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Abstract (237/250 words)  

Background: Wastewater surveillance has expanded globally to monitor the spread of infectious 

diseases. An inherent challenge is substantial noise and bias in wastewater data due to their sampling 

and quantification process, leading to the limited applicability of wastewater surveillance as a 

monitoring tool and the difficulty.  

Aim: In this study, we present an analytical framework for capturing the growth trend of circulating 

infections from wastewater data and conducting scenario analyses to guide policy decisions. 

Methods: We developed a mathematical model for translating the observed SARS-CoV-2 viral load 

in wastewater into effective reproduction numbers. We used an extended Kalman filter to infer 

underlying transmissions by smoothing out observational noise. We also illustrated the impact of 

different countermeasures such as expanded vaccinations and non-pharmaceutical interventions on 

the projected number of cases using three study areas in Japan as an example. 

Results: Our analyses showed an adequate fit to the data, regardless of study area and virus 

quantification method, and the estimated reproduction numbers derived from wastewater data were 

consistent with notification-based reproduction numbers. Our projections showed that a 10-20% 

increase in vaccination coverage or a 10% reduction in contact rate may suffice to initiate a declining 

trend in study areas. 

Conclusion: Our study demonstrates how wastewater data can be used to track reproduction numbers 

and perform scenario modelling to inform policy decisions. The proposed framework complements 

conventional clinical surveillance, especially when reliable and timely epidemiological data are not 

available. 

 

Keywords: Wastewater surveillance; wastewater based-epidemiology; scenario modelling; 

reproduction number; disease monitoring 
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Main text (3484/3500 words) 

Introduction 

The COVID-19 pandemic has presented a complex landscape for policymakers to navigate, with 

interfering factors such as vaccination, the emergence of new variants, and seasonality. Mathematical 

modelling has been employed by regional and national governments to monitor the disease in real-

time, forecast epidemiological situations in near future (e.g., 1-2 weeks ahead), and inform policy 

decisions by projecting long-term trajectories under different scenarios [1,2]. Scenario modelling, 

exemplified by various research groups such as the COVID-19 scenario hub in the US and Europe 

[3,4], has contributed to more realistic and robust projections and a better understanding of 

epidemiological characteristics. However, accurate and standardized surveillance data are essential 

to capture temporal changes in disease dynamics, and it has become more challenging to obtain timely 

and unbiased epidemiological data via (passive) clinical surveillance due to changes in testing 

policies in many countries [5,6].  

 

Wastewater surveillance has re-emerged as an alternative source of information during the COVID-

19 pandemic [7,8]. Wastewater has the potential to monitor the prevalence by measuring virus 

concentrations excreted by infected individuals, which does not rely on patients’ symptoms or 

medical-seeking behaviour [8,9]. The effectiveness of wastewater monitoring has been demonstrated 

for various infectious diseases in the past [8,10,11], and the COVID-19 pandemic has accelerated its 

establishment in many countries [7,12]. Nevertheless, a remaining challenge inherent to wastewater 

surveillance is the substantial bias and noise in observed data due to the factors related to the sampling 

and quantification processes (e.g., higher water demand during daytime, dilution due to rainfall, PCR 

inhibition). To mitigate such biases, new molecular tools and sampling techniques have been 

developed [13]. Nevertheless, there remains the intrinsic noise in the observation process, and thus 

extracting true signals of epidemic growth requires data-analytic methods that can disentangle 

underlying trends from noisy data. 

 

Previous studies have attempted to deal with the noise in wastewater data by using statistical or 

machine-learning based approaches [14–17]. The strength of these methods lies in the functional 

flexibility of models, which allows for the smoothing of noisy data (e.g., penalized splines [16], neural 

network [14,17]). These studies primarily focused on short-term forecasting and were successful in 

providing near real-time estimates [15,16]. However, a drawback of non-mechanistic models is that 

they do not necessarily provide biological interpretations, and thus the outputs from such analyses 

are difficult to use for policy guidance with further scenario analysis.  

 

Mechanistic models have been applied to wastewater data in recent studies, with the primary aim of 

evaluating the predictive ability of models [18,19] or monitoring growth trends by computing 

effective reproduction numbers [20,21]. Yet, another important component, scenario modelling, has 

not been thoroughly explored in the combination of wastewater surveillance. Synthesis of multiple 

data streams would enhance the robustness of scenario modelling, and more importantly, there is a 

practical need to inform policymakers of strategic planning of interventions even in the absence of 

timely and reliable epidemiological data. In the current near-endemic situation of COVID-19, 

evaluating the potential impact of additional interventions such as vaccination campaigns is one of 

the key questions, even though notified data are not always fully available [5,6]. To this end, we need 

to exploit wastewater data and incorporate current transmission mechanisms (e.g., repeated infections 

related to emerging variants and waning immunity), which have not been explicitly captured in 

previous work [18,19]. 

 

In this study, we develop a modelling approach that accounts for reinfection and vaccination effects 

and propose a way to infer transmission parameters from wastewater data and integrate them with the 

scenario modelling framework. As a motivating example, we conducted wastewater monitoring in 
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three municipalities in Japan between 2021-2022, where there was sufficient access to confirmation 

testing during the Omicron wave. We applied the proposed modelling approach to the collected data, 

first to evaluate its predictive performance and then to illustrate the impacts of different interventions 

(i.e., increasing vaccination coverages and reducing contact rates). Lastly, we discuss potential 

challenges that may arise when applying the proposed modelling framework to wastewater data for 

future implementations. 

Methods 

Wastewater data  

We implemented wastewater surveillance in three study sites in Japan; Kyoto (population size: 

778,000), Kanagawa (population size: 1,241,200), and City A (population size: 157,000). Wastewater 

samples were collected 2-3 times per week, and virus concentration in each sample was subsequently 

quantified with two different molecular methods, i.e. EPISENS-S and COPMAN [22,23]. The details 

of sampling methods and experimental procedures are provided in the Supplementary Materials. 

We normalized the observed SARS-CoV-2 concentration by a commonly used faecal indicator, i.e., 

Pepper mild mottle virus (PMMoV), to adjust for potential bias caused by sampling time and flow 

rate of influent wastewater. When the measured concentrations were below detection limits, we 

imputed them as 1 (copy/L) for computational convenience. We then constructed the time series of 

the normalized SARS-CoV-2 concentration by taking the geometric mean, and the data was used for 

further analysis. 

Epidemiological data  

The number of daily confirmed cases within the same periods of wastewater was obtained from the 

corresponding local government websites (Table S1). As the coverage of the wastewater treatment 

plants does not always match the municipality areas, we calculated the daily number of cases in each 

catchment area by aggregating case data from multiple municipalities and weighting them by the 

proportion of the connected population size in each service area. 

Transmission model  

We developed a compartmental SEIRS model to incorporate reinfections and viral shedding from 

infected individuals to wastewater, adapting the method of [18]. The disease states are: susceptible 

S(t), exposed but not yet infectious E(t), infectious I(t), and recovered R(t) (see the conceptual model 

diagram in Figure S1). The model considered reinfections among individuals who have been infected 

already, by defining the average duration of immunity 1/𝜔 that was assumed to be 180 days (i.e., 

recovered transition back to the susceptible state at the rate of 𝜔). We assumed fixed values for the 

mean latent period (1/𝛼) and infectious period (1/𝜏) throughout the analysis. These parameters were 

defined based on the literature, and the details are provided in Table S1 and Table S2. Two other 

parameters, the mean duration of virus shedding (1/𝛾) and the time-varying transmission rate (𝛽(𝑡)), 

were estimated by fitting the model to daily cases and/or wastewater data. 

Model fit 

To estimate parameters, we converted the above (deterministic) model to a stochastic model and used 

an extended Kalman filter for the inference task. The Kalman filter or its extended filtering methods 

have been often used for calibrating a dynamic model with epidemiological surveillance data such as 

the daily number of reported cases [24,25]. In this study, we employed the filtering method to fit the 

transmission model to the observed daily cases, virus concentrations in wastewater, or both, by 

incorporating the observation errors in both data sources. The model dynamics, including the active 

virus shedding state A(t) and the (stochastic) observation errors, was described in the following 

system: 
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where the 𝑤𝑖  are mutually independent white noise processes. We assume a closed population and 

thus 𝑁 = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡). The transitions here are assumed to follow a binomial process, 

and the binomial distribution is approximated by the normal distribution (see details in [18]). The 

model outputs were then compared to the observed data (i.e., case data or wastewater, or both). Firstly, 

we assumed that the number of daily confirmed cases 𝑦𝐶(𝑡) is a fraction of infected individuals who 

newly become symptomatic on the date of observation 

𝑦𝐶(𝑡) = 𝜇𝑡 ∫ 𝛼𝐸(𝑠)
𝑡

𝑡−1

𝑑𝑠 

where 𝜇𝑡 is the reporting rate of newly confirmed cases out of the total number of infected cases on 

the observation day 𝑡. Since 𝜇𝑡  may change depending on the day of the week and the national 

holidays, the day-of-week effect were adjusted by estimating 𝜇𝑡 separately, and the holiday effect 

was further incorporated by reducing the reporting rate by 75% based on the observed maximum 

change in testing rates in Tokyo during December 2022 [26]. Secondly, the virus concentration in 

wastewater 𝑦𝑤(𝑡) is assumed to be proportional to the number of individuals shedding viruses 𝐴(𝑡): 

𝑦𝑤(𝑡) = 𝜈𝐴(𝑡) 
where 𝜈 is a scaling parameter specific to study regions.  

Effective reproduction number 

To quantify the growth trend of an epidemic, the (instantaneous) effective reproduction number 

[27,28], the number of secondary infections caused by a single infected person at time 𝑡, is calculated. 

In this study, the effective reproduction number is obtained by the following equation: 

𝑅𝑒𝑓𝑓(𝑡) =
𝛽(𝑡)

𝜏

𝑆(𝑡)

𝑁
 

Where the transmission rate 𝛽(𝑡) is obtained by fitting the model to either notified case data or 

wastewater data. To distinguish two different reproduction numbers, hereafter we use notification-

based reproduction numbers (𝑅𝑒𝑓𝑓
𝑁 (𝑡)) and wastewater-based reproduction numbers (𝑅𝑒𝑓𝑓

𝑊 (𝑡)) for 

further comparison. We computed the uncertainty in reproduction numbers by using estimates of 

𝛽(𝑡) and its standard deviation (SD) and visualized the uncertainty ranges of two standard deviations.  

As a reference to standard practice, we used the EpiEstim package [29] to estimate effective 

reproduction numbers from notified case data, assuming a serial interval is gamma-distributed with a 

mean of 3.5 days and a standard deviation of 2.4 days [30]. The EpiEstim estimators were then 

compared to the values computed by our approach.  

Forecasting and scenario projections  

The model fitting via the Kalman filter allows an adaptive estimation of transmission rate 𝛽(𝑡) at 

each time point, and thus we sequentially updated the estimated parameters using the most recent data 

points. To perform one-week ahead forecasting, we simulated daily reported cases over the next seven 
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days using the most recent estimates of transmission rates and the number of individuals remaining 

in each state. 

We examined two intervention scenarios; increasing vaccination coverage and reducing contact rates 

by non-pharmaceutical interventions (NPIs). Initial conditions for projections were determined using 

the estimated number of individuals in each state by fitting the model to the most recent observed 

data (Table S1). As a baseline scenario (i.e., a scenario without any additional intervention), we 

projected future cases in 4 months using the most recent estimate of the transmission rate 𝛽0.  

In the scenario in which vaccination coverages are increased, the effect of additional vaccine uptakes 

was assumed to work as a transition from the susceptible to the recovered state (i.e., the vaccine mode 

of action was assumed to be “all-or-nothing” [31]). The transitioning proportion was calculated as 

𝑆(𝑡)(𝑐𝑣𝑎𝑐 − 𝑐0)𝑉𝐸, where 𝑆(𝑡) is the susceptible proportion, 𝑉𝐸 is the vaccine efficacy (assumed to 

be 60%), and 𝑐0 and 𝑐𝑣𝑎𝑐  are the vaccination coverages before and after the additional vaccination. 

The baseline vaccination coverage 𝑐0 was set as 70%, and we examined the expected impacts of 

increased coverage by varying 𝑐𝑣𝑎𝑐  as 80% and 90%. The effect of NPIs was modelled as a reduction 

in the contact rate, and thus the transmission rate after implementing NPIs was formulated as 𝛽𝑁𝑃𝐼𝑠 =
(1 − ф)𝛽0, where ф is the reduced ratio of contact rate compared to the baseline. In the main analysis 

the reduced ratio ф was set as 10%, and further reductions were examined in Supplementary Text. 

For both scenario analyses, we used the estimated baseline transmission rate 𝛽0 and its 2SD ranges 

as the uncertainty ranges of projections. 

Results 

We implemented the wastewater surveillance system in three study sites in Japan. The observed 

wastewater data and the collected daily case data are illustrated in Figure S2. All data sources are 

provided in Table S1, and further details of two different RNA extraction/detection methods (i.e., 

COPMAN and EPISEN-S) are described in Supplementary Text. While there was a large degree of 

noise in individual observations of virus concentrations in wastewater, smoothed wastewater data 

indicated that growing and declining trends roughly matched with those observed in case data (Figure 

S2). This result was consistent regardless of the RNA extraction/detection method used or study areas. 

 

The proposed modelling approach, using only wastewater data, described the epidemic trends in case 

data well at three study areas in Japan (Figure 1). Estimated parameters are listed in Table S3. In 

particular, the initial growth of epidemic waves in January 2022 was captured in a timely manner, 

which demonstrates the compatibility between notification-based and wastewater-based surveillance. 

Based on the estimated time-varying transmission rates and reporting rates, both total and reported 

cases were computed (shown in blue and red lines in Figure 1). The estimated ranges of reported cases 

were mostly consistent with the observed reported cases, and the large difference between the 

estimated total cases and the observed reported cases indicated that there may have been substantial 

under-reported cases around the peak of epidemic waves. By comparing different study areas, Figure 

1 illustrated that the uncertainty in estimates increased when the population size of the study area is 

small.  

 

To further validate our findings, we compared two effective reproduction numbers, i.e. notification-

based reproduction number 𝑅𝑒𝑓𝑓
𝑁  and wastewater-based reproduction number 𝑅𝑒𝑓𝑓

𝑊  (Figure 2, shown 

in blue and red). This analysis showed that the computed 𝑅𝑒𝑓𝑓
𝑁  and 𝑅𝑒𝑓𝑓

𝑊  were comparable throughout 

the study period, suggesting that our modelling approach using wastewater data can provide a reliable 

proxy for tracking epidemic trends. Besides, this was further supported by the result that the computed 

𝑅𝑒𝑓𝑓
𝑁  and 𝑅𝑒𝑓𝑓

𝑊  with our approach were mostly consistent with the values of a standard EpiEstim 

approach (Figure 2, shown in green). In general, however, the estimated values of 𝑅𝑒𝑓𝑓
𝑊  produced 

smoother curves with respect to time compared to the estimated 𝑅𝑒𝑓𝑓
𝑁 . This indicated that the our 

approach with wastewater data alone may be less sensitive to abrupt changes in the epidemic, as the 

inherent noise in the data can hinder the identification of early signals.   
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We conducted one-week ahead predictions of reported cases under three different conditions: using 

wastewater data only, case data only, and both wastewater and case data. To account for variations in 

observation frequency (two or three times per week), we aggregated daily case data over one week 

and compared the model predictions to the observed weekly number of cases. The prediction accuracy 

was evaluated by two error metrics (the Root-Mean-Square Error (RMSE) and the Mean-Absolute-

Error (MAE)). Figure 3 shows the one-week ahead prediction of weekly cases across different study 

sites and RNA extraction/detection methods, and the examined three conditions induced equivalent 

prediction abilities (Table S4). Interestingly, the model using both case and wastewater data did not 

necessarily show the best prediction performance, despite the utilization of all available data for the 

prediction. This result suggests that although wastewater data is suitable for capturing an epidemic 

trend, it may not necessarily improve the accuracy of short-term predictions.  

 

To demonstrate model-based projections, we visualized the potential impacts of two different 

strategies (i.e., increased vaccination coverages and NPIs) in Figure 4 and 5. The forward simulations 

indicated that both strategies would expedite the decrease in daily cases when compared to the 

baseline scenario that imposes no additional interventions. While the projected baseline trajectories 

suggested an overall decreasing trend (green line in Figure 4 and 5), the uncertainty intervals in two 

study sites (Kanagawa and City A) indicated a possible increase in daily cases (green-shaded regions 

in Figure 4(A)(B) and 5(A)(B)). The same trend in the baseline scenario can be more clearly seen in 

the projected cumulative cases (Figure S3 and S4). We also performed more stringent NPI scenarios 

(Figure S5-S8); those scenario analyses showed an increase in the vaccination by 10-20% or a 

reduction in the contact rate by about 10% could alter the upper bound of the projected incidence into 

a declining trend in our simulation settings. Among the study sites, the largest reduction in projected 

cases was seen in Kanagawa during January-April 2023 where the incidence of cases was the highest 

(Figure 5(D)). 

Discussion 

In this study, we showed that wastewater can capture the underlying trend of circulating SARS-CoV-

2 infections and presented how scenario analyses can be provided to guide a policy decision by the 

proposed modelling framework. Our modelling approach translated the observed growth trend in 

wastewater data into effective reproduction numbers, which were consistent with estimated values by 

notified case data. As an application example, we further conducted scenario-based modelling 

analyses to illustrate the impact of different types of interventions on the projected number of cases. 

This highlighted the benefit of incorporating wastewater data into the current scenario modelling 

framework, regardless of the virus quantification method, especially when reliable epidemiological 

data are not obtainable.  

 

The transmission model used in this study provided a good description of wastewater data (Figure 1). 

While previous literature in wastewater surveillance often claimed that machine-learning based 

models could capture more complex dynamics [14,17], our mechanistic model with parsimonious 

parameterizations yielded reasonable fitting results (Figure 2 and Table S4). The main strength of 

our modelling approach is that all parameters have biological or epidemiological interpretations, and 

thus the outputs can be used for further scenario analysis. The interpretability and explainability are 

essential for informing policymaking as well as for (external) validity checks, in cases where there is 

a drastic change in transmission dynamics (e.g., the emergence of new variants).  

 

Real-time monitoring of effective reproduction numbers via wastewater surveillance would be more 

effectively used if the notified case data suffer from substantial reporting delay or become less 

reliable. Effective reproduction numbers computed via case data are likely to capture the ‘true’ growth 

trend in an epidemic, regardless of the level of under-reporting, as long as the reporting rate is constant 

over the generation time (i.e., the average interval between the infections of an individual and its 
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secondary case). Our analysis showed that wastewater-based reproduction numbers were consistent 

with notification-based reproduction numbers (Figure 2), suggesting that our approach can 

effectively monitor the epidemic trend via wastewater surveillance. Various methods have been 

proposed to compute effective reproduction numbers [29,32,33], and their limitations are widely 

discussed [27,34]. A common challenge is that those methods are prone to sudden changes in 

reporting system (e.g., case definition, testing policy, diagnostic capacity, etc.). By contrast, 

wastewater surveillance is more robust to such transition in the data collection process, and recently 

several approaches have been proposed to estimate effective reproduction numbers via wastewater 

data [18,20,21]. We proposed to extend the applicable range of this wastewater-based framework; 

reproduction numbers estimated by mechanistic modelling approaches, such as ours, would provide 

a coherent way to simulate possible trajectories of an epidemic by varying other parameters when the 

epidemiological situation is changing. This usability is important for the iterative policy-making 

process. 

  

Using Japan as an example, we presented analyses by examining the impact of different intervention 

scenarios based on the proposed approach with the observed wastewater data. Our model projections 

showed that, in the case of two study cites (City A and Kanagawa) where the daily incidence was 

increasing, a 10-20% increase in the vaccination coverage or about 10% reduction in the contact rate 

may be sufficient to turn the epidemic into a declining trend. These scenario analyses are useful to 

understand how much additional effort would be needed for controlling the disease on average. 

However, if more granular scenarios and strategic planning are required (e.g., targeted interventions 

by age, occupation, etc.), additional epidemiological data would be essential, as wastewater data only 

captures an aggregated trend over the whole population in the catchment areas. Thus, wastewater 

surveillance should be used as a complementary tool to support the current epidemiological 

surveillance. 

 

The present study provided insights for further improvement in wastewater surveillance and its 

applicability to scenario modelling. Our analysis suggested that the estimated growth trends via 

wastewater data were more consistent with case data when the prevalence was high and/or the 

population size covered by the sewage system was large (Figure 1 and 2). Conversely, when the 

prevalence is low, virus concentrations in wastewater would also become low and approach the 

detection limit, leading to uncertain RNA quantifications with larger variations. Although the 

sensitivity of molecular methods has been extensively discussed [8,35], the minimization of 

variations in observations (e.g., experimental errors, variations in water sampling process, etc.) is also 

the key to capture the underlying epidemic trends. While it is possible to incorporate unobserved 

variations with various modelling approaches, such as the one proposed in this study, the 

implementation of experimental and sampling systems with reduced errors (e.g., flow-proportional 

composite water sampling [13]) would enhance the accuracy of wastewater surveillance and 

expediate more reliable scenario analysis.  

 

Our scenario analysis should be interpreted with caution. First, our formulation simplified the 

dynamics, and consequently various pathogen/host factors (e.g., age-dependent contact rates, 

infectivity and immune-escape effect by variant, seasonality, etc.) were aggregated into the estimated 

parameters. In particular, the projected impacts of vaccination strategy may vary in practice, due to 

differences in the timing of vaccinations or differing waning rates by age. Although our aim was to 

illustrate the proposed framework by using collected data in Japan with minimal parameterization, 

the model assumptions and possible extensions in the structure, such as age stratification, need to be 

considered when more data are available. For the best practice of scenario modelling, we should 

always accommodate alternative candidate models and should not rely on a single model, and 

scenario analysis needs to be adaptively updated. 

 

In conclusion, we have illustrated how wastewater data can be translated into intuitive 

epidemiological quantities such as total cases and reproduction numbers, and how we can use 
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wastewater data as an alternative source of information for scenario modelling to inform future policy. 

The proposed framework with wastewater surveillance complements and maximizes the benefit of 

clinical surveillance, especially when reliable and timely epidemiological data is not available. 
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Figures and Tables 

 

 
Figure 1. Estimated daily cases using only wastewater data in three areas in Japan. Black line indicates the 

observed daily reported cases, and red line and ribbon represent estimated daily reported cases with uncertainty 

bands of two standard deviations. Blue line corresponds to the estimated total cases, which was computed by 

incorporating under-reporting in the proposed modelling framework. COPMAN and EPISEN-S are different 

RNA extraction/detection methods, and the COPMAN method has a lower quantification limit of viral RNA. 
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Figure 2. Estimated effective reproduction numbers using the proposed Kalman filter approach with 

only notified case data (red) and only wastewater data (blue), and using EpiEstim approach with only 

notified case data (green). Ribbons represent uncertainty ranges of 2 standard deviations (SD) for the 

proposed Kalman filter approach (red and blue) and 95% credible intervals for EpiEstim approach 

(green). 
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Figure 3. One-week ahead forecasting based on notified case data (red), wastewater data (blue), or 

both (yellow). The simulated number of cases over a week was adaptively updated via the Kalman 

filter and was compared to the observed reported cases (black). 
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Figure 4. Model projected cases for increased vaccination scenarios. Vaccination coverages are set 

as 70% of the population for the baseline (green) and 80% (blue) and 90% (red) for scenarios with 

accelerated vaccine uptakes. Each ribbon represents uncertainty ranges of 2 standard deviations (SD) 

computed by the estimated variance of the baseline transmission rate. 
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Figure 5. Model projected cases for a non-pharmaceutical intervention scenario. Relative contact 

rates are set as 1 for the baseline (green) and 0.9 (blue) and for scenarios with reduced contact rates. 

Each ribbon represents uncertainty ranges of 2 standard deviations (SD) computed by the estimated 

variance of the baseline transmission rate. 
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Supplementary Text 
 

Wastewater analysis 
Influent wastewater samples were collected from wastewater treatment plants in three study areas in Japan (see 

Methods and Table S1). The wastewater samples were collected in sterile plastic bottles via grab sampling and 

immediately transported to the laboratory. The samples were processed with the concentration method described below 

on the day of sample collection. 

 

The collected wastewater samples were analyzed by EPISENS-S [22] and COPMAN [23] to quantify the SARS-CoV-2 

and PMMoV RNA concentration in wastewater. Briefly, for EPISENS-S, total RNA was extracted from suspended 

solid formed via low-speed centrifugation at 3,000 g for 10 mins in the 40 mL sewage samples, using the RNeasy 

PowerMicrobiome kit on a QIAcube system (Qiagen, Hilden, Germany) to obtain a final RNA extracted volume of 50 

μL. One-step RT-preamplification was performed using 13.5 μL of the RNA extract and the CDC N1 forward and 

reverse (2019-nCoV_N1-F and 2019-nCoV_N1-R) and PMMoV reverse (PMMV_RP1) primers (Table S1, S2 in the 

Supplementary Material of [22]) with the iScriptTM Explore One-Step RT and PreAmp Kit (Bio-Rad Laboratories, 

Hercules, CA, USA). Thermal cycling conditions for RT-preamplification were as follows; 25℃ for 5 mins, 45℃ for 

60 mins, 95℃ for 3 mins followed by 10 cycles of 95℃ for 15 s and 55℃ for 4 mins. qPCR was performed with 

QuantiTect Probe PCR Master Mix (Qiagen, Hilden, Germany) in a total reaction volume of 25 µL containing 2.5 μL of 

pre-amplified products, which was performed using the primers and probe for SARS-CoV-2 (CDC N1) or PMMoV 

with a final concentration of 400 nM and 300 nM each, respectively (Table S1 and S2 in the Supplementary Material of 

[22]). Thermal cycling conditions for qPCR were as follows; 50℃ for 2 mins, 95℃ for 10 mins followed by 45 cycles 

of 95℃ for 3 s and 55℃ for 32 s. qPCR reactions were completed on ABI 7500 Real-Time qPCR system (Applied 

Biosystems), and the threshold value of relative fluorescent intensity (ΔRn) was adjusted to be 0.2.  

  

For COPMAN, viruses were coagulated with the addition of 1 μL of polyaluminum chloride (PAC) followed by 

vigorous shaking for 30 times, and subsequent gentle shaking at 80–120 rpm for 10 min at 4 °C. The samples were then 

centrifuged at 3000 ×g for 10 min, and the supernatant was discarded. The samples were centrifuged again at 3000 ×g 

for 3 min and the remaining liquids were removed by pipetting. The debris was then transferred to a 1.5-mL tube and 

lysed with 250-μL SDS-based lysis buffer and digested by 14.25-μL proteinase K solution at 56 °C for 10 min. Crude 

RNA of 200 μL was extracted from the samples with phenol/chloroform/isoamyl alcohol (25:24:1), which was then 

purified with carboxyl-modified magnetic beads, to obtain a final RNA extract volume of 50 μL. An aliquot (2 μg or 13 

μL) of the magnetic bead-purified total RNA was subjected to cDNA synthesis using the Reliance Select cDNA 

synthesis kit (Bio-Rad Laboratories) under the following conditions: 50 °C for 60 min, 95 °C for 1 min in 20-μL 

reaction mix with 2 pmol each of reverse primers of SARS-CoV-2, RSV, and PMMoV. The resultant cDNAs of SARS-

CoV-2 and RSV were pre-amplified for 10 cycles by the Biotaq HS (Bioline Reagents Ltd., London, UK) under the 

following conditions: 95 °C for 10 min, and 10 cycles of 95 °C for 15 s, 55 °C for 15 s, and 72 °C for 30 s, in 30-μL 

volume reaction mix containing 9 pmol each of forward and reverse primers. PMMoV cDNA was not preamplified 

because PMMoV RNA usually exists in wastewater with high amounts. Finally, viral RNA was quantified from 2.5 μL 

of the preamp product for SARS-CoV-2 and RSV, and 2.5 μL of cDNA for PMMoV by qPCR using the TaqMan 

Environmental Master Mix 2.0 (Thermo Fisher Scientific) under the following conditions: 95 °C for 10 min, and 45 

cycles of 95 °C for 15 s and 60 °C for 30 s, in 20-μL singleplex reaction mix containing 10 pmol each of reverse and 

forward primers and 7.5 pmol of TaqMan probe. 

 

Alternative vaccination scenario 
In additional analysis where vaccination coverages are increased, the effect of vaccines was assumed to work as a 

proportional reduction in transmission rates (i.e., the vaccine mode of action was assumed to be “leaky” [31]), and the 

transmission rate after additional vaccination is: 

𝛽𝑣𝑎𝑐 =
(1 − 𝑉𝐸 ∗ 𝑐𝑣𝑎𝑐)

(1 − 𝑉𝐸 ∗ 𝑐0)
𝛽0 

where 𝑉𝐸 is the vaccine efficacy (assumed to be 60%) and 𝑐0 and 𝑐𝑣𝑎𝑐 are the vaccination coverages before and after 

the additional vaccination, respectively. The baseline vaccination coverage 𝑐0 was set as 70%, and we examined the 

expected impacts of increased coverage by varying 𝑐𝑣𝑎𝑐 as 0.8 and 0.9. The results of projections are shown in Figure-

S3.  
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Figure S1. Schematic illustration of model structure. 
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Figure S2. Collected wastewater and daily confirmed case data for different sites. Bars represent the 

daily number of reported cases, and darker bars indicate the cases reported on special holidays. Dot 

plots are SARS-CoV-2 RNA concentrations, and its rolling mean over three observed data points is 

shown as a blue line. White dots represent data points below the detection limit of RNA quantification 

methods. 
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Figure S3. Projected cumulative cases in vaccination scenarios. Vaccine effect is assumed to reduce 

the baseline transmission rate proportionally (i.e., “leaky” effect). Vaccination coverages are set as 

70% of the population for the baseline (green) and 80% (blue) and 90% (red) for scenarios with 

accelerated vaccine uptakes. Each ribbon represents uncertainty ranges of 2 standard deviations (SD) 

computed by the estimated variance of the baseline transmission rate. 
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Figure S4. Projected cumulative cases in non-pharmaceutical intervention scenarios. Relative contact 

rates are set as 1 for the baseline (green) and 0.9 (blue) and for scenarios with reduced contact rates. 

Each ribbon represents uncertainty ranges of 2 standard deviations (SD) computed by the estimated 

variance of the baseline transmission rate. 
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Figure S5. Additional analysis for a non-pharmaceutical intervention scenario. Relative contact rates 

are set as 1 for the baseline (green) and 0.85 (blue) and for scenarios with reduced contact rates. Each 

ribbon represents uncertainty ranges of 2 standard deviations (SD) computed by the estimated 

variance of the baseline transmission rate. 
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Figure S6. Model projected cases for a non-pharmaceutical intervention scenario. Relative contact 

rates are set as 1 for the baseline (green) and 0.8 (blue) and for scenarios with reduced contact rates. 

Each ribbon represents uncertainty ranges of 2 standard deviations (SD) computed by the estimated 

variance of the baseline transmission rate. 
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Figure S7. Model projected cases for a non-pharmaceutical intervention scenario. Relative contact 

rates are set as 1 for the baseline (green) and 0.75 (blue) and for scenarios with reduced contact 

rates. Each ribbon represents uncertainty ranges of 2 standard deviations (SD) computed by the 

estimated variance of the baseline transmission rate. 
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Figure S8. Model projected cases for a non-pharmaceutical intervention scenario. Relative contact 

rates are set as 1 for the baseline (green) and 0.7 (blue) and for scenarios with reduced contact rates. 

Each ribbon represents uncertainty ranges of 2 standard deviations (SD) computed by the estimated 

variance of the baseline transmission rate. 
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Table S1. Data source. 

Municipalities Wastewater 

treatment plant 

Epidemiological 

data  

Method Period 

(Sampling 

frequency) 

Wastewater 

data 

Kyoto city ・Toba first 

WWTP 

・Toba second 

WWTP 

https://www.city.

kyoto.lg.jp/hoke

nfukushi/page/00

00268303.html 

COPMAN 15 Dec 2021 ~ 

28 Feb 2022 

(3 times/week),  

2 March 2022 ~ 

31 Aug 2022  

(2 times/week)   

Not accessible to 

the general 

public  

City A ・East WWTP Not accessible to 

the general 

public 

EPISENS-S 15 Dec 2021 ~ 

30 Jun 2022 

(2 times/week) 

Not accessible to 

the general 

public 

A part of 

Kanagawa 

Prefecture 

(Sagami river 

basin) 

・Right bank of 

the Sagami River 

WWTP 

・Left bank of 

the Sagami River 

WWTP 

http://covid-

map.bmi-

tokai.jp/chorople

thmap_kanagawa

/ 

EPISENS-S 1 Nov 2021 ~  

30 Mar 2022  

(3 times /week), 

19 Apr 2022 ~ 

27 May 2022  

(2 times/week)  

https://www.pref

.kanagawa.jp/doc

s/ga4/covid19/si

mulation.html 

COPMAN 8 Jul 2022 ~  

27 Dec 2022  

(2 times/week) 

 

Not accessible to 

the general 

public 

 

 

 

 

Table S2. List of input parameters. 

Parameter Symbol      Kyoto city City A A part of 

Kanagawa 

Prefecture 

(COPMAN) 

A part of 

Kanagawa 

Prefecture 

(EPISENS-S) 

Sewered 

population size       

𝑁 778000 157113 1241200 

Latent period 

(days) 
1/𝛼 1.5 

Infectious period 

(days) 
1/𝜏 2.0 

Immunity 

duration (days) 
1/𝜔 180 

Special holidays       2021/1/1,2021/1/11,2021/2/11,2021/2/23,2021/3/20,2021/4/29,2021/5/3,202

1/5/4,2021/5/5,2021/7/20,2021/8/8,2021/8/9,2021/9/20,2021/9/23,2021/11/3,

2021/11/23,2022/1/10,2022/2/11,2022/2/23,2022/3/21,2022/4/29,2022/5/3,2

022/5/4,2022/5/5,2022/7/18,2022/8/11,2022/9/19,2022/9/23,2022/10/10,202

2/11/3,2022/11/23 
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Table S3. List of estimated parameters. 

Parameter Symbol Kyoto city City A A part of 

Kanagawa 

Prefecture  

(EPISENS-S) 

A part of 

Kanagawa 

Prefecture  

(COPMAN) 

Shedding 

duration (days) 
1/𝛾 1.97 0.64 1.71 1.74 

Scaling 

parameter 
𝜈 2.6 × 10−11 2.0 × 10−9 1.6 × 10−11 1.7 × 10−11 

Calibration 

period 

 15 Dec 2021 to 31 

Aug 2022 

15 Dec 2021 to 30 

Jun 2022 

1 Nov 2021 to 27 

May 2022 

8 July 2022 to 27 

Dec 2022 

 

 

 

Table S4. Summary statistics for model fits. 

Municipalities Kyoto city City A A part of Kanagawa Prefecture 

Method COPMAN EPISENS-S COPMAN EPISENS-S 

MAE* Case data  1869.3 91.6 3135.8 1303.3 

Wastewater data 2032.9 178.1 4285.8 1397.5 

Case and 

wastewater data 

1475.9 81.8 5738.7 1305.9 

RMSE* Case data 4447.9 173.4 9632.6 2792.5 

Wastewater data 3981.3 247.1 6969.1 2336.4 

Case and 

wastewater data  

3321.4 124.1 24071.8 2743.0 

*MAE and RMSE are calculated by comparing the predicted and actual numbers of cumulative new positive cases up to one week. 
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