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Abstract 

Detection of anaemia is critical for clinical medicine and public health. Current WHO values that 

define anaemia are statistical thresholds (5th centile) set over 50 years ago, and are presently 

<110g/L in children 6-59 months, <115g/L in children 5-11 years, <110g/L in pregnant women, 

<120g/L in children 12-14 years of age, <120g/L in non-pregnant women, and <130g/L in men. 

Haemoglobin is sensitive to iron and other nutrient deficiencies, medical illness and inflammation, 

and is impacted by genetic conditions; thus, careful exclusion of these conditions is crucial to 

obtain a healthy reference population. We identified data sources from which sufficient clinical 

and laboratory information was available to determine an apparently healthy reference sample. 

Individuals were excluded if they had any clinical or biochemical evidence of a condition that may 

diminish haemoglobin concentration. Discrete 5th centiles were estimated along with two-sided 

90% confidence intervals and estimates combined using a fixed-effect approach. Estimates for 

the 5th centile of the healthy reference population in children were similar between sexes. 

Thresholds in children 6-23 months were 104.4g/L [90% CI 103.5, 105.3]; in children 24-59 

months were 110.2g/L [109.5, 110.9]; and in children 5-11 years were 114.1g/L [113.2, 115.0]. 

Thresholds diverged by sex in adolescents and adults. In females and males 12-17 years, 

thresholds were 122.2g/L [121.3, 123.1] and 128.2 [126.4, 130.0], respectively. In adults 18-65 

years, thresholds were 119.7g/L [119.1, 120.3] in non-pregnant females and 134.9g/L [134.2, 

135.6] in males. Limited analyses indicated 5th centiles in first-trimester pregnancy of 110.3g/L 

[109.5, 111.0] and 105.9g/L [104.0, 107.7] in the second trimester. All thresholds were robust to 

variations in definitions and analysis models. Using multiple datasets comprising Asian, African, 

and European ancestries, we did not identify novel high prevalence genetic variants that influence 

haemoglobin concentration, other than variants in genes known to cause important clinical 

disease, suggesting non-clinical genetic factors do not influence the 5th centile between ancestries. 

Our results directly inform WHO guideline development and provide a platform for global 

harmonisation of laboratory, clinical and public health haemoglobin thresholds.  
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Introduction 

Anaemia exists when the red cell mass is insufficient to meet physiologic oxygen-carrying needs, 

and is usually operationally identified when the haemoglobin concentration falls below a defined 

threshold for age and sex.1 Accurate case definition of anaemia is critical for clinical diagnosis 

and treatment, and for understanding the magnitude and distribution of this condition as a public 

health problem. The World Health Organization (WHO) recommends that anaemia be defined 

when haemoglobin concentration is <110g/L in children 6-59 months, <115g/L in children 5-11 

years, <110g/L in pregnant women, <120g/L in children 12-14 years of age, <120g/L in non-

pregnant women, and <130g/L in men.2 These thresholds reflect the lower 5th centile of the 

haemoglobin distribution of a reference population of healthy individuals. WHO thresholds were 

initially proposed in 1958,3 updated in 1968,4 and have remained essentially unchanged since 

that time.5 WHO thresholds were based on studies with limited measurement of biomarkers of 

iron and other haematinic deficiency and inflammation. There remains limited consensus on 

definitions of anaemia, leading to heterogeneous definitions across different sources, expert 

groups and public health bodies,6 translating to inconsistent clinical definitions.7  

 

Establishing a valid diagnosis of anaemia is critical for treating patients and detecting the range 

of diseases that may underlie this condition.8 Diagnosis of anaemia lies at the centre of many 

clinical pathways (for example, investigation of gastrointestinal bleeding,9 preoperative 

optimisation,10 antenatal screening for haemoglobinopathy11, and eligibility for blood 

donation12,13). Anaemia is an adverse prognostic factor for multiple conditions, including heart 

failure,14 major surgery,15 cancer16 and HIV.17 Most patients hospitalised with critical illness are 

anaemic in hospital, and about half remain anaemic six18 or even 12 months after hospitalisation.19  

 

Valid definitions of anaemia are also critical to guiding population interventions along with tracking 

progress towards global targets. Based on current definitions, anaemia affects 40% of all 
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preschool children and 30% of women, including 46% of pregnant women globally,20 and is a 

leading cause of Years Lived with Disability.21 Reducing anaemia prevalence in women by 50% 

is a WHO Global Nutrition Target22 and a Sustainable Development Goal sub-indicator.23 

Interventions that directly (for example, iron supplementation24 or fortification25) or indirectly (for 

example, malaria control) reduce anaemia are recommended for many low- and middle-income 

countries, with implementation decisions26 and monitoring based on anaemia prevalence.  

 

Haemoglobin thresholds to define anaemia usually vary between men and women, although this 

distinction has been challenged.27,28 Thresholds may also vary in children and during pregnancy. 

Haemoglobin levels may be lower in African29,30 or Asian populations,31 but it is unclear if this 

reflects clinically significant genetic conditions affecting the red cell, undefined clinical illnesses, 

or a different underlying baseline driven by sub-clinical genetic variation, nutritional or 

environmental factors. It is unknown if individuals with African or Asian heritage still have lower 

haemoglobin concentrations once carriage of clinically significant genetic polymorphisms that 

may cause severe genetic syndromes is excluded.  

 

WHO has recognised the need for further evidence for haemoglobin thresholds to define anaemia, 

including the influence of genetics,32 in order to update global guidelines. Here, we present an 

analysis utilising multiple large-scale datasets in ethnically diverse populations that included 

sufficiently detailed clinical and laboratory parameters to enable post-hoc assembly of reference 

populations of healthy individuals without discernible risk factors for anaemia, in which 5th centile 

of haemoglobin distribution can be estimated across the lifecycle. In addition, we estimate 

ancestry-specific allele frequency and effect on haemoglobin concentrations of genetic 

polymorphisms and structural variants. We provide a rationale for a single set of thresholds that 

can be applied globally for clinical and population use.   
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Methods 

Estimation of the 5th centile in a healthy population 

We searched for datasets comprising appropriate clinical and laboratory information to enable 

post-hoc derivation of an apparently healthy reference sample (Supplemental Material Section 1). 

We identified 8 data sources comprising 18 individual datasets that could be included in the 

analysis. Each included study had received ethics approval and obtained informed consent from 

participants (Supplemental Material Section 2); use of these datasets for these analyses was 

deemed by WEHI Governance, Risk and Compliance to meet criteria for exemption from ethics 

review (Supplemental Material Section 2). Included studies are summarised in Table 1.  

We aimed to define the lower 5th centile of the distribution among healthy individuals (i.e. a healthy 

reference population). Central to the design of the analysis was the need to establish a reference 

population from existing datasets (‘posteriori approach’) through exclusion of individuals with 

evidence of conditions or circumstances that may influence haemoglobin concentration.33 

Haemoglobin levels are reduced by acute, recurrent, chronic medical or surgical illness. 

Inflammation (for example due to autoimmune disease, infection, solid or haematologic cancer, 

heart failure and even obesity) suppresses erythropoiesis due to hepcidin-mediated functional 

iron deficiency and may also reduce red cell survival.8 Haemoglobin concentrations are reduced 

in renal impairment due to reduced erythropoietin production and functional iron deficiency. Many 

medications may reduce haemoglobin idiosyncratically or in a dose-dependent manner via 

reduced erythropoiesis, reduced red cell survival or blood loss. Anaemia can persist weeks or 

months beyond an acute illness19 and even beyond normalisation of acute inflammatory 

markers.34 Conversely, hypoxia (for example, smoking, respiratory or cardiac disease, obesity or 

sleep apnoea, or elevated altitude of residence)35 may increase haemoglobin concentrations.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 25, 2023. ; https://doi.org/10.1101/2023.05.22.23290129doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.22.23290129


   
 

 6 

Criteria for exclusion included report of chronic systemic medical illness; any recent illness; recent 

hospitalisation; use of medications; current smoking or excess alcohol consumption; obesity or 

low weight. Biomarker evidence of iron status and inflammation were required for all participants; 

biochemistry for other haematinic deficiencies and renal or hepatic impairment were exclusion 

criteria where possible. Where data were available, we excluded individuals living at elevations 

above 750m. Although exclusion criteria were standardised, available data and its coding varied 

between studies. We sought to ensure ethnic diversity but recognised that population field surveys 

in impoverished settings may contain a high burden of unreported, undetected or recently 

resolved inflammation even if acute biomarkers of inflammation had normalised, preventing 

exclusion of individuals with recent illness that may have lowered haemoglobin concentration.36 

Haemoglobin measurements were on venous blood using an automated analyser or high-quality 

point-of-care device (see Table 1). Detailed inclusion and exclusion of individuals from each 

dataset to obtain the reference sample are shown in Supplemental Material Sections 2.1-2.8. 

 

Statistical methods 

Lower 2.5th and 5th centiles were estimated using the methodology described below and detailed 

in Supplemental Material Section 2.9. The Clinical & Laboratory Standards Institute recommends 

two-sided 90% confidence intervals be calculated for each reference limit.37 Outliers were 

identified using Tukey’s method.38 All analyses were performed with and without outliers, and 

presented without outliers. We estimated both discrete thresholds (based on conventionally 

applied age categories) and continuous thresholds (based on the participant's age [and sex if 

applicable] within age categories).  

 

Discrete thresholds 
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The parametric theoretical centile of a Gaussian distribution, with corresponding 90% confidence 

interval, was used to estimate the  centile.39,40 For the national population health surveys National 

Health and Nutrition Examination Survey (NHANES), Health Survey for England (HSE), China 

Health and Nutrition Survey (CHNS), and Encuesta Nacional de Salud y Nutrición (ENSANUT) 

both survey-weighted and unweighted (sensitivity) centile estimates were calculated. Survey-

weighted centile estimates were calculated using survey-weighted quantile regression. The 

implementation of survey-weighted quantile regression proceeded as described in “Continuous 

thresholds” (below), except the survey-weighted quantile regression model only included a single 

intercept term.  Standard errors for the intercept term were derived from samples generated using 

Canty and Davidson’s bootstrap41,42  and two-sided 90% confidence intervals derived assuming 

a normal approximation.43 Unweighted centile estimates were calculated using the parametric 

theoretical centile described earlier. Centile estimates were pooled across all data sources using 

fixed effect and random effects (sensitivity) meta-analyses and presented in forest plots.  

 

Continuous Thresholds 

We used the Hoq44 method to estimate age-specific (and by sex, if applicable) continuous 

haemoglobin thresholds within each age-category by combining all relevant data sets, except for 

National Health Survey (NHS) and National Nutrition and Physical Activity Survey (NNPAS) due 

to Australian Bureau of Statistics requirements. This involved identifying the best fitting 

multivariable fractional polynomial (MFP) model for the mean values of haemoglobin using 

Royston’s method45 followed by a likelihood ratio test for an interaction between sex and the 

fractional polynomial representation of age. An age-by-sex interaction term was included in the 

model if they were statistically significant at the nominal significance level of p<0.05. Unweighted 

quantile regression was then used. Age-dependent haemoglobin predictions were obtained from 

the quantile regression model and two-sided 90% bootstrap percentile confidence intervals 

generated, based on 1000 bootstrap samples. Results were presented in plots to indicate how 
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predicted percentiles change with age (and by sex, if applicable), superimposed onto a scatter 

plot of haemoglobin versus age within each age-category. No continuous thresholds were 

obtained for pregnant women.       

 

Genetic analyses 

We accessed three large-scale, multi-ancestry GWAS summary statistics associated with 

haemoglobin concentration trait (Chen 202046; Wheeler 202247; Genes & Health (G&H) Study48). 

Chen and G&H analysed single nucleotide polymorphisms (SNPs), whilst Wheeler considered 

structural variations (SVs). In each study, individuals were classified as being genetically similar 

to one of the five “super-populations” defined as part of the 1000 Genomes study: European 

(EUR), East Asian (EAS), African (AFR), Hispanic/Latino, and South Asian (SAS), allowing for 

assessment of the effects of haemoglobin-associated variants on haemoglobin concentrations 

across ancestry groups. Details are given in Supplemental Table 6.1. 

 

Population-specific effect size and allele frequencies were extracted for all variants significantly 

associated with haemoglobin, in one or more ancestral population. To account for linkage 

disequilibrium (LD), we sought to select one representative SNP per genetic region for our 

summaries. 

 

Chen reported independent variants associated with haemoglobin concentrations defined using 

iterative conditional analyses approach, so we extracted their predefined lists of independent 

associated SNPs. For the Genes & Health study results, we performed LD clumping with an r2<0.1 

and a clumping window size of 500 kb to identify independent signals. We examined the overlap 

of independent signals from the G&H study and Chen analyses, with signals defined as 

overlapping where the identified representative SNPs from each study were in linkage 
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disequilibrium, with r2>0.1. Where signals were overlapping, we selected the top SNP defined in 

Chen as the representative SNP for that signal. 

Both utilised GWAS applied rank-based inverse rank normal transformation (IRNT) to the 

haemoglobin concentration measurements, prior to association with genetic variants. Effect sizes 

stated in the text are as reported in terms of the IRNT trait. To provide a better clinical 

interpretation of the reported effect size estimates, on the plots we also include a scale giving 

approximate effects in terms of units of haemoglobin measurement (in g/L). We used the UK 

Biobank (UKBB) population-based cohort (Application Number: 36610; Data-Field 30020) for 

these approximations by multiplying the IRNT effect size by the standard deviation of 

haemoglobin concentration in the UKBB cohort.  

We also considered structural variants identified in Wheeler.47 We extracted ancestry specific 

frequencies for the identified SVs, but effect estimates were only available from a combined 

ancestry analysis. This study performed LD and conditional analyses for trait-associated SVs to 

previous reported GWAS variants to determine whether these SVs were being tagged by the 

GWAS SNPs. 

We accessed gene-based summary statistics from the AstraZeneca PheWAS Portal.49 Gene-

phenotype associations were tested with multiple collapsing models.49 We extracted gene 

associations of haemoglobin concentrations using the collapsing model Ptv5pcnt (defined as 

protein-truncating variants; PTVs, with MAF ≤ 5% both within the UKBB cohort and gnomAD). A 

gene with a p-value less than a Bonferroni corrected threshold of 0.05 divided by the 18,762 

genes49 tested (P < 2.665 × 10−6) was considered significant. For significant genes, we further 

restricted to those identified as clinically relevant causes of rare anaemia from the Genomics 

England PanelApp 'Green' gene list (Version 3.1)50 and investigated the frequency distributions 
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of predicted loss-of-function (pLoF) variants in different populations of gnomAD.51,52 For each 

gene, we also estimated a cumulative frequency of pLoF variants, within each population, as the 

sum of alternate allele count for each variant, divided by the mean number of genotypes available 

across all variants in the gene. 

 

Software 

Reference samples were derived using Stata version 16.153 , R version 4.1.1.54 (Generation R), 

or Stata version 17.1.55 (NHS and NNPAS). 54 Estimation of haemoglobin thresholds was 

performed using R version 4.2.3,54 R version 4.1.1.54 (Generation R), or Stata version 17.1.55 

(NHS and NNPAS) with R packages detailed in Supplemental Material Section 2.9.6. Genetic 

analyses was performed in R version 4.1.3.54 using R packages tidyverse (version 1.3.2), 

data.table (version 1.14.2), ieugwasr (version 0.1.5), ggplot2 (version 3.4.1), ggrepel (version 

0.9.1), UpSetR (version 1.4.0),56 and ComplexHeatmap (version 2.13.1).57 
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Results 

We separately analysed thresholds for adult men, adult women, children aged 6 months to 59 

months (further sub-categorised as 6-23 months and 24-59 months), 5-11 years, adolescent 

males and females (12-17 years), and pregnant women (by trimester). For each survey 

demographic characteristics (including age, self-reported ancestry, and haemoglobin, iron status, 

inflammation) for the overall (non-missing haemoglobin, ferritin, and C-Reactive Protein [CRP] 

value) and reference (healthy) sample are shown in Supplemental Tables 3.1.1-3.8.3.  Reasons 

for exclusion from the reference sample are provided in each of Figures 2-5, and details are 

provided in Supplemental Tables 4.1.1-4.6.3. Pooled analyses for the 5th centile for haemoglobin 

concentration in healthy individuals is presented in Figures 1-4, while results for the 2.5th centile 

are available in Supplemental Tables 5.1-5.3.   

Continuous thresholds across the life course 

Continuous thresholds in males and females based on all available datasets are summarised in 

Extended Figure 1, indicating periods of change and stability in haemoglobin across the life 

course.  

Adult women and men 

Figure 1 presents estimates of haemoglobin threshold to define anaemia in adult men and women. 

The data was largely derived from multi-ethnic populations (comprising individuals who self-

identified as White, Black, and Asian) across the United States (US), England, and Australia and 

from China (Supplemental Tables 3.2.1-3.2.14). Reasons for exclusion of individuals from each 

dataset are summarised in Figures 2A and 2B and detailed in Supplemental Tables 4.1.1-4.1.14. 

Continuous analyses of the data indicates that in adults between 18 and 65 years of age, the 5th 

centile haemoglobin concentration of the reference population is higher in males than non-

pregnant females (Figure 2C). Pooled analyses indicates that the 5th centile for haemoglobin 
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concentrations in healthy adult men is 134.9g/L [90% Confidence Interval 134.2, 135.6] (Figure 

2D). In adult non-pregnant women, the 5th centile is 119.7g/L [119.1, 120.3] (Figure 2E). 

Sensitivity analyses were performed where the ferritin threshold to indicate iron deficiency is 

raised from 15ug/L to 45ug/L and 100ug/L; this indicates the haemoglobin 5th centile of ~120g/L 

in women is robust and remains lower than in men (Supplementary Figures 5.4-5.5).  

 

Children 

Figure 2 summarises estimates of haemoglobin thresholds in children 6 to 59 months of age. Data 

were derived from multi-ethnic populations across Canada,58 the US, Ecuador59, and Bangladesh 

(Supplemental Tables 3.3.1-3.4.3). Reasons for exclusion from each dataset are summarised in 

Figure 2A and detailed in Supplemental Tables 4.2.1-4.3.3. Continuous analyses of the data 

indicates that thresholds are similar in males and females and hence that sex-specific thresholds 

are not necessary in this age group. Continuous analyses also indicate an increase in thresholds 

over the first 5 years of life but especially over the first two years (Figure 2B). Discrete thresholds 

were therefore determined in children 6-23 months of age and 24-59 months of age. Pooled 

analysis indicates the 5th centile for haemoglobin concentrations in children 6-23 months is 

104.4g/L [103.5, 105.3] (Figure 2C), and in children 24-59 months is 110.2g/L [109.5, 110.9] 

(Figure 2D). Sensitivity analyses were performed where the ferritin threshold to indicate iron 

deficiency was raised, the CRP threshold to indicate inflammation was lowered, and where only 

children with a mean cell volume (MCV) above 73 fL (6-23 months) or above 75 fL (24-59 months) 

were included. These sensitivity analyses indicate the 5th centile estimate is robust to these 

parameters, as well as to changes in the analytic model (Supplementary Figures 5.6-5.11). 

 

Figure 3 summarises estimates of haemoglobin thresholds in children 5-11 years of age. Data 

were derived from multi-ethnic populations across Canada, the US, and China (supplementary 

Table 3.5.1-3.5.3). Reasons for exclusion of individuals from each dataset are summarised in 
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Figure 3A and detailed in Supplemental Table 4.4.1-4.4.3. Continuous analyses of the data 

indicates that thresholds are similar in males and females and hence that sex-specific thresholds 

are not necessary in this age group (Figure 3B). Pooled analyses indicated the 5th centile for 

haemoglobin concentrations in this group is about 114.1g/L [113.2, 115.0] (Figure 3C). Sensitivity 

analyses indicated these thresholds were robust to changes in assumptions and the analytic 

model (Supplementary Figures 5.12-5.14).   

 

Figure 4 summarises estimates of haemoglobin thresholds in children 12-17 years of age. Data 

were derived from multi-ethnic populations across Canada, the US, Australia, and China 

(Supplemental Tables 3.7.1-3.7.9). Reasons for exclusion of individuals from each dataset are 

summarised in Figure 4A and detailed in Supplemental Table 4.5.1-4.5.11. Continuous analyses 

show that thresholds diverge between males and females over this period (Figure 4B), indicating 

that sex-specific thresholds are necessary in this age group. Pooled analyses indicated the 5th 

centile for haemoglobin concentrations in this group is 128.2 g/L [126.4, 130.0] in adolescent 

males (Figure 4C) and 122.2g/L [121.3, 123.1] in adolescent females (Figure 4D). Sensitivity 

analyses indicated these thresholds were robust to changes in assumptions and the analytic 

model (Supplementary Figure 5.15-5.20).   

 

Pregnancy 

We were able to access data from only two studies where sufficient clinical information, iron 

biochemistry and inflammatory biomarkers and haemoglobin concentrations had been measured 

during pregnancy (NHANES, Generation R60). Iron deficiency, inflammation and medical 

complications were common in these cohorts. Insufficient data was available from NHANES 

datasets to proceed with analyses. Limited data from Generation R indicated that the 5th centile 

for haemoglobin thresholds in healthy women was 110.3g/L [109.5, 111.0] in the first trimester, 

and 105.9g/L [104.0, 107.7] in the second trimester, with insufficient data available for analysis in 
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the third trimester. Participant characteristics are summarised in (Supplementary Table 3.8.1-

3.8.3). Exclusions from this dataset are shown in Supplementary Table 4.6.1-4.6.3. The 

thresholds were robust to changes in assumptions around definition of iron deficiency and 

inflammation (Supplementary Figure 5.21).    

 

Ancestry-specific genetic associations with variation in haemoglobin concentration  

We investigated whether common genetic variation may explain different haemoglobin 

concentrations among different ancestry groups using summary statistics from three large-scale, 

multi-ancestry GWAS of haemoglobin concentrations. We summarised the genetic variants 

(SNPs and SVs) affecting haemoglobin concentrations and the distribution of effect sizes across 

different ancestries. We sought to identify whether there are any genetic variants (SNPs and SVs) 

with large effects that contribute substantially to overall variance in haemoglobin concentration in 

particular ancestral populations. 

 

We collated the SNP association results from Chen and Genes & Health. We found 402, 21, 2, 2, 

3 independent genome-wide significant (P<5×10−9) SNPs in the EUR, EAS, AFR, SAS (Chen et 

al), and SAS Genes & Health groups, respectively (Supplemental Figure 6.1). The larger sample 

size of EUR and multi-ancestry analyses leads to a higher proportion of loci significant only in 

EUR and the multi-ancestry analyses. Investigation of the distribution of minor allele frequency 

(MAF, frequency of the less common allele in the given population) and effect sizes demonstrates 

an inverse relationship between MAF and effect size (Figure 5), as is commonly seen in complex 

genetic traits. No ancestries appear to have any common SNPs (MAF > 0.05) with large effect 

size, except for rs13331259 (a FAM234A intronic variant) which shows a larger effect size (P=3.32 

× 10−41, IRNT effect size = -0.2495, approximately -3.10 g/L per allele) and has a MAF of 0.11 in 

the AFR population. This variant is in LD (r2=0.48 in AFR) with rs76462751 (a HBA1 downstream 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 25, 2023. ; https://doi.org/10.1101/2023.05.22.23290129doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.22.23290129


15 

variant). This variant was very rare in the EUR and multi-ancestry analyses, with MAFs of 0.0001 

and 0.0038, respectively. 

Across the two analyses of SAS individuals, three SNPs representing independent signals were 

identified; of these, two were specific to that ancestry and notably did not reach genome-wide 

significance in the non-SAS GWAS, despite larger sample sizes. These were rs529302116 (an 

OR52E3P and OR52J1P intergenic variant on Chr11) and rs563555492 (a PIEZO1 missense 

variant) (Supplemental Figure 6.2). rs529302116 is in strong LD (r2=0.83) with rs33915217 (a 

HBB intronic variant) in the SAS population. This variant occurs more commonly in populations 

of South Asian ancestry and is one of the more prominent variants observed in patients with β-

thalassaemia61. 

In addition to the association results of SNPs, we also summarised the SVs association results of 

Wheeler et al.62 (Supplemental Figure 6.3). There were two SVs chr16:172001-177200_DEL 

(HBA1, HBA2) and chr22:37067818-37067888_DUP (TMPRSS6) at genome-wide significance 

(P< 5×10−8). Of these, chr22:37067818-37067888_DUP (TMPRSS6) is in LD (r2=0.77) with 

rs5756504 (a TMPRSS6 intronic variant), that has previously been identified through GWAS. The 

second SV, chr16:172001-177200_DEL (HBA1, HBA2) occurred at a high frequency in the AFR 

ancestry cohort (MAF=0.176) and is located ~80kb away from the SNP GWAS signal rs13331259 

that also showed higher MAF in the AFR ancestry. Conditional analyses found the SNP and SV 

signals to be independent however, suggesting there may be multiple variants in this region 

influencing haemoglobin concentrations that occur at higher frequencies in African populations, 

potentially due to positive selection. 

Single-variant-based GWAS is typically focused on the identification of common variants 

(MAF>0.05) but is underpowered for low-frequency and rare variants due to small sample sizes 
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and low minor allele frequencies. However, these less-common variants could explain additional 

disease risk or trait variability. To address these limitations, gene-based collapsing analysis of 

multiple variants in a defined genetic region can identify genes in which low-frequency and rare 

variants are, in aggregate, associated with a phenotype. To evaluate this, we accessed the 

AstraZeneca PheWAS Portal49 which contains gene–phenotype associations calculated from 

exome-sequenced UK Biobank participants of European ancestry. From the gene-based results, 

we identified 13 genes associated with haemoglobin concentrations, with P<2.665×10−6, of which 

five (HBB, KLF1, PIEZO1, SLC4A1, TMPRSS6) were considered clinically relevant causes of rare 

anaemia via the Genomics England PanelApp 'Green' gene list50 (Supplemental Figure 6.4). Most 

significant genes show relatively small effect sizes, except for HBB which was strongly associated 

with lower haemoglobin concentrations (P = 2.31 × 10−92, IRNT effect size=-1.8941, approximately  

-23.51 g/L per allele). Across these five clinically relevant rare anaemia genes, we extracted allele 

frequencies for all pLoF variants from gnomAD and estimated cumulative frequencies of pLoF 

variants for each gene. The pLoF variants in these genes occurred at varying frequencies in 

different populations (Supplemental Figure 6.5). For example, HBB has a higher prevalence in 

individuals of EAS, SAS, and Middle Eastern ancestries; however, the cumulative pLoF variants 

frequency is lower than 0.006, and therefore these variants, even collectively, may be considered 

rare and unlikely to influence the 5th centile of haemoglobin concentration. Rare pLoF variants in 

TMPRSS6 have the highest prevalence in African/African American populations, with a 

cumulative pLoF variant frequency of around 0.03. The gene-based association with TMPRSS6 

(in Europeans), showed a more modest effect (P=2.41 × 10-7, IRNT effect size=-0.1419, 

approximately -1.76 g/L per allele). 
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Discussion 

We have estimated the 5th centiles of haemoglobin concentration in healthy young and older 

children, adolescents, and adults, which can be used to define anaemia across the lifecycle. 

These analyses largely support continued use of existing WHO haemoglobin thresholds to define 

anaemia with the exception of a reduction in threshold from 110g/L to 105g/L in children 6-23 

months of age, reduction in the second trimester of pregnancy to 105g/L, and perhaps an increase 

in men from 130g/L to 135g/L. Analyses of genetic associations with haemoglobin concentration 

across different ancestries shows no evidence of the presence of any non-clinically significant 

high-frequency variants, indicating that single global definitions for haemoglobin thresholds are 

appropriate.  

Our analyses indicate that statistical anaemia definitions differ between adult women and men, 

with the lower threshold in women robust to sensitivity analyses utilising higher ferritin thresholds 

(e.g. <45ug/L9) to indicate iron deficiency. Thresholds between sexes diverge in adolescence, 

when higher thresholds in males may relate to testosterone-induced erythropoiesis.63 Our data 

do not support proposals that statistical thresholds to define anaemia should be similar between 

adult men and women,27 although it is important to recognise that in some studies, similarly 

reduced haemoglobin concentrations in both sexes have been associated with adverse clinical 

outcomes.28 

Our analyses highlight the increase in haemoglobin concentration and hence threshold for 

anaemia that occurs across childhood, and especially children 6-23 months old. Thresholds 

based on arbitrary age bands are possibly crude and necessitate jarring changes in the definition 

of anaemia as children grow and develop. Our data indicate a single 6–59-month categorisation 

is too broad, and we propose at least dividing this population into two smaller subcategories (i.e. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 25, 2023. ; https://doi.org/10.1101/2023.05.22.23290129doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.22.23290129


   
 

 18 

6-23 months and 24-59 months). Thresholds in male and female children can be combined until 

adolescence.  

 

Analyses of population surveys in India64 and field surveys of biochemically iron-replete, 

biochemically non-inflamed individuals across several low and middle-income countries have 

reported substantial heterogeneity of the 5th centile of haemoglobin thresholds between countries 

in women and preschool children.36 Explanations for these heterogenous thresholds are 

uncertain, but may relate to undetected current or recent inflammatory disease. For example, 

asymptomatic submicroscopic Plasmodium parasitaemia is highly prevalent in sub-Saharan 

African children,65,66 while in India the incidence of acute respiratory infections in children under 3 

years is 2766 per 1000 child years,67 and about 22% of Bangladeshi infants receive some form 

of health care due to illness (usually fever, vomiting or diarrhoea) over a three month period.68  

 

We found evidence for heterogeneity of both common and rare genetic effects on haemoglobin 

across different ancestries, including two variants proximal to the alpha-thalassaemia genes 

(HBA1/ HBA2) which show larger effect sizes than might be expected given their frequency within 

individuals of African ancestry. These variants are of clinical importance and should be detectable 

by a diagnosis of anaemia. We also examined rare variants in genes that are recognised to be 

clinically relevant causes of inherited anaemia and found these to vary in frequency across 

populations. Although there was some evidence there may be a higher burden of rare variants 

with large effects in some ancestral populations, clinically relevant rare variants cumulatively 

occur at low frequencies, and thus are not likely to result in a significantly different distribution of 

haemoglobin in the overall population. Thus our study does not find it would be clinically safe or 

appropriate to adopt lower haemoglobin thresholds in populations or individuals of different 

ancestries. A further limitation of ancestry-specific thresholds is that clinical classification of 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 25, 2023. ; https://doi.org/10.1101/2023.05.22.23290129doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.22.23290129


19 

individuals into ancestral groups is imperfect, as there is substantial genetic diversity within the 

“super populations”, and further, such approaches could not account for admixed individuals. 

Our findings were robust to variations in criteria for iron deficiency and inflammation, to analyses 

models, and to secular health trends. Our study has several limitations. We estimated statistical 

thresholds based on the 5th centile of the distribution of haemoglobin values for a ‘healthy’ 

reference population, rather than ‘functional’ thresholds that indicate risk of symptoms or 

underlying disease. Ideally, a prospective multicentre study could clinically exclude individuals at 

risk of reduced haemoglobin concentration to define the reference group.69,70 We sought to 

overcome this limitation by only utilising datasets where clinical data were available and applying 

conservative exclusion criteria. Unfortunately, this approach precluded use of cross-sectional 

datasets from low-income settings where clinical information was limited and undetected 

subclinical or recurrent clinical illnesses causing inflammation may have suppressed haemoglobin 

levels, which could lead to under-estimation of thresholds. We were able to utilise datasets from 

North and South America, Europe, Australia, South and East Asia, but not sub-Saharan Africa. 

However, the reference samples generally comprised multi-ethnic populations (including African 

ancestries). Likewise, as is a common constraint with genetic analyses, the largest datasets were 

representative of European ancestry populations, although we specifically included studies 

recruiting substantial numbers from South and East Asian and African ancestries. A further 

limitation of the genetic summaries we have used is that they do not capture the full extent of 

genetic variation, for example, variants on non-autosomal chromosomes (X, Y, and mitochondria). 

Analysis of thresholds in those aged less than 6 months, above 65 years and pregnancy was 

limited, due to insufficient sample size or datasets which simultaneously recorded haemoglobin, 

iron biochemistry and clinical parameters.  
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This set of updated haemoglobin thresholds to define anaemia that can be applied by WHO, 

clinicians, diagnostic laboratories, and public health practitioners. 
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Table 1: Summary of data used to estimate 5th centiles of haemoglobin concentration 

Data Source  
 

Design Location Study 
Period 

Population 
Included 

Age 
Groups 
y=years 
m=months 

Sample 
Size* 

Final 
Reference 
Population 

Blood 
Sample 

Haemoglobin 
Testing Method 

AHS71 
  

National 
population  
health survey 

Australia 2011-2012 Adults 
Children  

18-65y 
12-17y 

N=7,262  
N=734 

N=1,268 
N=380 

Non-fasting 
venous 

Sysmex XE-2100 

BRISC68 Randomised 
controlled trial 

Bangladesh 
(Rupganj 
upazila) 

2017-2020 Children 11m 
  

N=1,365§ N=255 Non-fasting 
venous 

Hemocue 301+ 

CHNS72 National 
population  
health survey 

China# 2009 Adults 
Children  

18-65y  
5-17y 

N=7,172 
N=814 

N=796 
N=475 

Non-fasting 
venous 

Sysmex XE-2100 

ENSANUT73 National 
population  
health survey 

Ecuador# 2011-2013 Children  6-59m  N=2,047 N=275 Non-fasting 
venous 

Sysmex XE-2100 

Generation R60 Prospective 
cohort study 

The Netherlands 2002-2006 Pregnant women 18-45y N=7,487 N=887 Non-fasting 
venous 

Automated 
Laboratory 
Analyser^ 

HSE74 National 
population  
health survey 

England 1998  
2006  
2009 

Adults  18-65y N=15,315 N=2,290 Non-fasting 
venous 

Coulter STKS, 
Abbott CD 4000 

NHANES75 National 
population  
health survey 

United States 1999-2000  
2001-2002  
2003-2004  
2005-2006  
2007-2008  
2009-2010  
2015-2016  
2017-2018  

Adults 
Pregnant women 
Children 

18-65y 
20-44y 
6m-17y 

N=19,346 
N=975 
N=12,883 

N=1,663 
N=100 
N=4524 

Non-fasting 
venous 

Beckman-Coulter 
analysers 

TARGet Kids!58 Open longitudinal 
cohort study of 
healthy children 

Canada 
(Toronto) 

2010-2019 Children 
  

6m-11y N=4,700Ϯ N=1,572 Non-fasting 
venous 

Sysmex XN-9000 

AHS = Australian Health Survey (consisting of National Health Survey [NHS] and National Nutrition and Physical Activity Survey [NNPAS]); BRISC = Benefits and 
Risks of Iron intervention in Children (Australian New Zealand Clinical Trials Registry number,  ACTRN12617000660381); CHNS = China Health and Nutrition 
Survey; ENSANUT = Encuesta Nacional de Salud y Nutrición; Generation R = Generation R (Dutch Trial Register identifier: NL6484); HSE = Health Survey for 
England; NHANES = National Health and Nutrition Examination Survey; TARGet Kids! = The Applied Research Group for Kids (ClinicalTrials.gov Identifier: 
NCT01869530). 
All data sources included male and female participants (apart from Generation R pregnant women only). 
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*Defined as those within the age-range of the populations (e.g. 18-65 years) and with non-missing haemoglobin, ferritin, and CRP levels except for Generation R
defined as those with non-missing haemoglobin. ϮNumber of unique participants. §in addition, restricted to those who received an iron intervention. #Exclusions
applied to those who resided above 750m altitude (ENSANUT) or residents of province (Guizhou) due to altitude above750 meters (CHNS). ^Specific analyser
unavailable; automated laboratory haematology instrument
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Figure 1: Derivation of haemoglobin thresholds in 18–65-year-old males and females 

Figure 1 Legend: A) Exclusions from overall dataset in males. B) Exclusions from overall dataset 

in non-pregnant females. C) Continuous thresholds in 18–65-year-old adult males (red) and non-

pregnant females (blue). D) Individual study and pooled (fixed effect) estimates of the 5th centile 

of the haemoglobin distribution in the healthy reference population in males. E) Individual study 

and pooled (fixed effect) estimates of the 5th centile of the haemoglobin distribution in the healthy 

reference population in non-pregnant females.  
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Figure 2: Derivation of haemoglobin thresholds in 6–59-month-old children 

Figure 2 Legend:  Exclusions from overall dataset in children 6-59 months, sub-categorised into 

children A) 6-23 months and children B) 24-59 months. C) Continuous thresholds in 6–59-month-

old male (red) and female (blue) children. D) Individual study and pooled (fixed effect) estimates 

of the 5th centile of the haemoglobin distribution in the healthy reference population in children 6-

23 months. E) Individual study and pooled (fixed effect) estimates of the 5th centile of the 

haemoglobin distribution in the healthy reference population in children 24-59 months.  
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Figure 3: Derivation of haemoglobin thresholds in 5–11-year-old children 

Figure 3 Legend: A) Exclusions from overall dataset in children 5-11 years. B) Continuous 

thresholds in 5–11-year-old male (red) and female (blue) children. C) Individual study and pooled 

(fixed effect) estimates of the 5th centile of the haemoglobin distribution in the healthy reference 

population in children 5-11 years of age.  
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Figure 4: Derivation of haemoglobin thresholds in 12–17-year-old males and females 

Figure 4 Legend: Exclusions from overall dataset in children 12-17 years, sub-categorised into A) 

females and B) males. C) Continuous thresholds in 12–17-year-old male (red) and female (blue) 

children. D) Individual study and pooled (fixed effect) estimates of the 5th centile of the 

haemoglobin distribution in the healthy reference population in 12–17-year-old males. E) 

Individual study and pooled (fixed effect) estimates of the 5th centile of the haemoglobin 

distribution in the healthy reference population in 12–17-year-old females.
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Figure 5: Scatter plot of minor allele frequency (MAF) and effect size. 

Figure 5 legend: MAF (x-axis on a log10 scale) and standardised effect size (y-axis) of the minor alleles of the 607 variants (both 

ancestry-specific and cross-ancestry loci) in the GWAS summary statistics. Included in this figure are the 607 haemoglobin variants 

with a P < 5 × 10−9 from a single or multi-ancestry analysis. Genome-wide significant variants for the stated ancestry are indicated in 

red. Variants that were genome-wide significant in the stated ancestry, and in at least one other ancestry are indicated in blue. Variants 
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that did not reach genome-wide significance in the stated ancestry are indicated in grey. To convert the standardised effect size to an 

approximate haemoglobin unit (g/L), we regarded standard deviation per minor allele as  12.41 units (g/L), which was estimated from 

the UKBB population-based cohort. 
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Extended Figure 1: Continuous 5th percentile thresholds across the life course 

Extended Figure 1 Legend: summary of continuous 5th percentile in males (red) and females (blue) across the life course (6 months 

to 65 years).  
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