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Summary 
 
Background 
The ability to predict future risk of cancer development in non-malignant biopsies is poor. 
Cellular senescence has been associated with cancer as either a barrier mechanism restricting 
autonomous cell proliferation or a tumor-promoting microenvironmental mechanism that 
secretes pro-inflammatory paracrine factors. With most work done in non-human models and 
the heterogenous nature of senescence the precise role of senescent cells in the development 
of cancer in humans is not well understood. Further, more than one million non-malignant breast 
biopsies are taken every year that could be a major source of risk-stratification for women. 
 
Methods 
We applied single cell deep learning senescence predictors based on nuclear morphology to 
histological images of 4,411 H&E-stained breast biopsies from healthy female donors. 
Senescence was predicted in the epithelial, stromal, and adipocyte compartments using 
predictor models trained on cells induced to senescence by ionizing radiation (IR), replicative 
exhaustion (RS), or antimycin A, Atv/R and doxorubicin (AAD) exposures. To benchmark our 
senescence-based prediction results we generated 5-year Gail scores, the current clinical gold 
standard for breast cancer risk prediction. 
 
Findings 
We found significant differences in adipocyte-specific IR and AAD senescence prediction for the 
86 out of 4,411 healthy women who developed breast cancer an average 4.8 years after study 
entry. Risk models demonstrated that individuals in the upper median of scores for the 
adipocyte IR model had a higher risk (OR=1.71 [1.10-2.68], p=0.019), while the adipocyte AAD 
model revealed a reduced risk (OR=0.57 [0.36-0.88], p=0.013). Individuals with both adipocyte 
risk factors had an OR of 3.32 ([1.68-7.03], p<0.001). Alone, 5-year Gail scores yielded an OR 
of 2.70 ([1.22-6.54], p=0.019). When combining Gail scores with our adipocyte AAD risk model, 
we found that individuals with both of these risk predictors had an OR of 4.70 ([2.29-10.90], 
p<0.001).  
 
Interpretation 
Assessment of senescence with deep learning allows considerable prediction of future cancer 
risk from non-malignant breast biopsies, something that was previously impossible to do. 
Furthermore, our results suggest an important role for microscope image-based deep learning 
models in predicting future cancer development. Such models could be incorporated into current 
breast cancer risk assessment and screening protocols.  
 
Funding 
This study was funded by the Novo Nordisk Foundation (#NNF17OC0027812), and by the 
National Institutes of Health (NIH) Common Fund SenNet program (U54AG075932). 
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Introduction 
 
Breast cancer is one of the most common forms of cancer worldwide and results in substantial 
mortality with 287,850 cases and 43,250 deaths annually in the United States alone.1 Numerous 
genetic and environmental factors contribute but the primary risk factor is age, with over 80% of 
cases occurring after the age of 50 and underlying the call to begin regular mammographic 
screening in all women by this age.2 Like many diseases of aging, breast cancer has been 
associated with cellular senescence3–5, where aged or damaged cells cease dividing but remain 
metabolically active.6 Senescence was first identified as a mechanism to limit proliferation of 
cells7,8 and later shown to operate with multiple pathways that respond to molecular damage to 
prevent excessive division, purportedly as a tumor suppressor mechanism.9–11 Paradoxically, 
senescent cells can also promote tumor development by emitting a variety of factors known as 
the senescence associated secretory phenotype (SASP), which produces an inflammatory state 
to signal immune clearance.12–14  
 
Despite its relevance to numerous diseases including cancer, cellular senescence is poorly 
characterized in human tissues because of the lack of specific and universal biomarkers.15 
While diverse markers are associated with senescence, they also report on other biological 
processes such as DNA damage, inflammation, and cell cycle, and there is no known marker to 
exclusively identify the senescent state. The best practices to overcome this challenge include 
staining for multiple markers simultaneously, although there is limited consensus regarding the 
right combination, which varies by tissue. This has led to recent initiatives such as SenNet by 
the NIH to map senescence in human tissues using the latest multiomics methods.16  
 
Given the observation that senescent cells display altered nuclear morphology17, we recently 
showed that senescence can be detected using deep learning on tissue micrographs showing 
nuclear morphology.18 In the current study, we applied the nuclear senescence predictor 
(NUSP) to H&E-stained breast biopsy images from 4,411 healthy donors, of which 86 
developed breast cancer at a later date, in order to investigate whether senescence is 
associated with future breast cancer development. Predicted senescence scores are generated 
for each nucleus and can be related to other nuclei by location and tissue type. Therefore, we 
analyzed the spatial distribution of predicted senescent cells by evaluating 32 million nuclei in 
breast tissue to explore how senescence arises in tissue and how it might relate to the risk of 
future breast cancer development.  
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Methods 
 
Study design and population 
 
Our retrospective cohort study utilized participants from the Komen Tissue Bank (KTB) at the 
Indiana University Simon Cancer Center, one of the largest biorepositories that collects, stores, 
and annotates breast tissue with a focus on female donors who exhibit no signs of breast 
disease.19 Tissue cores from the upper outer quadrant of either breast were acquired from 
consenting women using 10-gauge needles and immediately processed as snap-frozen tissues 
or using 10% formalin fixation and paraffin embedding (FFPE) or the PAXgene tissue 
preservation system prior to paraffin embedding (PFPE). Tissue was collected and processed 
by standardized KTB operating protocols and specimens were archived by the KTB.20,21 Donors 
completed questionnaires supplying demographic data and reproductive/medical histories at the 
time of donation as well as in follow-up questionnaires. 
 
All KTB participants who underwent core biopsies for research purposes between 2009 and 
2019 were eligible for this study. Digitized slide-based images of H&E stained non-malignant 
breast sections were obtained for all biopsied participants (n = 4,922), as were covariate data 
annotations including age at donation, race/ethnicity, parity, age at menarche, Body Mass Index 
(BMI), alcohol and smoking history, and family history of breast cancer. From these data, 5 year 
Gail scores were also calculated, representing the standard clinical predictor of breast cancer 
risk development and routinely used for all prevention studies. In participants with duplicate 
images (n = 326), we utilized the earlier biopsy image; those whose donation resulted from 
carrying a BRCA mutation (n = 15) and those with pre-existing breast cancer (n = 170) were 
excluded from the analysis, resulting in our study number of 4,411 participants. Participant 
characteristics according to case status are shown in Table 1. All women with breast cancer 
diagnosed at least 6 months after their last normal breast tissue biopsy donation were 
considered cases (n = 86). 
 
 
Image Segmentation 
 
H&E-stained whole slide images were provided by the Komen Tissue Bank as tiled tif (svs) files. 
To assist in the analysis, these large images were split into tiles of 1024 × 1024 pixels. Nuclei 
were identified using a U-Net model trained on 10 sample image tiles.22 Tissue was also 
segmented by training two U-Net models to detect epithelial and adipose regions, where each 
model was trained on 20 annotated tiles. Terminal duct lobular units (TDLUs) were segmented 
using a published model also based on U-Net.23 If a region was identified as TDLU, it was 
associated with that group only, and if not, it was then assessed to be non-TDLU epithelial or 
adipose tissue. If it did not match any of those groups, it was assumed to be stroma. A minority 
of nuclei were associated with both epithelial and adipose regions, and further examination 
indicated that these primarily represented non-adipose cells found adjacent to adipose cells, 
such as resident macrophages, endothelial cells, and others. This “both” group was excluded 
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from the analysis due to its heterogeneity and the lower number of nuclei found in those 
regions.  
 
 
Senescence prediction 
 
Cellular senescence was predicted from detected nuclei using the NUSP with models and 
methods developed by the authors.15 As described in the reference, all models were built on 
images from cell culture, which were size, background and intensity normalized to identify the 
nuclear outline and after training could predict senescence of normalized nuclei in tissue. The 
NUSP provides a standard unified (Uni) model for detecting senescence, but also offers several 
other models that were trained on senescence induced by multiple mechanisms, such as 
replicative exhaustion (RS), DNA damage (ionizing radiation, IR, and doxorubicin treatment, 
Doxo), mitochondrial dysfunction (antimycin-A treatment, Anti), and proteotoxicity (atazanavir-
ritonavir treatment, ATVR). The Uni model was trained on all methods of induction together and 
has been shown to recognize all forms of senescence in vitro, whereas the individual models 
can offer superior performance in detecting senescence induced by specific methods. We 
applied all five individual models to determine which better captured the difference between 
cases and controls. Although some models captured significant effects in different tissues, 
several models showed similar results. We compared scores on a per-nucleus basis and 
observed a very high correlation between ATVR, Anti, and Doxo. While these three methods 
predict senescence induced by different mechanisms in vitro, our empirical results suggested 
that we can treat them together in breast tissue, leading to the training of a new model that 
integrates the three (AAD). This new AAD model was trained by combining the datasets used 
for the three individual models described in the publication (Anti, Atvr, and Doxo).18 Each 
senescence “model” is based on an ensemble of 10 models independently trained on the same 
data using the Xception architecture, and when applied, their outputs are combined to produce 
a mean score. 
 
 
Statistical analysis 
 
Odds ratios (ORs) and 95% confidence intervals were calculated using logistic regression 
models to analyze the relationship between senescence scores and breast cancer incidence. 
Limitations in the regularity of follow-up donor data made it difficult to use time-to-event 
analyses. Breast tissue was segmented into fat, terminal duct lobular units (TDLUs), non-TDLU 
epithelium (epi), and stromal tissue for senescence scoring, and three senescence models were 
applied to the four tissue types. Results were examined for continuous (linear) association as 
well as by medians of senescent scores. Examination by quartiles was limited by the relatively 
small number of cases. 
 
The two model results with the strongest senescent score/breast cancer risk associations were 
both found in fat tissue and were used in a cross-classification analysis looking at the risk for 
women with neither risk factor, having one of the risk factors, and having both risk factors. This 
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analysis utilized logistic regression models to calculate ORs with 95% CI’s, comparing one or 
both risk factors to the reference group of having neither. 
 
All models were adjusted for age at donation, race/ethnicity, parity, BMI, age at menarche, 
smoking history, alcohol intake, and family history of breast cancer. KTB changed their tissue 
fixation method during the interval being studied from formalin fixation and paraffin embedding 
(FFPE) to the PAXgene tissue preservation system prior to paraffin embedding (PFPE), 
resulting in 56.7% of slides using FFPE and 43.3% using PFPE. Because of potential batch 
issues created by the different techniques24, we performed batch adjustment by using the FFPE 
results as the target distribution and the PFPE sample results as the source distribution and 
used quantile normalization to minimize batch-specific differences. 
 
Gail 5-year risk scores were generated for all study participants between the ages of 35 and 85 
using source code from the “BCRA R package” found on the BCRAT website 
(https://dceg.cancer.gov/tools/risk-assessment/bcra). ORs using Gail 5-year risk scores by 
median were calculated by logistic regression to assess the relationship to breast cancer cases, 
and for use in cross-classification analyses to assess the risk for women in the higher median of 
5-year Gail score who are also in the group with one of the two senescence score models 
demonstrating the highest risk association relative to participants with no risk factors as the 
reference group. 
 
 
Study approval 
 
KTB participants and biopsy donors were initially recruited after providing written informed 
consent under a protocol approved by the Indiana University Institutional Review Board.  
 
Role of the funding source 
 
The sponsors had no involvement in design, analysis, interpretation, or decision to submit for 
publication. 
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Results 
 
Following our hypothesis that cellular senescence may play a role in breast cancer 
development, we applied the NUSP to H&E-stained healthy breast tissue biopsy images from 
4,411 KTB donors of various ages (Fig 1a). Notably, 86 individuals later went on to develop 
breast cancer (the average time to cancer diagnosis was 4.8 years). Although the NUSP has 
been shown to apply to multiple cell types and image preparation methods, it produces scores 
on different scales per tissue and imaging context. To reduce confounding factors and explore 
tissue-specific senescence, we segmented breast tissue into three primary tissue types 
(stromal, adipose, and epithelial). We also identified terminal duct lobular units, TDLUs, which 
are believed to be the primary site for origination of breast malignancies.25 By automatically 
recognizing tissue regions in each image, nuclei could be classified by the region where they 
were found. The NUSP was applied to generate senescence scores for each of the 32,857,482 
nuclei recognized using multiple models, and their precise locations in the tissue images were 
tracked. Visualizing nuclei with high predicted senescence (over the 95th percentile) revealed 
spatial distribution throughout the tissues (Fig 1b). There was significant clustering in epithelial 
regions and TDLUs, although this may be due to their higher density of nuclei and limited spatial 
extent. We also noted frequent overlap of the prediction models (IR, RS, and AAD).  
 
Previous work has suggested that senescent cells can induce senescence in neighboring 
cells.26 We evaluated the spatial distribution of senescence by classifying nuclei by percentile 
and examining mean senescence score (normalized per individual) for nearby nuclei by 
distance (Fig. 1c). For all three models and the three main tissue types, nuclei were surrounded 
by other nuclei with similar scores, indicating clustering where senescent nuclei were found near 
other high-senescence-scoring nuclei. As the distance from senescent nuclei increased, the 
mean senescence score decreased, indicating an increasing rate of non-senescent nuclei (Fig. 
1c-k, Ext Fig. 1a-c, e-h). Likewise, with a greater distance from non-senescent nuclei, the mean 
senescence increases, indicating that more senescent nuclei are found (Fig. 1c-i, Ext Fig. 1a-h). 
While this pattern is largely consistent among models and tissues, we found that the IR model 
suggests that senescent TDLU nuclei are more likely to be surrounded by lower-senescence-
scoring nuclei (Ext Fig 1d). In addition, the AAD model suggests that senescent TDLU nuclei 
are found alongside senescent nuclei, but there is reduced senescence outside its immediate 
neighborhood (Ext Fig 1h). For other tissue types (stroma, fat, and epithelium), the clustering of 
high senescence scoring and low senescence scoring nuclei suggests causal factors induce 
senescence in groups of cells or that senescent cells propagate their state through contact or by 
SASP inflammatory factors, forming regions of increased senescence. Observing the steep 
decline in mean senescence with distance, we fit an inverse exponential curve, obtaining good 
fits with high R2 (Fig. 1e,g, Ext Fig. 1a,c,e,g,h). The spatial distribution of senescence near high-
scoring senescent nuclei resembles exponential decay, further supporting the notion that one or 
more paracrine SASP factors propagate senescence by local diffusion.  
 
Considering that cell density could influence senescence and vice versa, we tested if the mean 
count of nuclei differs in the vicinity of high and low scoring nuclei. The AAD model suggested 
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Figure 1: Cellular senescence organizes spatially and future cases show differences in tissues. a, Workflow for predicting senescence in tissue images. 
b, Representative histological images showing nuclei with high predicted senescence (>0.9). Models: ionizing radiation (IR) in red, replicative senescence (RS) 
in purple, and antimycin A, Atv/R and doxorubicin induced senescence (AAD) in blue. c, Representative image illustrating the distance cutoffs where 
senescence is measured. d, Representative image of stroma showing clusters (red) of RS-senescent nuclei. e, Mean RS scores ofcells in stroma with 
increasing distance from senescent (score >0.9) and non-senescent  (score <0.1) cells (exponential curve fit, >0.9: R2=0.95, <0.1: R2=0.98). f, Adipose tissue 
sample, showing regions of high RS-scoring senescent nuclei in red. g, Mean RS scores of  cells in adipose tissue with increasing distance from senescent 
(score >0.9) and non-senescent  (score <0.1) cells (exponential curve fit, >0.9: R2=0.87, <0.1: R2=0.97). h, Epithelia sample, showing regions of high 
RS-scoring senescent nuclei in red. i, Mean RS scores of epithelial cells with increasing distance from senescent (score >0.9) and non-senescent  (score <0.1) 
cells (exponential curve fit, >0.9: R2=0.89, <0.1: R2=0.90). j, Terminal ductile lobular unit (TDLU) sample, showing regions of high RS-scoring senescent nuclei 
in red. k, Mean RS scores of cells in TDLUs with increasing distance from senescent (score >0.9) and non-senescent  (score <0.1) cells (exponential curve fit, 
>0.9: R2=0.86, <0.1: R2=0.14). l, Mean convexity of nuclei in adipose tissue near high >0.9 percentile IR-scoring nuclei (exponential curve fit, R2=0.83). m, 
Mean aspect of nuclei in adipose tissue near high >0.9 percentile IR-scoring nuclei (exponential curve fit, R2=0.76). Mean senescence scores for individuals 
per tissue for cases vs. controls, using the Uni (n), IR (o), RS (p) and AAD (q) models (mean ± 95% CI).
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higher density of cells in the neighborhood of high-senescence-scoring nuclei (Ext Fig 1i).  The 
RS model did not show differences, and the IR model showed higher counts for epithelia but 
lower counts for adipose cells (Ext Fig 1j,k). Although speculative, these results could indicate 
that the higher density for senescent nuclei is related to an inflammatory response, where 
immune cells are recruited by factors in the SASP. 
 
To better characterize predicted senescence, we investigated morphological metrics near high-
senescence scoring nuclei. We evaluated convexity and aspect ratio, which were shown to 
indicate senescence (Fig 1l,m).18   Indeed, we found substantially higher aspect and reduced 
convexity, both indicating senescence, in the closest cells to high senescent scoring cells. 
These patterns are consistent for all tissue types and both the IR and RS models, indicating 
clustering of senescent cells. 
 
To investigate if senescence relates to cancer formation, we looked for differences in the 86 
cases that developed cancer within our cohort. Notably, future cancer cases appeared to have a 
smaller number of nuclei in all their normal tissue types, with a small but significant difference in 
adipose, epithelia, and stroma, and a larger difference in TDLU (Ext Fig. 1l). This could be 
related to the senescence response, with reduced immune recruitment, a reduced protective 
effect of senescence, or other subtle changes to tissue. 
 
Since we observed spatial differences in predicted senescence for multiple tissue types, we 
investigated whether tissue specific senescence could be a prognostic marker for cancer. Using 
the unified model (Uni), we found that the cases appeared significantly different from the 
controls, with cases having a lower mean predicted senescence in all three tissue types (Fig 
1n). Senescence appears to have a protective effect in multiple tissues, reducing the risk of 
developing cancer. Importantly, biopsies were taken 57.5 months before diagnosis, on average, 
suggesting that the predicted rate of senescence may be a critical indicator of the risk for 
developing malignancy.  
 
We also applied the senescence prediction models trained on several specific types of stress to 
evaluate whether different types of senescence can influence carcinogenesis. Strikingly, we 
observed significant differences in mean senescence for all cell types with IR, for adipose and 
stroma with RS, and for epithelial, adipose, and stromal tissue with AAD (Figs. 1o-q). While the 
AAD model shows a protective role for senescence where cancer cases tend to have lower 
scores, the IR and RS models suggest that higher senescence scores increase the risk of 
cancer, indicating that different types of senescence may impact carcinogenesis. 
 
After evaluating overall senescence per tissue per individual and adjusting for batch effects, we 
found a statistically significant decrease in the risk of developing breast cancer for individuals 
with high AAD scores in fat (above the median) compared to individuals with low scores (below 
the median), OR=0.57 ([0.36-0.88], p=0.013), indicating that women with the lower half of 
senescence scores had a substantially higher risk of cancer development than those in the 
upper half (Fig 2a, Ext. Table 1 for unadjusted results). Conversely, with the IR model we found 
significantly increased risk of cancer development for individuals with higher predicted 
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senescence in fat tissue (OR=1.71, [1.10-2.68], p=0.019). This was also found for the IR model 
in stromal tissue (OR=1.59 [1.01-2.49]). Although other model and tissue results did not reach 
statistical significance, results of the IR and RS models on all 4 tissue types were above 1, while 
3 of 4 tissue types for the AAD model were below 1. These results suggest that some forms of 
senescence can have a protective effect that can substantially reduce cancer risks, while other 
forms of senescence might promote cancer development. 
 
Cross-classification analyses suggest that the risk indicated by each model was largely 
independent (Fig 2b). Individuals with both low AAD/fat scores and high IR/fat scores had 
OR=3.32 ([1.68-7.03], p<0.001), suggesting that multiple forms of senescence relate to risk 
differently, with the AAD model capturing a protective effect and the IR model being associated 
with increased risk. We also generated 5-year Gail scores for all individuals and performed a 
similar analysis. Remarkably, individuals with both high Gail scores and low AAD/fat scores had 
an OR of 4.70 ([2.29-10.90], p<0.001; Fig 2c) while both high Gail scores and high IR/fat scores 
yielded an OR=3.45 ([1.77-7.24], p<0.001; Fig 2d). Importantly, these results indicate little 
overlap in the risk derived from the different predicted senescence models and the Gail score. 
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Discussion 
 
In this study, we applied deep learning models to predict senescence per nucleus in H&E-
stained micrographs of healthy breast tissues from 4,411 individuals. Remarkably, the NUSP 
identified significant differences in the mean senescence score for the 86 individuals in our 
cohort who were later diagnosed with breast cancer at an average interval of 4.8 years after 
their non-malignant breast biopsies. Our risk analysis suggested that individuals in the higher 
median of predicted senescence scores for adipose tissue using the AAD model had a reduced 
risk of developing cancer (OR = 0.57, [0.36-0.88], p=0.013), while individuals in the higher 
median of the IR model had an elevated risk (OR = 1.71, [1.10-2.68], p=0.019). Individuals with 
both risk factors have OR=3.32 ([1.68-7.03], p<0.001), which exceeds the clinical gold standard 
in the field, the Gail model, giving OR=2.33 for the upper median of scores. Combining a single 
senescence risk factor (AAD/fat) with the Gail model resulted in an OR=4.70 ([2.29-10.90], 
p<0.001), considerably higher than that predicted by the Gail score alone. This could likely be 
further improved by utilizing multiple senescence models with Gail scores to enhance the 
prediction of breast cancer risk. In summary, our analysis suggests dual roles for senescence in 
maintaining tissue health while also being associated with malignancy, and we introduce new 
senescence-based risk models that can be applied directly to H&E-stained images. 
 
Individual models trained on various senescence inducers indicated that senescence can 
simultaneously promote and protect against cancer, depending on the form of senescence. The 
IR model, trained on senescent cells with severe DNA damage induced by radiation, showed 
higher senescence in the stroma and fat for those who developed cancer, whereas the AAD 
model showed a protective effect from senescence in those same tissue constituents. The 
positive relationship between the IR model and cancer could be due to the effect of the pro-
inflammatory SASP, which has been shown to be particularly prominent in IR-induced cells.29 
Senescence arising from significant DNA damage and captured by the IR model could also be 
related to a higher rate of mutations that could contribute to malignant transformation. 
Conversely, the AAD model was trained on senescence induced by diverse drug treatments, 
with antimycin inducing mitochondrial dysfunction and ATV/r inducing proteotoxic stress. 
Increased rates of these types of senescence could provide a protective effect by controlling 
proliferation without mutational load and SASP effects. The dual roles of senescence in 
promoting and controlling cancer are widely recognized30,31, and our study provides evidence for 
both roles using high-precision machine learning methods to analyze a large cohort. We 
speculate that the IR model is capturing a stronger senescence phenotype with a more 
developed SASP, while the AAD model, having been trained on diverse drug treatments, may 
reflect a weaker or earlier senescence phenotype with a reduced SASP32. 
 
The use of 4000+ women from the KTB with biopsy images and associated covariates was a 
major strength of the study, as all KTB women underwent biopsies at the time of enrollment, 
and the development of breast cancer occurred after biopsy in all study participants. The 
relatively small number of cases (n = 86) was a limitation, and although the effect size was large 
enough to find statistical significance in breast cancer cases as a whole, it did prevent 
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subcategorization by breast cancer type or hormone receptor status. There is also the possibility 
of selection bias, as not all women are willing to undergo breast biopsy on a voluntary basis, 
and the race/ethnicity of the KTB participants may limit the generalizability to the overall 
population or to under-represented subgroups. 
 
Our spatial analysis also uncovered several notable aspects of cellular senescence in breast 
tissues. The SASP induces changes through paracrine factors, and for all three major tissue 
types, senescent nuclei were on average found near similar nuclei, and the rate of senescent 
nuclei declined with distance, suggesting clusters of senescence. We also showed that 
senescent epithelial (including TDLU) nuclei exist in regions of higher density, which may 
suggest that higher density induces senescence or that these higher-density regions are more 
susceptible to senescence. Comparing the density for cases to controls revealed a lower 
density for cases across all three tissue types along with TDLUs, supporting the notion that at 
least locally senescence serves as a barrier to cancer.  
 
In conclusion, the rate of senescence predicted from nuclear morphology in H&E-stained 
healthy breast tissue images is a strong risk-predictor of breast cancer development. This 
relationship is found for individuals overall and per tissue. In our cohort, the combination of 
multiple models greatly improved risk-prediction compared with the current clinical benchmark, 
the Gail score. Notably, our deep learning senescence models predict breast cancer risk 
orthogonally to the Gail model and achieve nearly twice the OR when combined with the Gail 
model. In sum, high-precision predicted senescence scores provide new insights into breast 
cancer risk and may be applied in the clinical assessment and screening of women with non-
malignant breast biopsies that are not otherwise useful and may be potentially misleading with 
respect to future breast cancer risk assessment. 
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Legend 
 
Figure 1: Cellular senescence organizes spatially and future cases show differences in 
tissues 
a, Workflow for predicting senescence in tissue images.  
b, Representative histological images showing nuclei with high predicted senescence (>0.9). Models: 
ionizing radiation (IR) in red, replicative senescence (RS) in purple, and antimycin A, Atv/R and 
doxorubicin induced senescence (AAD) in blue.  
c, Representative image illustrating the distance cutoffs where senescence is measured. 
d, Representative image of stroma showing clusters (red) of RS-senescent nuclei. 
e, Mean RS scores of cells in stroma with increasing distance from senescent (score >0.9) and non-
senescent  (score <0.1) cells (exponential curve fit, >0.9: R2=0.95, <0.1: R2=0.98). 
f, Adipose tissue sample, showing regions of high RS-scoring senescent nuclei in red. 
g, Mean RS scores of cells in adipose tissue with increasing distance from senescent (score >0.9) and 
non-senescent  (score <0.1) cells (exponential curve fit, >0.9: R2=0.87, <0.1: R2=0.97). 
h, Epithelia sample, showing regions of high RS-scoring senescent nuclei in red. 
i, Mean RS scores of epithelial cells with increasing distance from senescent (score >0.9) and non-
senescent  (score <0.1) cells (exponential curve fit, >0.9: R2=0.89, <0.1: R2=0.90). 
j, Terminal ductile lobular unit (TDLU) sample, showing regions of high RS-scoring senescent nuclei in 
red. 
k, Mean RS scores of cells in TDLUs with increasing distance from senescent (score >0.9) and non-
senescent  (score <0.1) cells (exponential curve fit, >0.9: R2=0.86, <0.1: R2=0.14). 
l, Mean convexity of nuclei in adipose tissue near high >0.9 percentile IR-scoring nuclei (exponential 
curve fit, R2=0.83). 
m, Mean aspect of nuclei in adipose tissue near high >0.9 percentile IR-scoring nuclei (exponential curve 
fit, R2=0.76). 
Mean senescence scores for individuals per tissue for cases vs. controls, using the Uni (n), IR (o), RS (p) 
and AAD (q) models (mean ± 95% CI). 
 
Figure 2: Senescence indicates risk of developing cancer 
a, Estimated risk by model and tissue type with p-value and 95% confidence interval. 
b, Cross-classification analysis showing OR by combining the IR and AAD models for fat.  
c, Cross-classification analysis showing OR by combining AAD for fat with 5 year Gail scores.  
d, Cross-classification analysis showing OR by combining IR for fat with 5 year Gail scores.  
 
Ext Figure 1: Additional spatial analysis and nuclei counts by tissue. 
a, Mean IR scores of cells in stroma with increasing distance from senescent (score >0.9) and non-
senescent  (score <0.1) cells (exponential curve fit, >0.9: R2=0.93, <0.1: R2=0.94). 
b, Mean IR scores of cells in adipose with increasing distance from senescent (score >0.9) and non-
senescent  (score <0.1) cells (exponential curve fit, >0.9: R2=0.54, <0.1: R2=0.88). 
c, Mean IR scores of epithelial cells with increasing distance from senescent (score >0.9) and non-
senescent  (score <0.1) cells (exponential curve fit, >0.9: R2=0.77, <0.1: R2=0.96). 
d, Mean IR scores of cells in TDLUs with increasing distance from senescent (score >0.9) and non-
senescent  (score <0.1) cells (exponential curve fit, >0.9: R2=0.39, <0.1: R2=0.82). 
e, Mean AAD scores of cells in stroma with increasing distance from senescent (score >0.9) and non-
senescent  (score <0.1) cells (exponential curve fit, >0.9: R2=0.99, <0.1: R2=0.96). 
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f, Mean AAD scores of cells in adipose with increasing distance from senescent (score >0.9) and non-
senescent  (score <0.1) cells (exponential curve fit, >0.9: R2=0.97, <0.1: R2=0.90). 
g, Mean AAD scores of epithelial cells with increasing distance from senescent (score >0.9) and non-
senescent  (score <0.1) cells (exponential curve fit, >0.9: R2=0.98, <0.1: R2=0.90). 
h, Mean AAD scores of cells in TDLUs with increasing distance from senescent (score >0.9) and non-
senescent  (score <0.1) cells (exponential curve fit, >0.9: R2=0.98, <0.1: R2=0.38). 
I, Count of nuclei near high >0.9 and low <0.1 scoring nuclei using the AAD model.  
j, Count of nuclei near high >0.9 and low <0.1 scoring nuclei using the RS model.  
k, Count of nuclei near high >0.9 and low <0.1 scoring nuclei using the IR model.  
l, Mean count of nuclei per 45238 µm2 for each tissue type by cases and controls (mean ± 95% 
confidence interval (CI)).  
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Ext Figure 1:Additional spatial analysis and nuclei counts by tissue. a, Mean IR scores of cells in stroma with increasing distance from senescent (score 
>0.9) and non-senescent  (score <0.1) cells (exponential curve fit, >0.9: R2=0.93, <0.1: R2=0.94). b, Mean IR scores of cells in adipose with increasing 
distance from senescent (score >0.9) and non-senescent  (score <0.1) cells (exponential curve fit, >0.9: R2=0.54, <0.1: R2=0.88). c, Mean IR scores of 
epithelial cells with increasing distance from senescent (score >0.9) and non-senescent  (score <0.1) cells (exponential curve fit, >0.9: R2=0.77, <0.1: 
R2=0.96). d, Mean IR scores of cells in TDLUs with increasing distance from senescent (score >0.9) and non-senescent  (score <0.1) cells (exponential curve 
fit, >0.9: R2=0.39, <0.1: R2=0.82). e, Mean AAD scores of cells in stroma with increasing distance from senescent (score >0.9) and non-senescent  (score 
<0.1) cells (exponential curve fit, >0.9: R2=0.99, <0.1: R2=0.96). f, Mean AAD scores of cells in adipose with increasing distance from senescent (score >0.9) 
and non-senescent  (score <0.1) cells (exponential curve fit, >0.9: R2=0.97, <0.1: R2=0.90). g, Mean AAD scores of epithelial cells with increasing distance 
from senescent (score >0.9) and non-senescent  (score <0.1) cells (exponential curve fit, >0.9: R2=0.98, <0.1: R2=0.90). h, Mean AAD scores of cells in 
TDLUs with increasing distance from senescent (score >0.9) and non-senescent  (score <0.1) cells (exponential curve fit, >0.9: R2=0.98, <0.1: R2=0.38). I, 
Count of nuclei near high >0.9 and low <0.1 scoring nuclei using the AAD model. j, Count of nuclei near high >0.9 and low <0.1 scoring nuclei using the RS 
model. k, Count of nuclei near high >0.9 and low <0.1 scoring nuclei using the IR model. l, Mean count of nuclei per 45238 µm2 for each tissue type by cases 
and controls (mean ± 95% confidence interval (CI)).
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Ext Table 1: Unadjusted risk results

 Stroma Epi TDLU Fat
Characteristic OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value
Continuous 0.92 0.85,1.00 0.044 0.93 0.88,0.99 0.018 0.98 0.94,1.02 0.32 0.86 0.78,0.93 <0.001

1. 1st Quartile — —  — —  — —  — —  

2. 2nd Quartile 0.92 0.52,1.61 0.75 0.78 0.44,1.37 0.39 0.49 0.25,0.92 0.031 0.50 0.28,0.89 0.021

3. 3rd Quartile 0.40 0.19,0.80 0.012 0.39 0.19,0.77 0.009 0.71 0.38,1.29 0.27 0.44 0.23,0.80 0.008

4. 4th Quartile 0.57 0.30,1.06 0.080 0.57 0.30,1.06 0.081 0.74 0.40,1.35 0.33 0.27 0.13,0.54 <0.001

             

Quartiles             

1. 1st Quartile — —  — —  — —  — —  

2. 2nd-4th Quartiles 0.63 0.39,1.02 0.054 0.58 0.37,0.94 0.025 0.64 0.40,1.04 0.062 0.40 0.26,0.65 <0.001

AAD Model

 Stroma Epi TDLU Fat
Characteristic OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value
Continuous 1.09 0.99,1.20 0.080 1.05 0.96,1.14 0.28 1.03 0.97,1.10 0.28 1.16 1.04,1.29 0.009

1. 1st Quartile — —  — —  — —  — —  

2. 2nd Quartile 1.31 0.64,2.72 0.46 0.79 0.38,1.62 0.52 0.97 0.51,1.84 0.92 1.16 0.56,2.44 0.68

3. 3rd Quartile 1.99 1.04,3.96 0.043 1.56 0.85,2.96 0.15 0.91 0.47,1.74 0.76 1.61 0.82,3.27 0.17

4. 4th Quartile 1.71 0.87,3.45 0.12 1.32 0.69,2.56 0.40 1.17 0.64,2.17 0.61 2.14 1.13,4.26 0.023

             

Quartiles             

1. 1st Quartile — —  — —  — —  — —  

2. 2nd-4th Quartile 1.66 0.95,3.11 0.089 1.21 0.72,2.16 0.48 1.02 0.62,1.73 0.95 1.62 0.93,3.03 0.11

             

 Stroma Epi TDLU Fat
Characteristic OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value
Continuous 1.70 1.18,2.49 0.005 1.31 1.04,1.64 0.019 1.24 1.05,1.45 0.009 1.63 1.18,2.27 0.004

1. 1st Quartile — —  — —  — —  — —  

2. 2nd Quartile 1.45 0.71,3.02 0.31 1.16 0.58,2.33 0.68 1.25 0.63,2.52 0.52 2.26 1.11,4.81 0.027

3. 3rd Quartile 2.09 1.06,4.25 0.036 1.42 0.71,2.87 0.31 1.36 0.69,2.73 0.32 2.01 0.96,4.35 0.067

4. 4th Quartile 2.49 1.29,5.02 0.008 2.08 1.12,4.01 0.023 1.64 0.86,3.22 0.14 3.39 1.71,7.10 <0.001

             

Quartiles             

1. 1st Quartile — —  — —  — —  — —  

2. 2nd-4th Quartile 1.97 1.12,3.70 0.025 1.53 0.90,2.77 0.14 1.41 0.82,2.59 0.23 2.50 1.38,4.93 0.004

RS Model

IR Model

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 23, 2023. ; https://doi.org/10.1101/2023.05.22.23290327doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.22.23290327

