasticity60. Such 5 

changes may precipitate the dilatation or ballooning of the thoracic aorta, thereby 6 

escalating the risk of both aortic aneurysm and abdominal aortic abnormalities59. This 7 

elucidates the potential biological mechanisms driving these causal relationships. 8 

 9 

On the other hand, structural and functional irregularities of the heart may increase the 10 

risk of multi-organ diseases, given that the heart pumps blood to all other organs to 11 

maintain their functions61. We tested this direction by treating CMR traits as exposure 12 

variables and clinical endpoints as the outcomes. After Bonferroni adjustment (P < 13 

6.85´10-6), we found 27 significant causal pairs, 25 for heart-related diseases and 2 for 14 

autoimmune diseases (Fig. S17 and Table S4). For example, global peak circumferential 15 

strain was positively linked to heart failure and antihypertensive medication (|b|>0.51, P 16 

< 8.49´10-8), while LV ejection fraction had a negative causal effect on these conditions 17 

(|b|>0.55, P < 1.12´10-6). In addition to heart-related diseases, heart structural changes 18 

affected diseases marked as autoimmune origin. For example, right ventricular end-19 

systolic volume had a negative causal effect on the autoimmune diseases defined by 20 

Finngen27 (|b|>0.18, P < 3.10´10-6) (Figs. 4B and S18). In summary, we discovered causal 21 

relationships between CMR traits and heart-related diseases, which were typically 22 

bidirectional. Additionally, we revealed the inter-organ causal relationships between the 23 

heart and other organs. 24 

 25 

Causal genetic links between abdominal imaging biomarkers and clinical outcomes 26 

We first examined the effects of multi-organ diseases on abdominal imaging biomarkers, 27 

such as the volume or iron content of the spleen, kidney, liver, lung, and pancreas8. At the 28 

Bonferroni significance level (P < 6.69´10-5), we discovered 51 significant causal pairs 29 

from multi-organ diseases to abdominal imaging biomarkers, with liver imaging traits 30 

being the most impacted (26/51). Brain-related diseases were the most prevalent among 31 

all significant findings (35/51), followed by heart-related diseases (7/51), rheumatoid 32 
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 9 

endpoints (4/51), diseases of the eye and adnexa (3/51), and autoimmune diseases (2/51) 1 

(Fig. S19 and Table S5). These findings were in line with ongoing research on the interplay 2 

between the brain and abdominal organs, such as the brain-gut connection62-64, brain-3 

kidney connection65,66, and brain-liver connection67.  4 

 5 

Alzheimer’s disease and dementia were consistently found to be causally linked with 6 

various abdominal imaging biomarkers, such as the percent liver fat (|b|>0.37, P < 7 

4.96´10-6), liver volume (|b|>0.03, P < 5.88´10-5), and adipose tissue measurement 8 

(|b|>0.06, P < 3.13´10-5). In addition to Alzheimer’s disease and dementia, there were 9 

multiple other brain-related diseases that may affect abdominal organs, including mental 10 

and behavioral disorders due to alcohol and psychoactive substance use, as well as sleep 11 

apnoea. For example, sleep apnoea influenced several abdominal traits, such as the liver 12 

volume (|𝛽|>0.11, P < 2.80´10-5) and kidney volume (|b|>0.23, P < 2.57´10-6). Sleep 13 

apnea can lead to renal damage caused by ischemic stress, hemodynamic changes, or 14 

intermediary conditions such as hypertension, which can result in early chronic kidney 15 

disease68,69. Multiple heart-related diseases also genetically impacted abdominal organs. 16 

For example, heart failure and antihypertensive medication can lead to larger spleen 17 

volume (|b|>0.004, P < 2.66´10-6). It has been found that heart splenic enlargement often 18 

results from blood stasis and right heart disease is often accompanied by splenomegaly70. 19 

Atherosclerosis was causally linked to the pancreas iron content, which was also 20 

supported by clinical evidence71,72.  21 

 22 

In addition to brain and heart-related diseases, we also observed causal effects from 23 

other diseases, such as autoimmune diseases on spleen volume and liver iron content. 24 

The spleen, as the largest immune organ in the body, can become enlarged because of 25 

various rheumatic and immune system diseases, such as systemic lupus erythematosus, 26 

Felty's syndrome, sarcoidosis, and autoimmune hepatitis73-76. Liver iron content causally 27 

related to both autoimmune and rheumatological diseases (|b|>0.10, P < 3.02´10-5). It 28 

has been found that excessive deposition of iron ions exists in the affected tissues of 29 

autoimmune diseases, such as brain tissues of multiple sclerosis patients and synovial 30 

fluid of patients with rheumatoid arthritis77. Disorders of the choroid and retina, as well 31 

as the eye and adnexa diseases, were also found to be causally linked to liver iron content 32 
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 10 

(|b|>0.10, P < 6.48´10-5, Figs. 5A and S20). Metal tends to accumulate in human ocular 1 

tissues, particularly in the choroid and retinal pigment epithelium78.  2 

 3 

Next, we tested the opposite direction that abdominal imaging biomarkers being the 4 

exposure variables and multi-organ diseases being the outcomes. At the Bonferroni 5 

significance level (P < 6.69´10-5), we identified 55 significant pairs, with heart-related 6 

diseases being the most prevalent (34/55), followed by brain-related diseases (11/55), 7 

diseases marked as autoimmune origin (2/55), diseases of the eye and adnexa (5/55), and 8 

diseases of the genitourinary system (3/55) (Fig. S21 and Table S5). For example, pancreas 9 

fat causally affected the deep vein thrombosis of lower extremities and pulmonary 10 

embolism (|b|>0.38, P < 1.04´10-12). A reduction in pancreatic fat content may directly 11 

improve cellular function and insulin secretion rate, affecting triglyceride levels and blood 12 

flow79.  13 

 14 

Larger liver, spleen, and kidney volumes were all causally linked to heart-related diseases 15 

(Fig. 5B and S22). Specifically, a larger liver volume was causally linked to hypertensive 16 

diseases and hypertension (|b|>0.13, P < 1.19´10-10); a larger kidney volume was causally 17 

related to a higher risk of stroke (|b|>0.25, P < 3.33´10-5); and a larger spleen volume 18 

had causal effects on various heart-related diseases, including coronary angioplasty 19 

(|b|>0.14, P < 4.94´10-7), coronary atherosclerosis (|b|>0.07, P < 6.94´10-10), and 20 

peripheral artery diseases (|b|>0.21, P < 4.98´10-5). In nephrotic syndrome, platelet over-21 

activation and the use of diuretics and glucocorticoids can aggravate hypercoagulability. 22 

Therefore, kidney diseases, especially nephrotic syndrome, are prone to thrombotic and 23 

embolic complications, which can lead to stroke80-82. For brain-related disorders, we 24 

detected causal effects from liver volume to alcohol use disorder, as well as mental and 25 

behavioral disorders due to alcohol and psychoactive substance use. In addition, percent 26 

liver fat had causal links with Alzheimer’s disease, dementia, and psychiatric diseases. 27 

Previous studies have reported that non-alcoholic fatty liver disease contributes to 28 

neurological conditions like cognitive impairment and memory loss via insulin resistance 29 

and inflammation, along with excessive cytokine secretion83-86. In summary, we found 30 

that brain-related disorders result in alterations in abdominal organs. Furthermore, 31 

bidirectional relationships are observed in both neurodegenerative and psychiatric 32 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 28, 2023. ; https://doi.org/10.1101/2023.05.22.23290355doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.22.23290355
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

disorders. On the other hand, multiple abdominal organs are causally linked to heart-1 

related diseases.  2 

 3 

Causal genetic links between skeleton DXA traits and clinical outcomes  4 

We first identified the causal effects of multiple organ diseases on DXA-derived skeleton 5 

traits3. At the Bonferroni significance level (P < 3.39´10-5), we found strong evidence that 6 

multi-organ diseases affected the human skeleton health, where heart-related diseases 7 

(6/12) and diseases of the nervous system (4/12) were the majority, as well as rheumatic 8 

disease (1/12) and diseases of the genitourinary system (1/12) (Fig. S23 and Table S6). 9 

Carpal tunnel syndrome (|b|>0.0007, P < 6.25´10-8) and sleep apnoea (|b|>0.001, P < 10 

6.35´10-8) were causally related to higher average forearm length. Carpal tunnel 11 

syndrome is when the median nerve (nerve from the forearm to the palm of the hand) 12 

becomes pressed or squeezed, which affects the wrist-to-forearm ratio87,88. It has been 13 

observed that oral appliance therapy89, which is an effective treatment of sleep apnea, is 14 

associated with skeletal changes90. Furthermore, the nerve, nerve root, and plexus 15 

disorders were causally linked with higher average tibia length (|b|>0.001, P < 2.78´10-16 
5), which was consistent with the previous finding that a specific type of plexus disorder, 17 

lumbosacral plexus disorder, is associated with lower leg91. Heart-related diseases also 18 

had causal effects on several DXA traits. For example, coronary heart disease had a 19 

negative causal effect on the average tibia length (|b|>0.0002, P < 2.50´10-5) and a 20 

positive causal effect on the hip width (|b|>0.0004, P < 1.68´10-5). Additionally, 21 

gonarthrosis affected the average tibia length (|b|>0.0005, P < 1.69´10-5) (Figs. 6A and 22 

S24). 23 

 24 

The skeletal system serves as the foundational support for the human body, and therefore, 25 

skeletal abnormalities may potentially contribute to risk of multi-organ diseases. We 26 

identified 17 causal pairs at the Bonferroni significance level (P < 3.39´10-5). More than 27 

half (10/17) of these results were related to the heart, and the rest were rheumatic 28 

disease (3/17), diseases of the eye and adnexa (2/17), interstitial lung diseases (1/17), and 29 

diseases of the genitourinary system (1/17) (Fig. S23 and Table S6). Average tibia length 30 

was causally linked to coxarthrosis (|b|>30.03, P < 3.11´10-9), gonarthrosis (|b|>19.39, P 31 

< 3.18´10-7), and other rheumatological endpoints (|b|>13.12, P < 2.74´10-5). It has been 32 
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found that the leg length discrepancy could lead to lower limb biomechanics, such as 1 

gonarthrosis, coxarthrosis, and other lower limb symptoms92,93. Torso length causally 2 

affected heart-related issues, such as coronary angioplasty (|𝛽|>38.85, P < 9.45´10-5), 3 

coronary atherosclerosis (|b|>22.94, P < 1.22´10-5), hard cardiovascular diseases 4 

(|b|>18.12, P<1.30´10-5), and ischemic heart diseases (|b|>30.99, P < 1.33´10-5). 5 

Previous studies examining the relationship between skeletal length and heart diseases 6 

have primarily focused on leg length or overall body height, generally reporting negative 7 

associations94,95. Consistent with these associations, we found that a long torso can lead 8 

to a higher risk of heart disease. We also observed higher average tibia length to be 9 

causally linked to a lower risk of hypertension (|b|>6.46, P < 1.27´10-7), which was in line 10 

with previous findings96 (Figs. 6B and S25). In conclusion, we found that rheumatoid 11 

endpoints (such as gonarthrosis) and diseases of the nervous system (such as nerve, nerve 12 

root, and plexus disorders) had a significant impact on bone health. Conversely, skeletal 13 

traits, like torso length, demonstrated a causal link with heart diseases. 14 

 15 

Discussion  16 

Observational studies have established numerous links between various imaging-derived 17 

phenotypes and clinical outcomes. However, these associations are frequently influenced 18 

by residual confounding, complicating the accurate inference of causal effect sizes 97. MR 19 

allows for the inference of causal relationships between exposure and outcome variables. 20 

MR leverages the natural and random assortment of genetic variants during meiosis, 21 

making these variants an ideal choice as instrumental variables to discern causal effects. 22 

In the present study, we evaluated the causal relationship between 402 multi-organ 23 

imaging biomarkers and 88 clinical outcomes through bidirectional MR. To avoid the issue 24 

of sample overlap98, which may bias the causal effect and has sometimes been overlooked 25 

in many current MR-based studies, we used a two-sample MR design and sourced our 26 

imaging and clinical data from different large-scale cohorts. 27 

 28 

It is widely understood that diseases often affect more than just one part of the human 29 

body, given the interdependent nature of our organ systems for overall body function. 30 

The brain and heart are particularly important among all organs, as the brain manages a 31 

range of functions, including reactions, emotions, vision, memory, and cognition99,100 32 
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while the heart serves as the engine of the body, pumping life-sustaining blood through 1 

a network of arteries and veins to supply other organs with the oxygen and nutrients they 2 

need. Dysfunctions in various organs can potentially have adverse effects on the brain 3 

and heart. Similarly, abnormalities within the brain and heart can result in dysfunction in 4 

other parts of the body. Our results support the presence of robust bidirectional 5 

interactions between the brain and heart with other organs. In addition to the 6 

connections to the brain and heart, we also discovered many other causal relationships 7 

for other organs. The interaction plot across different organ systems can be found in 8 

Figure 1B. Below we provide more detailed discussions of these specific findings.  9 

 10 

Intra-brain causal connections. 11 

Variations in brain structure and function were closely linked with brain disorders, with 12 

parts of these relationships appearing to be bidirectional. We consistently found causal 13 

links between brain imaging biomarkers and multiple psychiatric disorders or neurological 14 

diseases, such as Alzheimer’s disease, dementia, mood disorder, and sleep apnea. For 15 

example, Alzheimer’s disease and dementia had bidirectional causal links with fMRI traits 16 

and DTI parameters. Previous studies have consistently shown that resting fMRI 17 

connectivity patterns are altered in patients with Alzheimer’s disease101,102, especially in 18 

brain regions involved in memory and cognitive function103,104.  19 

 20 

Brain-heart causal connections. 21 

While association studies have been investigating the brain-heart interaction39,105, the 22 

causal genetic links within these heart-brain systems remain largely unexplored. We 23 

discovered causal connections from several heart-related diseases such as hypertension, 24 

hypertensive diseases, heart failure, and peripheral artery disease to DTI parameters in 25 

white matter tracts such as the SCR, ALIC, BCC, GCC, the splenium of corpus callosum, and 26 

the retrolenticular part of the internal capsule (RLIC). Additionally, these diseases were 27 

also linked to regional brain volumes, such as grey matter and left amygdala. 28 

Hypertension can lead to damage of the blood vessels in the brain106, which can in turn 29 

lead to a reduction in the volume of grey matter in certain brain regions107. This may result 30 

in cognitive impairment and an increased risk of developing dementia. Therefore, 31 

effective management of hypertension through lifestyle changes and medication can help 32 
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reduce the risk of these negative effects on the brain. On the other hand, alterations in 1 

brain structure, such as deformations in the left ventral DC and left basal forebrain, were 2 

found to contribute to heart-related diseases like hypertension. Similarly, changes in the 3 

left superior temporal region were linked to heart failure. These could be attributed to 4 

the brain's essential function in controlling blood pressure via a sophisticated network 5 

that involves multiple regions and pathways108,109.  6 

 7 

Bidirectional connections between the brain and abdominal organs. 8 

Brain abnormalities affected multiple abdominal organs and the skeletal system. For 9 

example, Alzheimer’s disease and dementia causally affected the percent liver fat, and 10 

neurological diseases (defined by FinnGen27) had a positive causal effect on lung volume. 11 

It has been found that neurological diseases, such as multiple sclerosis, Parkinson's 12 

disease, amyotrophic lateral sclerosis, and Huntington’s disease, can cause respiratory 13 

muscle weakness110,111, which can affect lung volume and function. We also found sleep 14 

apnoea may lead to larger spleen and kidney volume. This may be due to the increased 15 

workload on the spleen to filter blood and remove damaged red blood cells. Additionally, 16 

the low oxygen levels associated with sleep apnea can lead to an increase in the number 17 

of red blood cells in the body, which can also contribute to splenomegaly and a change in 18 

kidney volume. Sleep apnea was causally associated with increased pancreas iron content, 19 

potentially due to the decreased oxygen levels that accompany sleep apnea, resulting in 20 

increased iron absorption in the body. The excess iron in the pancreas can lead to 21 

oxidative stress and inflammation112,113, which can contribute to the development of 22 

pancreatic damage and dysfunction114-116.  23 

 24 

In addition to the aforementioned neurological diseases, we also discovered that mental 25 

and behavioral disorders attributed to alcohol can lead to an increase in percent liver fat. 26 

It has been found that people with alcohol use disorder are more likely to develop 27 

alcoholic fatty liver disease117. Besides brain-related diseases, brain structural 28 

alternations could also lead to a higher risk of diseases of other organs. For example, right 29 

postcentral was causally linked to COPD. Some studies have suggested that chronic stress 30 

and anxiety, which are associated with changes in brain structure, may contribute to the 31 

development or worsening of respiratory conditions such as COPD118,119.  32 
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 1 

On the other hand, brain imaging biomarkers or disorders were causally affected by 2 

several diseases of other organs or systems. A high percent liver fat resulted in a lower 3 

risk of Alzheimer’s disease and dementia. Previous studies120,121 have reported 4 

associations between the two and our results aligned with the most recent study122. More 5 

work is needed to understand the underlying pathophysiological mechanism. Brain 6 

imaging biomarkers were affected by multi-organ diseases, but some of them may affect 7 

the brain indirectly, such as through mediating effects of anxiety and depression. For 8 

example, diseases of the genitourinary system (ovarian cyst and menorrhagia) causally 9 

affected brain structural features. Ovarian cysts can cause hormonal imbalances due to 10 

the production of hormones by the cysts themselves123. These hormonal imbalances can 11 

cause a range of symptoms, such as mood swings, anxiety, and depression124, which can 12 

affect brain function and emotional regulation. Diseases of the eye and adnexa 13 

(conjunctivitis) had genetic causal effects on functional connectivity traits. Conjunctivitis 14 

can be caused by a viral or bacterial infection, which can potentially lead to cause systemic 15 

inflammation in the body125. Systemic inflammation has been linked to changes in brain 16 

function and structure and may affect brain fMRI traits126,127.  17 

 18 

In addition, asthma influenced regional brain volumes. One prevalent way in which 19 

asthma impacts the brain is via the emotional and psychological stress associated with 20 

managing a chronic illness. Anxiety, stress, and depression, often faced by individuals with 21 

asthma, can induce alterations in brain structure. Previous studies have shown that 22 

individuals with asthma may have reduced cognitive function, including impaired memory 23 

and attention, and changes in brain activity patterns during cognitive tasks128,129. Last but 24 

not least, autoimmune diseases (defined by FinnGen27) affected brain imaging biomarkers, 25 

such as DTI parameters of the RLIC and SCR. Multiple sclerosis is an autoimmune disease 26 

that affects the central nervous system, and the damage to the myelin sheath that 27 

surrounds axons can occur in various regions of the brain130,131, including the internal 28 

capsule. The damage can cause disruptions in the neural connections passing through the 29 

anterior limb, leading to symptoms such as weakness, spasticity, and difficulty with 30 

balance and coordination. In some rare autoimmune diseases, such as neuromyelitis 31 

optica132 and autoimmune encephalitis, inflammation and damage can occur in the brain. 32 
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The resulting neurological symptoms can vary depending on the severity and location of 1 

the damage133,134. Furthermore, autoimmune diseases that cause systemic inflammation, 2 

such as rheumatoid arthritis and lupus, which can potentially affect the brain135 and white 3 

matter tracts136,137. Chronic inflammation can lead to changes in the microstructure of 4 

white matter tracts, which can result in alterations in neural connectivity and 5 

function138,139. 6 

 7 

Intra-heart causal connections. 8 

Bidirectional causal relationships were identified between heart-related diseases and 9 

CMR traits. Hypertension and hypertensive diseases were found to causally influence 10 

several CMR traits across various heart chambers and aorta regions. Conversely, 11 

variations in CMR traits were observed to potentially lead to heart diseases. These 12 

findings are in accordance with existing clinical evidence. For example, hypertension can 13 

cause the LA to enlarge, a condition known as left atrial hypertrophy140,141. This 14 

enlargement can lead to several complications, including atrial fibrillation, heart failure, 15 

and stroke142. As for atrial fibrillation, the electrical signals that control the heartbeat 16 

become chaotic, causing the heart to beat irregularly and often too fast. Over time, the 17 

constant irregularity of the heartbeat can also cause the LA to enlarge and weaken143. 18 

 19 

Bidirectional connections between the heart and abdominal organs. 20 

Heart diseases and various multi-organ imaging biomarkers were causally related. For 21 

instance, heart failure was found to cause an increase in spleen volume. When the heart 22 

is not able to pump blood effectively, it can cause an increase in the pressure from the 23 

veins to the spleen. This increased pressure can cause the spleen to enlarge, a condition 24 

known as splenomegaly144. In addition, the backup of blood in the liver that can occur 25 

with heart failure can also contribute to the development of splenomegaly. Larger spleen 26 

volume can conversely lead to heart failure. An enlarged spleen can increase the workload 27 

on the heart, leading to further worsening of heart failure symptoms.  28 

 29 

Pancreas was also found to have a causal effect on the heart. For example, excess 30 

pancreas fat was found to cause a higher risk of developing deep vein thrombosis of lower 31 

extremities and pulmonary embolism. Pancreatic steatosis is a condition where fat 32 
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accumulates in the pancreas. This is associated with a number of metabolic abnormalities, 1 

including insulin resistance and inflammation, which can contribute to the development 2 

of cardiovascular disease145,146. The inflammatory and procoagulant effects of excess 3 

pancreatic fat could potentially contribute to an increased risk of deep vein thrombosis. 4 

 5 

The heart and lungs are closely connected and work together as part of the cardiovascular 6 

system. The lungs are responsible for taking in oxygen from the air we breathe and 7 

transferring it into the bloodstream, while the heart pumps the oxygen-rich blood 8 

throughout the body to nourish cells and tissues. We found strong evidence of causal links 9 

from COPD and CMR traits of DAo. The degradation of elastic fibers through proteolysis 10 

is a characteristic of emphysema147, which can potentially lead to the enlargement of the 11 

thoracic aorta.  12 

 13 

Spleen, as the largest immune organ, is closely related with diseases marked as 14 

autoimmune origin. We found strong evidence showing the genetic causal relationship 15 

between spleen volume and autoimmune diseases (defined by Finngen27), such as 16 

rheumatoid arthritis, systemic lupus erythematosus, and systemic sclerosis. It has been 17 

reported that autoimmune diseases can affect the spleen. For instance, conditions like 18 

lupus or rheumatoid arthritis can lead to splenomegaly, a condition often triggered by 19 

inflammation or the accumulation of abnormal immune cells in the spleen148,149. 20 

 21 

Skeleton DXA traits. 22 

We also found genetic causal links between skeleton DXA traits and multiple organ 23 

diseases. Skeleton traits were causally affected by diseases of the nervous system, 24 

rheumatic disease, as well as nerve, nerve root and plexus disorders. Heart diseases may 25 

also impact the skeletal system by influencing bone health. It has been observed that 26 

individuals with heart disease, especially those with heart failure, have an increased risk 27 

of osteoporosis and bone fractures149,150. This may be due to a variety of factors. For 28 

example, some medications used to treat heart diseases, such as diuretics and steroids, 29 

can also increase the risk of osteoporosis151. Additionally, individuals with heart disease 30 

may have reduced mobility and physical activity, which can lead to decreased bone 31 

density and strength152. Skeleton problems could also inversely contribute to numerous 32 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 28, 2023. ; https://doi.org/10.1101/2023.05.22.23290355doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.22.23290355
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

organ diseases, with heart conditions being the most prevalent in our analysis. A long 1 

torso may lead to a high risk of coronary heart disease. We also noted that a higher 2 

average tibia length was causally associated with a lower risk of hypertension, a finding 3 

that aligns with clinical observations96. 4 

 5 

Limitations and conclusions. 6 

Our study has several limitations. First, we collected GWAS summary statistics from 7 

publicly available databases, meaning that we were not able to evaluate the impact of 8 

unobserved confounders (such as population stratification) on our results. Second, one 9 

common limitation of most existing MR methods is that they require several model 10 

assumptions, and thus may suffer from model misspecifications and data heterogeneity 11 

issues when integrating data from different data resources153. We have systematically 12 

applied quality control measures and conducted sensitivity analyses in our study. Future 13 

research implementing more advanced MR methods may relax some of the model 14 

assumptions the current MR methods have made154,155. Furthermore, MR studies are 15 

designed to examine the effects of lifetime exposure factors on outcomes, not 16 

interventions within a specified period. As such, our findings may have different 17 

interpretations from rigorous results obtained from randomized controlled trials. 18 

Therefore, any clinical interventions based on these MR findings should be undertaken 19 

with caution. 20 

 21 

In conclusion, we used two-sample bidirectional MR analyses to comprehensively explore 22 

the multi-organ causal connections between 88 clinical outcomes and 402 image-derived 23 

phenotypes of various organ systems. Our results revealed robust genetic evidence 24 

supporting causal connections within and across multiple organs. This will aid in 25 

unraveling complex pathogenic mechanisms and will contribute to the early prediction 26 

and prevention of multi-organ diseases from a whole body perspective. 27 

 28 

METHODS 29 

Methods are available in the Methods section. 30 

Note: One supplementary pdf file and one supplementary table zip file are available. 31 

 32 
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 14 

METHODS 15 

Multi-organ imaging biomarkers.  16 

The imaging data were sourced from the UK Biobank (UKB) study, which enrolled 17 

approximately 500,000 individuals aged between 40 and 69 from 2006 to 2010 18 

(https://www.ukbiobank.ac.uk/). These multi-organ imaging data were collected from 19 

the ongoing UKB imaging study project (https://www.ukbiobank.ac.uk/explore-your-20 

participation/contribute-further/imaging-study), which aims to collect brain, heart, and 21 

abdomen scans from 100,000 participants. Ethical approval for the UKB study was 22 

secured from the North West Multicentre Research Ethics Committee (approval number: 23 

11/NW/0382).  24 

 25 

Studies of brain and heart diseases usually rely on magnetic resonance imaging (MRI) 26 

scans, which are well-established clinical endophenotypes. Cardiovascular magnetic 27 

resonance imaging (CMR) is a set of MRI techniques that are designed to assess 28 

ventricular function, cardiovascular morphology, myocardial perfusion, and other cardiac 29 

functional and structural features156,157. They have been frequently used to reveal heart-30 

related issues clinically. The CMR traits used in the paper were originally generated from 31 

the raw short-axis, long-axis, and aortic cine images using the state-of-the-art heart 32 
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imaging segmentation and feature representation framework38,158,159. We divided the 1 

generated 82 CMR traits into 6 categories. The first two are aortic sections, namely 2 

ascending aorta (AAo) and descending aorta (DAo), which serve as the main ‘pipe’ in 3 

supplying blood to the entire body. The other four are the global measures of 4 cardiac 4 

chambers, including the left ventricle (LV), right ventricle (RV), left atrium (LA), and right 5 

atrium (RA), which altogether manage the heartbeat and blood flow. There are also some 6 

other traits, such as regional phenotypes of the left ventricle myocardial-wall thickness 7 

and strain (Table S1). The summary-level GWAS data of these 82 CMR traits were 8 

obtained from Zhao, et al. 39.  9 

 10 

Brain MRI provides detailed information about brain structure and function160, such as 11 

abnormal growth, healthy aging, white matter diseases, structural issues, and functional 12 

abnormalities. In this paper, the summary-level GWAS data were collected from recent 13 

multi-modal image genetic studies, including regional brain volumes from structural 14 

MRI21,161 (sMRI), diffusion tensor imaging (DTI) parameters from diffusion MRI23,162 (dMRI), 15 

and functional activity (that is, amplitude37) and functional connectivity phenotypes from 16 

resting functional MRI25 (resting fMRI). In sMRI, we used ANTs163 to generate regional 17 

brain volumes for cortical and subcortical regions and global brain volume measures. In 18 

dMRI, we used the ENIGMA-DTI pipelines164,165 to generate tract-averaged parameters 19 

for fractional anisotropy, mean diffusivity, axial diffusivity, radial diffusivity, and mode of 20 

anisotropy in major white matter tracts and across the whole brain. For resting fMRI, we 21 

extracted phenotypes from brain parcellation-based analysis. We used the Glasser360 22 

atlas166, which divided the cerebral cortex into 360 regions in 12 functional networks167. 23 

We considered 90 network-level resting fMRI phenotypes that evaluated interactions and 24 

spontaneous neural activity at rest.  25 

 26 

The 11 imaging biomarkers from abdominal MRI were derived by Liu., et al8 using deep 27 

learning methods in terms of volume, fat, and iron in several organs and tissues, such as 28 

the liver, spleen, kidney, lung, pancreas, and adipose tissue. Skeleton DXA traits, including 29 

all long bone lengths as well as hip and shoulder width, were derived by Kun., et al3 using 30 

deep learning methods on whole-body dual-energy X-ray absorptiometry (DXA) images. 31 
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All eight skeleton traits have been controlled for height. The heritability of the above 1 

imaging biomarkers can be found in Supplementary Note. 2 

 3 

FinnGen clinical endpoints.  4 

We used 88 clinical endpoints collected by the FinnGen project, which were selected from 5 

the R7 release and with more than 10,000 cases for most of the clinical endpoints 6 

(https://www.finngen.fi/en/access_results). As for some important diseases, such as 7 

Alzheimer’s disease, we set the cutoff of the number of cases to be 6,000. The 88 clinical 8 

endpoints covered diseases from various categories, namely, mental and behavioral 9 

disorders, diseases of the nervous system, diseases of the eye and adnexa, diseases of the 10 

genitourinary system, diseases of the circulatory systems, cardiometabolic endpoints, 11 

diseases marked as autoimmune origin, rheuma endpoints, interstitial lung diseases, 12 

COPD and related endpoints, as well as some unclassified endpoints. The definations can 13 

be found at https://risteys.finregistry.fi/. The FinnGen data used in our study was 14 

obtained from separate cohorts than those supplying imaging traits, which were derived 15 

from the UKB study, thus ensuring there was no sample overlap. Detailed information of 16 

these 88 clinical variables can be found in Table S2. 17 

 18 

Mendelian randomization analysis.  19 

We examined the genetic causal relationships between the 402 imaging traits (101 brain 20 

regional volume traits, 110 brain DTI parameters, 90 network-level fMRI phenotypes, 82 21 

CMR traits, 11 abdominal traits, and 8 skeleton DXA traits) and 88 clinical endpoints. Prior 22 

to conducting the Mendelian randomization (MR) analysis, we conducted standard 23 

preprocessing and quality control procedures. First, we selected genetic variants based 24 

on a significance threshold of 5×10-8 in the exposure GWAS data. To ensure the 25 

independence of the genetic variants used in MR, we implemented LD clumping with a 26 

window size of 10,000 and an r2 threshold of 0.01, using the 1000 Genomes European 27 

ancestry data as a reference panel. We used the TwoSampleMR package 28 

(https://mrcieu.github.io/TwoSampleMR/) for harmonization, which enabled us to 29 

accurately align alleles between the selected variants in the exposure and the reported 30 

effect on the outcome. 31 

 32 
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We assessed the performance of 8 MR methods, which included Inverse variance 1 

weighted (fixed effect), Inverse variance weighted (multiplicative random effect), MR-2 

Egger, Simple Median, Weighted Median, Weighted Mode, DIVW, GRAPPLE, and MR-3 

RAPS40,41,43-48,168, where MR Egger was used as the pleiotropy test. To ensure the reliability 4 

of our results, we implemented several quality control procedures. We excluded causal 5 

estimates that relied on fewer than 6 genetic variants, as a larger number of genetic 6 

variants increases the statistical power of MR analysis46,47. We retained causal pairs that 7 

were significant in at least two out of the eight methods. We also screened for pleiotropy 8 

by using the MR-Egger intercept, the most used method for testing the pleiotropy 9 

assumption. If a causal estimate failed the MR-Egger intercept test, we required that it 10 

have significant results in at least one of the robust MR methods, such as Weighted 11 

Median, Weighted Model, MR-RAPS, or GRAPPLE. Out of 488 significant findings, 81 12 

causal estimates failed the MR-Egger intercept test. However, when we interpreted the 13 

results, we focused on the ones that passed the MR-Egger intercept test. 14 

 15 

Code availability  16 

We made use of publicly available software and tools. Our analysis code will be made 17 

freely available at Zenodo. 18 

 19 

Data availability  20 

We used summary-level GWAS data in this study, which can be obtained from the 21 

FinnGen project (https://www.finngen.fi/en/access_results), BIG-KP (https://bigkp.org/),  22 

Heart-KP (https://heartkp.org/), and project-specific resources detailed in Liu., et al8 and 23 

Kun., et al3. Our multi-organ MR results can be explored at https://mr4mo.org/.  24 
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Fig. 1 Overview of study design and findings. 1 

(A). An overview of our multi-organ imaging genetic study for 88 clinical outcomes. Multi-2 

modal brain imaging traits, cardiac imaging traits, abdominal imaging traits, as well as 3 

skeleton DXA imaging traits were used to investigate the relationship between 88 clinical 4 

endpoints. We covered a full spectrum of brain imaging modalities, including structural 5 

MRI, diffusion MRI, and resting fMRI. Cardiac imaging data were composed of short-axis, 6 

long-axis, and aortic cine images. Volume, iron content, and percent fat were measured 7 

in 6 different abdominal organs and tissues, resulting in 11 image-derived abdominal 8 

phenotypes. We have 8 skeleton imaging traits that covered long bone lengths as well as 9 

hip and shoulder width. (B). A high-level summary of our bidirectional findings. IDPs, 10 

imaging derived phenotypes.  11 
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Fig. 2 Selected genetic causal effects of clinical outcomes on brain imaging biomarkers. 1 

We illustrated selected significant (P < 5.18´10-6) causal genetic links from clinical 2 

endpoints (Exposure) to brain imaging biomarkers (Outcome) after adjusting for multiple 3 

testing using the Bonferroni procedure. (A). The causal effect of Alzheimer’s disease on 4 

brain imaging biomarkers. (B). The causal effect of dementia on brain imaging biomarkers. 5 

(C). The causal effect of hypertension on brain imaging biomarkers. IDP Category, 6 

category of imaging biomarkers; #IVs, the number of genetic variants used as 7 

instrumental variables. Different MR methods and their regression coefficients are 8 

labeled with different colors. See Table S1 for data resources of clinical endpoints and 9 

Table S2 for data resources of imaging biomarkers. 10 
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Fig. 3 Selected genetic causal effects of brain imaging biomarkers on clinical endpoints. 1 

We illustrated selected significant (P < 5.18´10-6) causal genetic links from brain imaging 2 

biomarkers (Exposure) to clinical endpoints (Outcome) after adjusting for multiple testing 3 

using the Bonferroni procedure. (A). The causal effect of brain imaging biomarkers on 4 

Alzheimer’s diseases. (B). The causal effect of brain imaging biomarkers on dementia. IDP 5 

Category, category of imaging biomarkers; #IVs, the number of genetic variants used as 6 

instrumental variables. Different MR methods and their regression coefficients are 7 

labeled with different colors. See Table S1 for data resources of clinical endpoints and 8 

Table S2 for data resources of imaging biomarkers. 9 
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Fig. 4 Selected genetic causal effects between heart imaging biomarkers and clinical 1 

endpoints. 2 

We illustrated selected significant (P < 6.85´10-6) causal genetic links from (A) clinical 3 

endpoints (Exposure) to heart imaging biomarkers (Outcome) and (B) heart imaging 4 

biomarkers (Exposure) to clinical endpoints (Outcome) after adjusting for multiple testing 5 

using the Bonferroni procedure. IDP Category, category of imaging biomarkers; #IVs, the 6 

number of genetic variants used as instrumental variables. Different MR methods and 7 

their regression coefficients are labeled with different colors. See Table S1 for data 8 

resources of clinical endpoints and Table S2 for data resources of imaging biomarkers. 9 
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Fig. 5 Selected genetic causal effects between abdominal imaging biomarkers and 1 

clinical endpoints. 2 

We illustrated selected significant (P < 6.69´10-5) causal genetic links from (A) clinical 3 

endpoints (Exposure) to abdominal imaging biomarkers (Outcome) and (B) abdominal 4 

imaging biomarkers (Exposure) to clinical endpoints (Outcome) after adjusting for 5 

multiple testing using the Bonferroni procedure. IDP Category, category of imaging 6 

biomarkers; #IVs, the number of genetic variants used as instrumental variables. Different 7 

MR methods and their regression coefficients are labeled with different colors. See Table 8 

S1 for data resources of clinical endpoints and Table S2 for data resources of imaging 9 

biomarkers. 10 
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Fig. 6 Selected genetic causal effects between skeleton imaging biomarkers and clinical 1 

endpoints. 2 

We illustrated selected significant (P < 3.39´10-5) causal genetic links from (A) clinical 3 

endpoints to (Exposure) to skeleton imaging biomarkers (Outcome) and (B) skeleton 4 

imaging biomarkers (Exposure) to clinical endpoints (Outcome) after adjusting for 5 

multiple testing using the Bonferroni procedure. IDP Category, category of imaging 6 

biomarkers; #IVs, the number of genetic variants used as instrumental variables. Different 7 

MR methods and their regression coefficients are labeled with different colors. See Table 8 

S1 for data resources of clinical endpoints and Table S2 for data resources of imaging 9 

biomarkers. 10 
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