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Abstract 

Osteoarthritis is a prevalent, complex disease of the joints, and affects multiple intra-articular tissues. 

Here, we have examined genome-wide DNA methylation profiles of primary infrapatellar fat pad and 

matched blood samples from 70 osteoarthritis patients undergoing total knee replacement surgery. 

Comparing the DNA methylation profiles between these tissues reveal widespread epigenetic 

differences. We produce the first genome-wide methylation quantitative trait locus (mQTL) map of 

fat pad, and make the resource available to the wider community. Using two-sample Mendelian 

randomization and colocalization analyses, we resolve osteoarthritis GWAS signals and provide 

insights into the molecular mechanisms underpinning disease aetiopathology. Our findings provide 

the first view of the epigenetic landscape of infrapatellar fat pad primary tissue in osteoarthritis. 
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Introduction 

Osteoarthritis is a complex joint disease that affects more than 300 million people1. In the face of 

aging populations, the impact of osteoarthritis on public health systems is estimated to increase 

further1. Current treatment methods are limited to pain management and total joint replacement, 

highlighting the need to develop novel, personalised treatment strategies. Therefore, it is important 

to enhance our understanding of the genetic and genomic basis of osteoarthritis. 

To date, genome-wide association analyses (GWAS) have identified more than 150 genetic risk loci
2
 

of osteoarthritis, thus improving our understanding of its polygenic basis. Large-scale molecular 

datasets of relevant, primary cell types of osteoarthritis patients can reveal molecular mechanisms 

underlying disease and provide insights beyond genetic studies. Combining results from genetic and 

molecular studies can help pinpoint molecular mechanisms of disease development and progression, 

specifically the likely effector genes through which genetic risk variants exert their effect on 

osteoarthritis development in affected tissues.  
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Whilst a number of studies have investigated genome-wide molecular profiles of osteoarthritis-

affected primary joint tissues3,4 the majority have focused on cartilage5. Osteoarthritis affects all joint 

tissues, and a small number of genome-wide molecular studies have extended molecular profiling to 

other primary joint tissues, such as the synovium6,7  or subchondral bone8. 

The infrapatellar fat pad, an adipocyte-rich tissue located inferior to the patella in the anterior part of 

the knee joint9, has not been deeply studied in osteoarthritis to date. The fat pad is located among 

other joint tissues and protects knee components (by stabilising the patella) when exposed to 

mechanical stress, e.g. during exercise. In osteoarthritis-affected knees, the infrapatellar fat pad 

undergoes disease-related alterations, including fibrosis, inflammation and vascularization. 

Furthermore, it is traversed by nerves and therefore constitutes a source of knee osteoarthritis-

related pain.  

The fat pad may also interact with other joint tissues during osteoarthritis development and 

progression 9. For example, it is proposed that the fat pad secretes pro-inflammatory and catabolic 

factors that promote cartilage degeneration and inhibit repair mechanisms10. Studies using 

chondrocyte cultures and fat pad-derived fat-conditioned media have provided some first insights 

into the potential cross-talk between the fat pad and cartilage9.  

 

Furthermore, the fat pad lies adjacent to the synovium, a connective tissue that lines the joint 

capsule. Both tissues undergo similar osteoarthritis-related changes, e.g. develop a similar immune 

cell profile11. Studies in vitro and in mouse models suggest interactions between these tissues 12–14. 

For example, Bastiaansen-Jenniskens et al. cultured fibroblast-like synoviocytes in fat-conditioned 

medium from fat pad samples of knee osteoarthritis patients, and suggest that fat pad induces 

fibrotic changes in synoviocytes by stimulating collagen synthesis as well as cell proliferation and 

migration
14

. 

 
Only a small number of studies have examined the profile of infrapatellar fat pad in osteoarthritis 

patients. Gandhi et al. characterised microarray-based gene expression profiles of the infrapatellar 

fat pad in 34 (29 and five in late and early stage knee osteoarthritis, respectively) individuals 15. Other 

studies have investigated the molecular characteristics of osteoarthritis fat pad in genomic regions of 

osteoarthritis risk signals 16–18 or focused on cytokines and extracellular matrix genes 19. 

In this study, we focus on DNA methylation, an epigenetic mark that refers to the covalent addition 

of a methyl-group to the DNA. Methylation is dynamic, tissue-specific, and plays a regulatory role in 

gene expression. In general, promoter methylation is negatively correlated with gene expression, 

whereas methylation in other parts of the genome, such as the gene body, remain less understood. 

We examine the genome-wide DNA methylation profile of infrapatellar fat pad adipocytes of 

osteoarthritis-affected knees. We (1) compare fat pad and blood methylation profiles matched from 

the same patients, (2) generate a genome-wide methylation quantitative trait loci (mQTL) map in fat 

pad and (3) resolve osteoarthritis GWAS signals by integrating omics with genetic association data. 

Subjects and methods 

Study participants 

We have collected tissue samples from 210 patients undergoing total joint replacement surgery (111 

women, 99 men, age 48-93 years, mean 71 years). All patients provided written, informed consent 

prior to participation in the study. Adipose tissue was collected from the infra-patellar fat pad by 

sharp dissection of the fat tissue from the surface of the patellar ligament to yield not less than 1cm3 

of homogeneous adipose tissue. This work was approved by Oxford NHS REC C (10/H0606/20, 
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SC/15/0132 and SC/20/0144), and samples were collected under Human Tissue Authority license 

12182, South Yorkshire and North Derbyshire Musculoskeletal Biobank, University of Sheffield, UK. 

We confirmed a joint replacement for osteoarthritis, with no history of significant knee surgery 

(apart from meniscectomy), knee infection, or fracture, and no malignancy within the previous 5 

years. We further confirmed that no patient used glucocorticoid use (systemic or intra-articular) 

within the previous 6 months, or any other drug associated with immune modulation. We also 

obtained a peripheral blood sample to extract DNA from all patients. 

 

Adipocyte and peripheral blood collection and processing 

Adipose tissue samples were transported in Dulbecco’s modified Eagle’s medium (DMEM)/F-12 (1:1) 

(Life Technologies) supplemented with 2 mM glutamine (LifeTechnologies), 100 U/ml penicillin, 100 

μg/ml streptomycin (Life Technologies),2.5 μg/ml amphotericin B (Sigma-Aldrich) and 50μg/ml 

ascorbic acid (Sigma-Aldrich) (serum free media). Next, the adipose tissue samples were cut into 

small pieces (<2mm3) and digested in 3 mg/ml collagenase type I (Sigma-Aldrich) in serum free media 

for 1 hour at 37 °C on a flatbed shaker and resuspended in 2mls of PBS and passed through a 100μm 

cell strainer (Fisher Scientific). Next, the eluent was made up to 10mls in PBS and centrifuged at 23g 

for 5 min. Subsequently, the cell pellet was washed twice in PBS and centrifuged at 323g for a further 

5 mins. Cells were counted using a haemocytometer and the viability checked using trypan blue 

exclusion (Invitrogen).  The resulting cell pellet was resuspended in 650μl of RLT buffer (Qiagen) and 

DTT Dithiothreitol (20ul DTT per 1ml of RLT).  The optimal cell number for spin column extraction 

from cells was between 4 × 106 and 1 × 107. Cells were then pelleted and homogenised. DNA 

extraction was carried out using Qiagen AllPrep DNA Mini Kit following the manufacturer’s 

instructions. Samples were flash frozen in liquid nitrogen and stored at −80°C prior to assays. 

Peripheral blood was extracted for DNA using a Qiagen QIAamp DNA Blood Maxi kit, according to 

manufacturer’s instructions. The whole blood DNA samples were frozen at -80°C prior to extraction. 

 

Methylation data preprocessing 

Genome-wide DNA methylation was measured using the Illumina EPIC array. In general, we 

preprocessed methylation data using an R package meffil
20

 based preprocessing pipeline 

(https://github.com/perishky/meffil/wiki).  

We read and preprocessed blood DNA methylation data using the function meffil.qc, and removed 

ethnicity outliers, hip samples, samples with > 10% undetected (detection pvalue > 0.01) methylation 

values, sex outliers (>5 * sd), methylated/unmethylated signal outliers (> 3 * sd) and control probe 

signal outlier (>5 * sd). We then applied the same procedure (same R functions and thresholds) on 

DNA methylation samples from fat pad samples.  Finally, we normalised methylation samples of all 

tissues together by applying meffil function meffil.normalize.quantiles (using 16 principal 

components) and meffil.normalize.samples.  

We removed methylation sites with more than 10% of samples low bead number (< 3) or undetected 

methylation values (detection p < 0.01), non-autosomal methylation sites, methylation sites of cross-

reactive probes and in close proximity (within 10 base pairs) to common SNPs (MAF > 0.05) in 

European population 21–23.   

We converted initially generated beta values to Mvalues (beta2m function of R package lumi) 24 

which we used for downstream analyses
25

. Per tissue, we further replaced strong outliers (>10 * sd 

from mean) with the methylation site-specific mean value. Based on a principal component analysis, 
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we removed two outlier samples. The resulting fat pad methylation data comprised 780,177 

methylation sites for 70 patients (46 women, 24 men, age 48-93 years, mean 71 years). For 58 of 70 

patients, also methylation blood samples were available. 

We used publicly available annotations 

(https://zwdzwd.github.io/InfiniumAnnotation/EPIC.hg38.manifest.tsv.gz and 

EPIC.hg38.manifest.gencode.v36.tsv.gz) to map probe identifier to the genomic location (hg38) and 

genes.  

 

Whole-genome sequencing data generation and preprocessing 

Whole genome-sequencing (WGS) samples from the whole patient collection (n = 346 patients) were 

sequenced in two batches. In the first sequencing batch, genomic DNA was extracted from whole 

blood samples from 270 individuals (including 60 of 70 patients with QCed fat pad methylation data). 

In the second sequencing batch, genomic DNA from 73 samples from low-grade cartilage (including 8 

of 70 patients with QCed fat pad methylation data) and three samples from synovium tissue was 

extracted. In both batches, DNA samples were subjected to standard Illumina paired-end DNA library 

construction, amplified, and subjected to DNA sequencing using the NovaSeq platform.  

Generated CRAM files were input into samtools (samtools conda version 1.14) to create bam files. 

Subsequently, “bedtools bamtofastq” (bedtools conda version 2.30.0) was applied to obtain data in 

the fastq format. Per sequencing batch, variant calling was performed using the publicly available 

pipeline Sarek from nf-core (version 2.7.1, https://nf-co.re/sarek/2.7.1) with the additional options “-

- tools HaplotypeCaller --generate_gvcf”. This uses the GATK Haplotypecaller (GATK v4.1.7.0) and 

generates g.vcf files. For the genome “GRCh38” was used. For the joint variant calling we adapted a 

publicly available pipeline (https://github.com/IARCbioinfo/gatk4-GenotypeGVCFs-nf) and used it 

with GATK (docker container broadinstitute/gatk:4.2.5.0). Reference files for GRCh38 were used from 

GATK. 

For QC on the variant level, we applied Variant Quality Score Recalibration tool using a tranche 

threshold of 99.5% for SNPs and the recommended 99% for INDELs. For SNPs, this produces an 

expected false positive rate of 2.5% and an expected sensitivity of 97%.  

For QC on the sample-level, we removed strong outlier het rate (two samples), and non-reference 

allele concordance when compared to directly typed genotype data using variants MAF > 0.01 (one 

sample), and one sample being a moderate outlier in sequencing depth as well as het rate. No 

additional sample was excluded solely based on Ti/Tv or singletons. 

Furthermore, we removed one sex mismatch and two samples to avoid the inclusion of any sample 

pair with a relatedness > 0.2. We further excluded two ethnicity outliers identified in an ethnicity 

check-up using Ancestry and kinship toolkit (based on 1000G data from phase three; 

https://github.com/Illumina/akt/tree/master) 26. In total, we removed nine samples.  

We excluded variants with MAF < 0.01, Hardy-Weinberg equilibrium p < 10^-5 and call rate <= 0.99. 

We then selected samples of individuals with matching fat pad methylation data (n = 68) and kept bi-

allelic variants with MAF > 0.05. The resulting WGS data set used for the fat pad mQTL analysis 

comprised 68 samples and 6,395,994 variants. 

 

Comparing DNA methylation of blood and fat pad tissue 
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We integrated 70 fat pad and 58 blood samples in a principal component analysis (PCA) to 

investigate global epigenetic differences between these tissue types. We regressed out known 

technical batches (slide, row, clinical cohort) by applying Combat from the R package sva27 and 

performed PCA using prcomp function. 

To compare methylation profiles on methylation site level, we performed differential methylation 

analysis between fat pad and blood samples paired from the same patients (n = 58). We performed 

linear modelling using the functions lmFit and eBayes from limma 28. We added the patient ID to 

ensure paired analysis design and included 19 surrogate variables (SVs) to account for technical 

variants. These SVs were estimated using the num.sv function from the sva package (‘be’-method) by 

protecting the tissue information. We highlighted methylation sites that exceed genome-wide 

significance threshold (Bonferroni correction with p < 6.41x10^-08 which corresponds to 0.05 / 

780,177 methylation sites) with strong effect size (beta > 2). 

Methylation quantitative trait locus analysis 

For the methylation quantitative trait locus (mQTL) analysis, we included whole-genome-sequencing 

data and fat pad methylation data matching from the same patients (n = 68). We included 6,395,994 

bi-allelic genetic variants with a MAF > 0.05 among these 68 patients and set the cis-distance to 1Mb. 

We further normalised methylation levels using inverse-normal transformation per methylation site 

and estimated PEER factors
29

 (R package peer, default parameter setting) to infer hidden factors 

which we included to correct for technical variation. We performed cis-methylation QTL analysis 

using FastQTL (https://github.com/francois-a/fastqtl/)30. We first estimated nominal p values for 

every tested methylation site-variant pair using linear regression with the following model:   

Methylation values ~ genotype + age + sex + sequencing_batch + row + 10 PEER_factors 

Here, row refers to the sample location on the Illumina EPIC array chip. The variable 

sequencing_batch accounts for WGS sequencing batches. Of 68 WGS samples, 60 and 8 were 

extracted in the first and second WGS sequencing batch, respectively (methods section “Whole-

genome sequencing data generation and preprocessing”). To optimise the number of included PEER 

factors, we performed mQTL analysis with five, ten and 15 peer factors and chose the number that 

maximises detected mQTL targeted methylation site (5 Peer factors: 34,956 mQTL targeted 

methylation sites, 10 Peer factors: 35,948, 15 PEER factors: 35,808). Secondly, we applied an 

adaptive permutation scheme (implemented in FastQTL, parameter –permute 1000 10000) to 

estimate a q value and nominal p-value threshold per methylation site. Methylation sites with a q 

value < 5% Storey–Tibshirani FDR are regarded as mQTL targeted.  For each mQTL-targeted 

methylation site, significant QTL were variants with a nominal p value below the nominal p value 

threshold for that methylation site. 

Colocalisation 

We colocalised31 fat pad methylation QTL with GWAS signals for knee osteoarthritis and total knee 

replacement2. For this analysis, we applied the coloc.fast function 

(https://github.com/tobyjohnson/gtx/blob/526120435bb3e29c39fc71604eee03a371ec3753/R/coloc

.R) using default settings. We performed colocalisation for mQTL-targeted methylation sites located 

within 100kb to an osteoarthritis GWAS index variant. For the colocalisation analysis, we included all 

variants that were included in the cis mQTL analysis for the tested methylation sites. We considered 

posterior probabilities (“PP4”) > 80% as indicator for colocalisation.  

 

Mendelian randomization 
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To estimate putative causal effects of QTL-targeted methylation sites in fat pad on osteoarthritis 

traits, we integrated the fat pad mQTL map with GWAS results for knee osteoarthritis and total knee 

replacement2. We applied two sample Mendelian randomization (MR) using the pipeline of the R 

package TwoSampleMR32. We considered methylation sites targeted by at least one mQTL. Per 

methylation site, we performed clumping (function clump_data, using the European reference panel 

and setting the R2 threshold to 0.01) to identify independent genetic variants which we included as 

instruments in the MR models. For methylation sites with one independent instrument, we applied 

the Wald-ratio, otherwise the inverse variance weighted method.  

In total, we applied 64,898 MR models (32,448 and 32,450 for knee osteoarthritis and total knee 

replacement, respectively) to estimate the putative causal effect of 32,456 methylation sites. We 

applied the Bonferroni method to correct for multiple testing (p < 7.70x10^-07). 

 

Results 

Distinct epigenetic profiles in blood and fat pad adipocytes 

We investigated global differences in the epigenetic profile between fat pad and peripheral blood 

samples for the first time. We performed PCA integrating infrapatellar fat pad samples from knee 

osteoarthritis patients (n = 70) and matched blood samples from a subset of these individuals (n = 

58). We identified a separation of fat pad and blood samples along the first principal component, 

which was associated with tissue type (logistic regression p value: 2.7x10^-7, beta: -0.013, SE: 

0.0026). This underlines the tissue-specificity of the epigenetic profile on a global level (Figure 1 A).  

To characterise tissue-specificity on the methylation site level, we performed an epigenome-wide 

association study (EWAS) of matched fat pad and blood samples from the same patient (n = 58) and 

identified 84,973 (of 780,177 tested sites, 10.89 %) strongly differentially methylated sites (DMS) 

between fat pad and whole blood samples (p < 6.4x10^-08, beta > 2, Table S1). Of these, 33,391 and 

51,582 showed hyper- and hypomethylation in fat pad tissue, respectively (Figure 1 B). Together, 

these results highlight extensive differences in the epigenetic profile of fat pad and peripheral blood. 

Genome-wide mQTL map in fat pad adipocytes 

We performed cis-mQTL analysis to estimate genetic variants that are associated with methylation 

levels of nearby methylation sites (<= 1 Mb). We identified 35,948 mQTL-targeted methylation sites 

(Figure 2, Methods). Together, this constitutes the first genome-wide mQTL map of infrapatellar fat 

pad adipocytes in knee osteoarthritis. The full summary statistics are publicly available in the 

Musculoskeletal Knowledge Portal (http://mskkp.org). 

Osteoarthritis GWAS signal resolution 

Next, we integrated the newly-generated fat pad mQTL map with GWAS results of two osteoarthritis 

traits, namely knee osteoarthritis and total knee replacement2, to determine methylation sites with a 

putative causal role in osteoarthritis. 

 

We applied colocalisation to estimate a probability for methylation mediating the osteoarthritis-

promoting effect of risk variants. In total, we identified 16 methylation sites for which mQTL signals 

colocalised with 11 (of 25 tested, 44 %) GWAS signals (Posterior probability for colocalisation > 80%) 

(Table S2). For knee osteoarthritis, we resolved 9 (of 24 tested, 37.5 %) GWAS signals that colocalised 

with mQTL of 13 methylation sites (Figure 3A). Analogously, colocalising mQTL with GWAS results for 

total knee replacement resolved 5 (of 10 tested, 50%) GWAS signals and revealed 7 methylation sites 

with a potential causal role in osteoarthritis (Figure 3B).  
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Next, we performed causal inference analysis by applying two-sample Mendelian randomization 

(MR) to estimate the putative causal effect of methylation on osteoarthritis. In these MR models, we 

used mQTL as instruments as well as mQTL-targeted methylation sites and osteoarthritis as exposure 

and outcome, respectively (Method). Here, we detected 36 methylation sites with a putative role (p 

< 7.70x10^-07) in osteoarthritis (Figure 3C), in total (Table S3). For knee osteoarthritis, we identified 

32 methylation sites, of which 15 and 17 revealed a link of hyper- and hypomethylation with 

osteoarthritis, respectively. For total knee replacement, we identified 15 methylation sites with a 

putative causal role (9 and 6 showing hyper- and hypomethylation in osteoarthritis, respectively). 

Eleven methylation sites were identified in both osteoarthritis-relevant traits, for which the direction 

of effect was concordant. 

 

MR and colocalisation identified 37 putative causal methylation sites, in total. Of these, 15 were 

identified in both approaches, thus providing two lines of evidence for their respective causal 

involvement (Table S4). Together, colocalisation and MR results suggest that these methylation 

marks mediate the regulation of genetic risk variants on effector genes in fat pad. 

 

Annotated genes of the identified 37 methylation sites have been previously linked to osteoarthritis 

using causal approaches on genome-wide mQTL maps of cartilage or synovium. This includes WWP2 

(annotated to fat pad relevant methylation site cg04703221), a chondrocyte regulator33 for which 

methylation has been causally linked to osteoarthritis in low disease-grade cartilage and synovium7. 

ALDH1A2 (cg12031962, cg12031962 and cg08668585) has also previously been linked to 

osteoarthritis at the methylation
7
 (in low-and high-grade osteoarthritis cartilage as well as synovium) 

as well as expression
6
 (low-grade osteoarthritis cartilage) levels. Furthermore, we identified 

osteoarthritis-linked methylation in the collagen type COL27A1(cg21771125). 

 

 We also identified likely effector genes that were not previously resolved in molecular QTL maps of 

primary osteoarthritis cartilage and synovium6,7 including USP8 (cg01701297 and cg05456662; 

involved in cell proliferation), TSKU (cg17107561; encodes development-linked extracellular matrix 

protein) and FER1L4 (cg14387502 cg05220160; involved in plasma membrane organization) which 

can be linked to osteoarthritis-relevant mechanisms (Discussion). Together, integrating the fat pad 

mQTL profile with osteoarthritis GWAS results using colocalisation and MR identified 37 methylation 

sites with a potential causal involvement in osteoarthritis in fat pad tissue. 

 

 

Discussion 

Osteoarthritis is a common joint disorder with a polygenic architecture. Genome-wide molecular 

profiles of affected primary tissues remain understudied and excluded from large molecular data 

resources, such as GTEx
34

, ENCODE
35

 and RoadMap
35

. In this study, we characterised the first 

epigenome-wide profile of osteoarthritis-affected infrapatellar fat pad. We identify extensive 

differences from the epigenetic profile of peripheral blood, generate the first genome-wide mQTL 

map in fat pad, and identify methylation sites with a likely causal role in osteoarthritis development 

and progression.  

Comparing fat pad and blood methylation profiles reveals abundant epigenetic differences 

underlining the epigenetic tissue-specificity of blood and joint tissues, thus highlighting the necessity 

to investigate disease-affected tissues. 
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We present the first genome-wide mQTL map for osteoarthritis-affected infrapatellar fat pad. 

Colocalising this mQTL map with osteoarthritis GWAS results resolved eleven genetic osteoarthritis 

risk signals, thus providing evidence for methylation mediating the genetic effect of these GWAS 

signals on osteoarthritis in fat pad.  

We supplemented these causal insights using MR and, together with colocalisation, identified 37 

methylation sites with a putative causal role in osteoarthritis in fat pad. Some methylation sites were 

close to genes (such as WWP2, ALDH1A2, and COL27A1) that have been previously causally linked to 

osteoarthritis using genome-wide molecular QTL maps of other primary joint tissues6,7, suggesting a 

disease-relevant role across joint tissues.  

We also identify genes that have not been previously resolved in molecular QTL maps of primary 

osteoarthritis tissues6,7 such as USP8, TSKU and FER1L4. USP8 is involved in epidermal growth factor 

receptor regulation36, a receptor linked to angiogenic and inflammatory mechanisms. TSKU is a 

regulator of Wnt signaling, a pathway which has been consistently linked to osteoarthritis across 

tissues, e.g. in cartilage, synovium and subchondral bone
37

. FER1L4 regulates inflammatory factor IL-6 

in osteoarthritis-affected cartilage38 and is linked to VEGF, an osteoarthritis-linked angiogenic 

factor39. Together, we have identified genes linked to processes that are observed in osteoarthritis-

affected fat pad, such as inflammation or vascularization40, and suggest an involvement of the 

detected methylation sites in disease-related alterations. 

Our findings highlight differences in the epigenetic profile of fat pad tissue and blood and identify 

methylation sites that likely exert the effect of GWAS risk signals in fat pad, shedding light on the 

mechanistically relevant role of fat pad methylation in osteoarthritis. 
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Figure titles and legends 

 

Figure 1: Distinct methylation profiles in blood and fat pad adipocytes 

We investigated differences in the methylation profile between fat pad and blood. (A) On a global 

level, principal component analysis separates fat pad and blood samples along the first principal 

component. (B) On the methylation site level, a volcano plot demonstrates the multitude of 

differentially methylated sites. Sites with strong, differential methylation levels (beta > 2) exceeding 

the Bonferroni significance threshold (p < 6.41x10^-08, blue dashed line) are shown in black, 

otherwise in grey. 

 

Figure 2: The mQTL map in fat pad adipocytes 

(A) Manhattan plots depicting the negative log of the p value of the most significant association per 

methylation site across all variants. QTL targeted methylation sites are shown in blue or dark grey, 

otherwise in light grey. As examples, the boxplots illustrate the effect (B) of rs10826861 on 

cg20673407 (beta = -1.40, SE = 0.05, p = 4.15x10^-33) and (C) of rs10850579 on cg14016568 (beta = -

1.20, SE = 0.05, p = 1.10x10^-28). The boxplots represent 25th, 50th, and 75th percentiles, and 

whiskers extend to 1.5 times the interquartile range. 

 

Figure 3: Osteoarthritis GWAS risk signals colocalise with mQTL 

Two colocalisation events are exemplified in (A) and (B). In (A), we colocalised cis-mQTL for 

cg15373332 with a knee osteoarthritis GWAS signal (Posterior probability = 98.8 %). Similarly, (B) 

shows cis-mQTL for cg12031962 colocalising with a total knee replacement GWAS signal (Posterior 

probability = 89.8 %). (C) Manhattan plot depicting the Mendelian randomization p values to 

estimate the putative causal effects of methylation sites in fat pad on knee osteoarthritis or total 

knee replacement. The red line indicates genome-wide significance applying the Bonferroni 

correction (p < 8.31x10^-07). 
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