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Abstract

Breath-holding (BH) tasks during functional magnetic resonance imaging (fMRI) acquisitions are gaining

popularity for non-invasive mapping of carbon-dioxide (CO2) driven cerebrovascular reactivity (CVR),

which is a valuable clinical marker of vascular function. However, compliance to BH tasks is often unclear,

and the ability to record end-tidal CO2 often limited, rendering the optimal analysis of BH fMRI data a

challenge. In this work, we demonstrate an adaptive data-driven approach for estimating CVR from BH

fMRI data that minimizes errors due to subject non-compliance and regional CVR time delay variability.

Building on previous work, we propose a frequency-domain-based approach for CVR estimation without

the need for end-tidal CO2 (PETCO2) recordings. CVR amplitude is estimated in units of %∆BOLD directly

from the data-driven BH frequency. Serious deviations from the designed task paradigm were suppressed

and thus did not bias the estimated CVR values. We demonstrate our method in detecting regional CVR

amplitude and time-lag differences in a group of 56 individuals, consisting of healthy (CTL), hypertensive

(HT) and diabetic-hypertensive (DM+HT) groups of similar ages and sex ratios. The CVR amplitude was

lowest in HT+DM, and HT had a lower CVR amplitude than CTL regionally but the voxelwise comparison

did not yield statistical significance. Notably, we demonstrate that the voxelwise CVR time delay

estimated in Fourier domain is a more sensitive marker of vascular dysfunction than CVR amplitude.

While HT+DM seems to confer longer CVR delays, HT seems to confer shorter delays than CTL. These

are the first MRI-based observations of CVR time delay differences between diabetic-hypertensive

patients and healthy controls. These results demonstrate the feasibility of extracting CVR amplitude and

CVR time delay using BH challenges without PETCO2 recordings, and the unique clinical value of CVR

time-delay information.
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1. Introduction

Cerebrovascular reactivity (CVR) is a useful metric to assess how well the vasculature dilates or

constricts in response to various stimuli. CVR is sensitive to various pathological conditions making it a

potential biomarker [Giordani et al., 2014; Iranmahboob et al., 2016; Ivankovic et al., 2013; Liu et al.,

2021; Petrica et al., 2007; Yazdani et al., 2020]. CVR also exhibits spatiotemporal variations even in the

healthy brain due to regional differences in the cerebral vasculature [Bright et al., 2009; Lipp et al., 2015;

Thomas et al., 2013]. Measurement of changes in CBF in response to a vasoactive stimulus is used to

estimate CVR with the help of different neuroimaging methods such as transcranial Doppler ultrasound

(TCD) [Kleiser and Widder, 1992], single-photon emission computed tomography (SPECT), and positron

emission tomography (PET) [Ogasawara et al., 2003]. However, functional magnetic resonance imaging

(fMRI) has been widely adopted for CVR measurements due to its ability to provide non-invasive

whole-brain CVR estimation at an acceptable spatial and temporal resolution [Pinto et al., 2020; Urback et

al., 2017]. The BOLD contrast is the most common for use in CVR mapping using MRI as it depends on

the relative CBF changes in response to a vasoactive stimulus [Chen and Pike, 2010; Hauser et al., 2019;

Mandell et al., 2008]. The advantages of direct measurement of CBF using non-invasive arterial spin

labeling (ASL) perfusion imaging have also been demonstrated [Halani et al., 2015; Zhao et al., 2021], but

the use of ASL is less frequent due to technical and availability constraints [Alsop et al., 2015; Heijtel et

al., 2014].

Various vascular stimuli have been used to enable CVR mapping. The inhalation of air containing

elevated CO2 content has been used frequently in CVR mapping [Liu et al., 2017b; Mark et al., 2010;

Wise et al., 2007]. However, inhalation-based methods typically require complex experimental setups

including breathing masks and are often not well tolerated by vulnerable groups such as children and the

elderly [Spano et al., 2013]. Breath-hold (BH) tasks involve minimal setup and have been suggested as a

robust alternative to gas challenges [Bright and Murphy, 2013; Lipp et al., 2015; Pinto et al., 2020; Urback

et al., 2017]. BH tasks have been well tolerated by less cooperative subjects of vulnerable groups

[Dlamini et al., 2018; Raut et al., 2016] and have been successfully applied in clinical studies [Haight et

al., 2015; Iranmahboob et al., 2016; Raut et al., 2016; Tchistiakova et al., 2014]. A typical BH task follows

a protocol consisting of a block design with alternating periods of normal breathing and breath holding for

a simple reproducible voluntary breathing modulation task [Lipp et al., 2015; Peng et al., 2020; Pinto et

al., 2016]. Nonetheless, well-known caveats of BH methods include the greater need for participant

cooperation [Urback et al., 2017; Wu et al., 2015] and the unavailability of expired gas measurements

during the BH periods, especially as a given BH task pattern across multiple subjects do not necessarily

produce similar increases in CO2 partial pressure values in the blood [Urback et al., 2017] To help

address this cause of uncertainty, some studies have incorporated measurement of end-tidal carbon

dioxide partial pressure (PETCO2) using a mask or nasal cannula [Bright and Murphy, 2013; Pinto et al.,

2016; Sousa et al., 2014]. A short BH period of 6 s can result in hypercapnia [Abbott et al., 2005] while
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the spatial extent of the significant BOLD response reaches a plateau at a BH length of around 20 s [Liu

et al., 2002]. Many studies have reported a BH length of 15 s for successful estimation of CVR from

BOLD data [Chang et al., 2008; Geranmayeh et al., 2015; Lipp et al., 2015; Tchistiakova et al., 2014;

Urback et al., 2018]. With careful analysis, the performances of BH can be comparable to those involving

gas manipulation techniques [Kannurpatti and Biswal, 2008; Liu et al., 2017a; Tancredi and Hoge, 2013;

Wu et al., 2015]. However, at the CVR estimation step, uncertainties in subject compliance can present

major data-analysis challenges, especially when PETCO2 recordings are unavailable.

Model-driven approaches such as the general linear model (GLM) have been employed to estimate CVR

from BOLD responses to a BH task, whereby the BH paradigm is modelled as a boxcar [Biswal et al.,

2007; Kastrup et al., 1999] or ramp function convolved with a hemodynamic response function (HRF) to

approximate linear BOLD signal increases [Bright and Murphy, 2013]. Additional temporal derivatives of

the HRF are required to account for the longer delays in respiratory responses to appear in the BOLD

signal [Jahanian et al., 2017; Murphy et al., 2011]. The GLM model-driven approaches use a single fixed

time lag in HRF to fully describe the BOLD signal across the whole brain. However, different brain regions

exhibit different temporal CVR dynamics, both in healthy subjects and in patients [Chang et al., 2008;

Geranmayeh et al., 2015; Magon et al., 2009; Pinto et al., 2016; Stringer et al., 2021]. Previous studies

incorporating cross-correlations to estimate optimal time lags of the BOLD response have demonstrated

substantial response-time variations across the brain [Chang et al., 2008; Geranmayeh et al., 2015]. The

global BOLD time series has also been used in some studies as a reference to estimate the CVR time

delay, ignoring the regional variations [Geranmayeh et al., 2015]. Iterative GLM fitting with shifted

regressors [Geranmayeh et al., 2015; Moia et al., 2021; Murphy et al., 2011; Niftrik et al., 2016; Pinto et

al., 2016] has also been successfully used in previous studies to estimate voxelwise CVR time delay.

However, it is evident that GLM methods work best when PETCO2 recordings are available as input,

allowing both inter-subject variations in BH compliance and in respiratory physiology to be accounted for

[Birn et al., 2008; Bright and Murphy, 2013; Lipp et al., 2015; Murphy et al., 2011]. Moreover, the

canonical hemodynamic response function is derived using the BOLD response to neuronal activity and

not CO2.

We propose a novel approach for estimating the amplitude and timing of the BH BOLD response without

modelling or correlation with other signals (e.g. PETCO2). Our approach makes use of the Fourier

representation of the spectrum of BOLD data, as it has been found that the BH CVR response can be

successfully approximated as a sinusoidal signal by assuming the BH task is approximately symmetrical

(equivalent BH and baseline periods), even if it is not [Lipp et al., 2015; Murphy et al., 2011]. This

sinusoidal approach was shown to outperform the use of an HRF-based regressor (the PETCO2 trace

convolved with the HRF [Niftrik et al., 2016]), prompting us to estimate CVR in the Fourier domain.

Indeed, in the Fourier-series-based regression approach by Pinto et al., BH designs that deviate further

3

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 26, 2023. ; https://doi.org/10.1101/2023.05.20.23290209doi: medRxiv preprint 

https://paperpile.com/c/IDmnMC/j93m
https://paperpile.com/c/IDmnMC/j93m
https://paperpile.com/c/IDmnMC/L62g+C8wE+iJv3+SBw1+QYn1
https://paperpile.com/c/IDmnMC/L62g+C8wE+iJv3+SBw1+QYn1
https://paperpile.com/c/IDmnMC/1AVb+0ZA1+TtUc+2OYd
https://paperpile.com/c/IDmnMC/1AVb+0ZA1+TtUc+2OYd
https://paperpile.com/c/IDmnMC/33Ax+0wem
https://paperpile.com/c/IDmnMC/33Ax+0wem
https://paperpile.com/c/IDmnMC/fD2K
https://paperpile.com/c/IDmnMC/Yhec+AeyB
https://paperpile.com/c/IDmnMC/QYn1+i31R+C8wE+GrbX+gqU5
https://paperpile.com/c/IDmnMC/QYn1+i31R+C8wE+GrbX+gqU5
https://paperpile.com/c/IDmnMC/QYn1+C8wE
https://paperpile.com/c/IDmnMC/C8wE
https://paperpile.com/c/IDmnMC/Yhec+GrbX+mP5R+C8wE+OaML
https://paperpile.com/c/IDmnMC/Yhec+GrbX+mP5R+C8wE+OaML
https://paperpile.com/c/IDmnMC/SBw1+fD2K+Yhec+LBMV
https://paperpile.com/c/IDmnMC/Yhec+SBw1
https://paperpile.com/c/IDmnMC/mP5R
https://doi.org/10.1101/2023.05.20.23290209


from symmetry can be addressed by adding higher harmonics to the Fourier series [Pinto et al., 2016]. On

the other hand, our data-driven Fourier-based approach does not require regressors but instead detects

and accounts for deviations from task designs directly from the BOLD fMRI data. In this study, we used a

typical BH task design similar to the studies mentioned earlier. We demonstrate our method by assessing

differences in CVR amplitude and time delay among patients with hypertension (HT),

hypertension-plus-type-2 diabetes (HT+DM), and age-matched controls (CTL).

2. Methods

2.1.Study participants

Older adults of ages 65-85 were recruited and placed in control (CTL), hypertension (HT), or

hypertension-plus-type-2 diabetes (HT+DM) groups on the basis of screening measures. Participants

were excluded from the study if they met any of the following criteria: (1) a score ≤ 31 on the Telephone

Interview for Cognitive Status – modified version [Welsh et al., 1993] in order to exclude participants with

possible dementia; (2) the use of insulin to treat DM; (3) the presence of DM complications, based on

self-report, including clinically significant gastroparesis, retinopathy, nephropathy, neuropathy, hepatic

disease, or a recent coronary heart disease event as determined by a physician; (4) other significant

medical or psychiatric disorders affecting cognitive function, such as stroke (self-report or evidence from

structural scans) and major depressive disorder; (5) current or recent use of central nervous

system-active medications, including those for the treatment of depression, sleep disorders, and migraine

headaches; (6) major inflammatory disorders, heart failure, and chronic lung disease; or (7) hormone

replacement therapy in female participants. The included participants were screened to ensure group

status as listed below:

● CTL: Participants had a mean systolic BP ≤ 140 mmHg, a mean diastolic BP ≤ 90 mmHg, no

history of antihypertensive medication use, and a fasting glucose level (FGL) ≤ 6.1 mmol/L.

● HT: Participants were using antihypertensive medication under physician prescription for a

minimum of two years, with current blood pressure within a normal or HT range and limited to

those who were using long-acting antihypertensive medications (e.g., ACEIs, angiotensin II

receptor blockers, diuretics) in order to capture the most commonly prescribed medications.

● HT+DM: Participants had a physician diagnosis of type 2 DM for a duration of at least two years,

were controlling their DM through diet or hypoglycemic medication alone, and were free of major

DM complications as defined in the exclusion criteria, in addition to the criteria for the HT.

All selected participants completed a brief medical questionnaire, which included questions about the use

and duration of all medications and the duration of HT and DM. Participants provided a fasting blood

sample for measurement of hematocrit, lipid profile (triacylglycerides [TG], total cholesterol [TC],

low-density lipoprotein [LDL], and high-density lipoprotein [HDL]), CRP, glucose, insulin, and HbA1c.

Blood pressure, weight, height, and waist circumference were also measured. These measurements were
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followed by a practice session of the breath hold task in an MRI simulator to ensure that the participant

was comfortable with the fMRI scanning protocol. Participants were asked to continue their usual diet,

medications, and activity level for the duration of their involvement in the study. Available data from 56

participants (CTL:21, HT: 23, and HT+DM: 12) were preprocessed as described in Section 2.3. Data from

seven participants (CTL:3, HT:3, and HT+DM:1) were removed from analysis due to excessive

head-motion artifacts larger than 1⁰ rotation and 1 mm translation as detected by FSL motion correction.

This study consisted of remaining data from 49 participants (CTL: 18, HT: 20, and HT+DM: 11) with mean

ages of 70.2 ± 3.3, 71.9 ± 4.7, and 71.7 ± 3.6 years, and male/female ratios of 1.25, 0.43 and 0.57,

respectively.

2.2.Data acquisition

Each participant followed a set of 6 repetitions of a 30 s resting and 2 s exhale followed by a 15 s BH

guided by visual clues (total duration, T = 47 s) during a dual-echo pCASL fMRI image acquisition session

on a Siemens Trio 3T system (T2*-weighted echo-planar imaging, FOV = 220 mm, acquisition matrix =

220 x 220, voxel size = 3.4 x 3.4 x 6.0 mm, bandwidth = 2790 Hz/Pixel, TE1/TE2/TR = 9.1/25/4000 ms,

flip angle = 90 degrees, slices = 16, averages = 1, concatenations = 1, scan duration = 5:24). The data

associated with the second TE were used to compute the BOLD time series. Respiratory bellows were

recorded using the scanner’s built-in belt. A T1 anatomical scan (FOV = 256 mm, acquisition matrix = 192

x 256, voxel size = 1.0 mm3, bandwidth = 200 Hz/Pixel, TI/TE/TR = 1100/2.63/2000 ms, flip angle = 9

degrees, slices = 160, averages = 1, concatenations = 1, scan duration = 6:26) was acquired for

anatomical reference and tissue segmentation.

2.3.Preprocessing

The dual-echo pCASL time series data were preprocessed using FSL [Jenkinson et al., 2012; Smith et

al., 2004] and AFNI [Cox, 1996; Cox and Hyde, 1997] tools. Slice timing correction using slicetimer in FSL

was applied to correct for sampling offsets inherent in slice-wise EPI acquisition sequences. The BOLD

data in the dual-echo pCASL time series were isolated from the full pCASL time series and separated into

odd and even time frames. Both of these time series were separately corrected for subject motion using

the mcflirt and registered into MNI space using flirt. AFNI’s 3dretroicor was used to generate BOLD data

that were corrected for noise associated with physiological motion (i.e., heartbeat, respiration).

Neighbouring control and tag frames were averaged in a sliding-window manner to produce 78 frames of

BOLD data, which were then high-pass filtered to remove low-frequency noise from the data with a 0.01

Hz cut-off frequency, resulting in the “preprocessed BOLD signal”.
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2.4.Data-driven CVR estimation

CVR estimation was performed on the preprocessed BOLD data using our robust data-driven pipeline

shown in Figure 1. The BOLD data was first normalized by the mean of the first 8 frames of the series

corresponding to the baseline before the first BH period. The time series data was then converted to

%∆BOLD by voxelwise demeaning. As described earlier, the identification of the BH frequency (BHF) can

be hampered by variations in task compliance as well as in participant physiology. Thus, the identification

of the BHF in our pipeline undergoes a two-step process to ensure flexibility and robustness. First, we

identified the BH task paradigm used in the study that can be considered as a repetitive signal of period 𝑇

= 47 s, corresponding to a fundamental BHF of (0.0213 Hz). The voxelwise BOLD signal was passed1
𝑇

through a bandpass filter of cut-off frequencies Hz,1
𝑇+0.33𝑇( ) ,  1

𝑇−0.33𝑇( )⎡⎣ ⎤⎦ = 0. 0158,  0. 0323[ ]

corresponding to T±T/3. The pipeline finds the BHF from the BOLD data spectrum within this frequency

range, such that the BHF can deviate slightly from the nominal frequency due to variations in subject

compliance with the task design, but is not allowed to deviate too far away from the expected task

frequency to ensure robustness against noise. Second, the pipeline finds the BHF corresponding to the

maximum amplitude of the Fourier spectrum of the BOLD signal at each cortical voxel. Lastly, for the grey

matter (GM) of each data set, a histogram is constructed using the voxel-wise BHF, and the BHF found at

the peak occurrence is chosen as the dominant BHF for that data set. This second step further constrains

the BHF to maximize inter-regional comparability, assuming that variations in respiratory physiology

contribute to inter-subject but not within-subject inter-regional CVR differences. That is, the dominant BHF

can vary between participants but not between brain regions.

When a reference signal is available, the voxelwise phase ( ) of the CVR at BHF relative to a referenceϕ
𝑠

signal at the same frequency can be used to compute a response lag for the CVR response. One such

reference is the respiratory belt recording, which was used in this study. The envelope of the respiratory

signal was extracted from the recording, which also allowed us to verify each subject's compliance with

the BH task. The phase ( ) of the de-meaned respiratory belt signal envelope Fourier spectrum at theϕ
𝑟

BHF was selected as the reference for CVR time delay, calculations as

CVR time delay =
ϕ

𝑠
−ϕ

𝑟( )
2π × 𝐵𝐻𝐹
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Figure 1. Signal processing pipeline. The normalized and demeaned %∆BOLD data were bandpass

filtered to retain signals around the targeted BH frequency (BHF). The dominant frequency of the filtered

signal in the cortex was selected as the BHF. The amplitude of the spectrum of each voxel the BHF was

selected as the CVR amplitude. The CVR response time of each voxel was calculated relative to the BH

task extracted at the BHF using the envelope of the respiratory belt signal.
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2.5.Statistical analysis

We also computed the Framingham Risk Score (FRS) [Wilson et al., 1998] and Diabetes Epidemiology:

Collaborative Analysis of Diagnostic Criteria in Europe (DECODE) scores [Balkau et al., 2004].

Differences in demographics and physiological measurements across groups, including the FRS and

DECODE metrics, were detected by ordinary one-way ANOVA corrected for multiple comparisons by

controlling the false discovery rate using the Benjamini-Hochberg procedure.

The CVR amplitude and time delay were compared voxelwise and region-wise across the three groups

(namely CTL, HT, and HT+DM). The GLM approach [Winkler et al., 2014] was used for the voxelwise

comparison followed by multiple comparisons correction via threshold-free cluster enhancement [Smith

and Nichols, 2009]. Brain parcellations generated by nonlinear spatial registration of T1-anatomical scan

to the default GCA atlas in FreeSurfer (Version 6.0.1, available at surfer.nmr.mgh.harvard.edu) were used

to calculate mean CVR amplitudes and mean CVR time delays in cortical regions in each group. The

mean regional CVR amplitudes were normally distributed in all three groups while the distributions of time

delays were not normal when tested using the D'Agostino-Pearson test [D’Agostino and Stephens, 1986]

for normality (see supplementary table S1). Two-way ANOVA with multiple comparisons was used to

compare the overall means of region-wise (ROI) CVR amplitude, corrected for multiple comparisons by

controlling the false discovery rate (Benjamini-Hochberg procedure) between groups. The statistically

significant differences detected by Friedman's test were corrected for multiple comparisons by controlling

the false discovery rate using the Benjamini-Hochberg procedure for whole group-wise comparison of

overall means of CVR time delay. Regional CVR amplitude and time delay were compared seperately in

each cortical region of interest (ROI) using the Kruskal-Wallis test corrected for multiple comparisons by

controlling the false discovery rate.

3. Results

Figure 2 summarizes the demographics and physiological measurements for participants in the three

groups. Participant age was not significantly different across the groups (Figure 2a). HT and HT+DM

groups did not exhibit significant differences in systolic BP (SBP) compared to CTL (Figure 2b). The
HT+DM group showed significantly higher HbA1C and lower LDL cholesterol values compared to the HT

and CTL groups (Figure 2c, d). The FRS and DECODE scores were both significantly lower in CTL

compared to HT and HT+DM, but only the DECODE score showed a significantly lower score for HT

compared to HT+DM (Figure 2e, f).
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Figure 2. Subject demographics. The mean (a) age, (b) systolic blood pressure, (c) HbA1c values, (d)

LDL cholesterol, (e) Framingham Risk Score (FRS), and (f) Diabetes Epidemiology: Collaborative

Analysis of Diagnostic Criteria in Europe (DECODE) score for each subject group. The statistically

significant differences were detected by ordinary one-way ANOVA corrected for multiple comparisons by

controlling the false discovery rate using the Benjamini-Hochberg procedure indicated by * (q < 0.05), **

(q < 0.01), *** (q < 0.001) and **** (q < 0.0001).

Shown in Figure 3 are sample signals from the intermediate steps of the signal processing pipeline for a

participant compliant (3a) and a participant non-compliant (3b) to the BH task design. Bandpass filtering

suppressed spurious signals outside the targeted BHF range, as in Figure 3a(ii) and 3b(ii). The

histograms of maximum amplitudes of the bandpass-filtered BOLD spectra in all cortical voxels are shown

in Figure 3a(i) and 3b(i) for sample subjects. The peaks of the histograms correspond to the dominant

CVR frequencies. In addition, the BOLD signal at the dominant frequency is well-modelled by the

sinusoidal approximation and closely follows the respiratory belt signal as shown in Figure 3a(v) and
3b(v), even when the subject performance on the BH task deviated from the task design.
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Figure 3. Samples outputs from intermediate signal-processing steps. Samples from the signal processing pipeline for a subject (a)

compliant and (b) non-compliant to BH task design. Each includes (i) the histogram of maximum amplitudes at all cortical voxels with

corresponding frequencies, (ii) the frequency spectrum of the pre-processed and band-pass filtered BOLD at a sample voxel in the cortex, (iii) the

respiratory belt signal with the smoothened envelope, (iv) respective frequency spectrum of the belt signal, and (v) bandpass filtered the BOLD

signal, and the estimated CVR response at the BHF at the sample voxel in the cortex.
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Figure 3 shows the recorded full respiratory-belt signal and the extracted BH pattern from the smoothed

envelope details with corresponding frequency spectrums for a participant who followed the BH task

paradigm (figures 3a(iii) and 3a(iv) respectively) and for a participant who was not compliant (figures
3b(iii) and 3b(iv) respectively). As indicated by dashed lines on respective frequency spectrums, the

proposed data-driven approach was able to correctly estimate the BHF in both cases avoiding peaks from

unexpected frequencies.

Figure 4. Mean CVR amplitude (%∆BOLD) for all subjects in each group. The grey matter (GM)

regions in the cortex have a higher CVR amplitude than the white-matter (WM) and other areas of the

brain. The HT+DM participants showed the lowest CVR amplitudes consistently throughout all brain

regions.
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Figure 4 shows the mean CVR amplitude maps in each group. GM regions in the cortex generally have a

higher CVR amplitude compared to other areas of the brain. The mean CVR amplitude in CTL was

significantly higher than both HT and HT+DM across cortical GM and higher in HT compared to HT+DM

(see supplementary figure S1a).

Figure 5. Mean CVR time delay (s) relative to the respiratory belt signal in each group. The GM

regions in the cortex have a shorter CVR time delay than the WM and other areas of the brain. The HT

group showed the lowest CVR time delay while HT+DM group showed the longest delay.

Figure 5 shows the mean CVR time delay maps in each group. GM regions in the cortex generally have a

shorter delay than in other areas of the brain. The mean CVR time delay in HT+DM was significantly
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longer than both CTL and HT across cortical GM and longer in CTL compared to HT (see supplementary

figure S1b).

Figure 6. Voxelwise comparisons of CVR amplitudes. The statistical testing on CVR amplitudes of

CTL > HT+DM showed significant voxels (p < 0.05) for permutation inference for the general linear model

after threshold-free cluster enhancement. The significance of differences in most voxels was reduced

when controlled for sex, the duration of previously detected hypercholesterolemia, or systolic blood

pressure. No statistical significance voxels were detected when controlling for LDL or HbA1c. Significant

differences in CVR amplitude were not detected between CTL and HT or between HT and HT+DM.

Figure 6 shows voxels that demonstrate statistically significant differences (p < 0.05) where CVR

amplitudes in CTL > HT+DM. Most CVR amplitude differences were reduced when controlling for sex, the

duration of previously detected hypercholesterolemia, or systolic blood pressure. No statistical

significance voxels were detected when controlling for LDL or HbA1c. No significant voxelwise differences

in CVR amplitudes were detected between CTL and HT or between HT and HT+DM.
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Figure 7. Voxelwise comparisons of CVR time delay. The statistical testing on the CVR time delay of

CTL > HT and HT < HT+DM showed significant voxels (p < 0.05) for permutation inference for the general

linear model after threshold-free cluster enhancement. More significant differences were detected for HT

< HT+DM than CTL > HT; those were reduced when controlling for the duration of previously detected

hypercholesterolemia and disappeared when controlling for LDL and HbA1c. Significant differences in

CVR time delay were not detected between CTL and HT+DM.
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Figure 7 shows voxels that demonstrate statistically significant differences (p < 0.05) where CVR time

delays in CTL > HT and HT < HT+DM. More significant differences were detected for HT < HT+DM than

CTL > HT and those differences were reduced when controlling for the duration of previously detected

hypercholesterolemia and disappeared when controlling for LDL and HbA1c. Significant differences in

CVR time delay were not detected between CTL and HT+DM.

Figure 8. Mean regional CVR amplitude arranged in the descending order of CTL in subregions of
the cortex. CTL showed the highest amplitude and HT+DM showed the lowest with a few exceptions.

HT+DM showed statistically significant lower CVR amplitudes (p < 0.05) in multiple cortical regions from

both CTL and HT with the Kruskal-Wallis test corrected for multiple comparisons by controlling the false

discovery rate as marked by blue (*) and red (*) asterisks, respectively.
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Figure 8 shows the regional means of CVR amplitude for each cortical ROI. CVR amplitude in HT+DM is

significantly lower than both CTL and HT in the cuneus, the lingual, the precuneus, the isthmus cingulate,

the lateral occipital, the pericalcarine, and significantly lower than CTL in the posterior cingulate.

Figure 9. Mean regional CVR time delay arranged in the ascending order of CTL in subregions of
the cortex. HT group showed the fastest CVR response and HT+DM showed the slowest. The CVR time

delay showed statistically significant differences in more regions than those for amplitude with the

Kruskal-Wallis test corrected for multiple comparisons by controlling the false discovery rate. Statistically

significant shorter CVR time delay compared to CTL is marked with blue (*) and longer CVR time delays

compared to CTL and HT are marked by black (*) and red (*) asterisks, respectively.

Figure 9 shows the regional means of CVR time delay for each cortical ROI. HT exhibited significantly

shorter delays than CTL in the cuneus, the lingual, the isthmus cingulate, the superior frontal, the

posterior cingulate, the thalamus, the pallidum, the rostral anterior cingulate, and the frontal pole. The
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CVR time delay was significantly longer in HT+DM than in both CTL and HT in the entorhinal, the superior

parietal, the inferior temporal, the fusiform, the postcentral, the banks of the superior temporal sulcus, the

middle temporal, the superior temporal, the lateral orbitofrontal, and the posterior cingulate. HT+DM also

showed a significantly longer CVR time delay in many regions compared to HT.

4. Discussion

In this work, we present a simple, frequency-domain-based, data-driven approach for estimating CVR

from BH fMRI data. Our adaptive, data-driven approach for CVR estimation helps to prevent errors due to

subject non-compliance and regional CVR time delay variability. It thus can have a wide range of

applications in studying patient populations. Moreover, our Fourier-spectrum approach provides an

elegant means to estimate voxelwise CVR time delay estimations using phase differences relative to any

non-neural biological signal that depends on the BH task [Blockley et al., 2011; Pinto et al., 2020]. We

demonstrate our method in the study of diabetes and hypertension.

4.1.Estimation and interpretation of CVR amplitude using BH

A BH task is a simple method to induce cerebrovascular response due to an increase of arterial CO2

levels by ceasing ventilation. It provides a reproducible technique estimation of CVR even in less

cooperative populations [Bright et al., 2009; Lipp et al., 2015; Peng et al., 2020]. The BH-induced CVR

has been shown to be comparable to CVR estimated with inhaled CO2 challenges [Chan et al., 2020;

Kastrup et al., 2001; Prakash et al., 2014; Raut et al., 2016]. Model-driven approaches, mainly the

general linear model (GLM), are being used for estimating CVR from BOLD data acquired during BH

tasks. A function describing the block design of the breathing paradigms convolved with the

hemodynamic response function is typically used to build these models of the BH CVR response

[Biswal et al., 2007; Kastrup et al., 1999]. The GLM models perform well when PETCO2 recordings are

available for modelling BOLD response to accommodate for inter- and intra-subject variations [Bright and

Murphy, 2013; Pinto et al., 2016]. However, the performance of GLM methods on data from non-compliant

subjects is questionable [Jahanian et al., 2017]. The BOLD fMRI signal changes due to head motion,

confounding physiological fluctuations, and other sources of noise can affect the CVR estimation from BH

BOLD data [Chen et al., 2021; Jorge et al., 2013; Moia et al., 2021]. Head motion can be particularly

problematic in BH CVR estimation [Johnstone et al., 2006; Moia et al., 2021]. The data affected by

extensive head motion were excluded from this study instead of using complex motion correction

algorithms while using the standard motion correction algorithms for correcting smaller motions.

Respiration can also disturb the B0 field due to the change of air in the lungs [Raj et al., 2001] and

introduce aliasing artefacts or pseudo-movement effects in the signal [Pais-Roldán et al., 2018; Power et

al., 2019]. Such effects can easily result in vulnerability of the BH data analysis approach.
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Alternatively, Fourier basis modelling has been used effectively, assuming sinusoidal signal variations at

the paradigm design frequency [Bright and Murphy, 2013; Murphy et al., 2011; Pinto et al., 2016].

Fourier-based approaches have been reported as being robust and versatile, but are seemingly more

ideal for BH designs that are symmetrical. In practice, the BOLD response to BH tasks can easily deviate

from the sinusoidal frequency, and it is unclear what the implications are for CVR estimation.

In our data-driven approach, we addressed this issue by estimating fundamental frequency from the

BOLD signal spectrum for accurate sinusoidal approximation of CVR. GM regions in the cortex generally

have a higher CVR amplitude (Fig. 4) than the WM and other areas of the brain. Regional variations

within the GM are also visible. Frontal regions generally have a higher CVR amplitude compared to

temporal regions, the cerebellum cortex, the fusiform, and the putamen. These overall and regional

differences are consistent with previous similar studies [DuBose et al., 2022; Moia et al., 2021;

Thrippleton et al., 2018], and attest to the robustness of our simple approach.

4.2.CVR amplitude in diabetes and hypertension

Cerebrovascular reactivity (CVR) changes have been reported in various chronic conditions [Atwi et al.,

2019; Geranmayeh et al., 2015; Iranmahboob et al., 2016; Ivankovic et al., 2013; Li et al., 2021; Yazdani

et al., 2020]. Chronic hypertension [Harvey et al., 2015] has been associated with CVR impairments

[Ivankovic et al., 2013; Kadoi et al., 2003; Li et al., 2021; Petrica et al., 2007; Yazdani et al., 2020].

Specifically, in HT, hypercapnia-based BOLD MRI uncovered extensive reductions in blood flow and CVR

in hypertensive rats compared to controls [Li et al., 2021]. In older adults, HT is well known to be

associated with arterial stiffness and blood-flow reduction [Tomoto et al., 2023] in addition to reductions in

whole-brain CVR [Jefferson et al., 2018]. This CVR reduction is consistent with reduced resting-state

fMRI signal fluctuations in the presence of arterial stiffness, predominantly in the precuneus, anterior and

posterior cingulate gyrus, paracingulate gyrus, and frontal-pole regions [Hussein et al., 2020]. The

reduced CVR is in turn associated with impaired executive function [Hajjar et al., 2014], and can be

attributed to shear stress on the endothelial membrane that contributes to atherosclerosis [Webb and

Werring, 2022]. Such chronic microvascular injuries also promote the spread of inflammatory factors

through damaged blood-brain barriers as a potential mechanism of HT-associated neurodegeneration

[Youwakim and Girouard, 2021]. In the current study, however, CVR amplitude was not significantly

altered in the HT group. This can be attributed to the modest sample size and potentially high variability

amongst HT individuals. This may also speak to the possibility that CVR amplitude is not the most

sensitive CVR marker for HT pathology. There is minimal evidence of sex differences in the CVR

impairment.
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Diabetes mellitus (DM) and HT are commonly comorbid, and vascular dysfunction has long been known

as a part of DM pathology. Thickening of the vascular membrane has been identified as one of the

hallmarks of DM, associated with reduced vascular elasticity [Feener and King, 1997; Giordani et al.,

2014]. Using transcranial Doppler ultrasound (TCD), CO2-based CVR in the middle-cerebral artery was

found to be impaired in DM [Kadoi et al., 2003]. However, studies of the effect of DM on CVR in human

populations are still scarce. Ivankovic reported TCD-based vascular reactivity reductions [Ivankovic et al.,

2013], echoing findings in the rat model. One of the few human MRI studies of DM+HT used the BH

challenge to localize the CVR deficit to the occipital lobe [Tchistiakova et al., 2014]. Like HT, DM is also

associated with blood-flow impairment [An et al., 2018; Jansen et al., 2016] as well as psychological

symptoms, such as depression [Jansen et al., 2016]. Damage of the proximal tubule, involved in the

uptake of vascular endothelial growth factor (VEGF) [Petrica et al., 2014], as well as a reduction in the

brain-derived neurotrophic factor (BDNF) [Zhen et al., 2013], have been implicated in vascular and

cognitive pathologies in DM, respectively. VEGF and BDNF are heavily involved in promoting neuronal

survival through neurogenesis and angiogenesis, respectively. In the current study, CVR amplitude was

found to be significantly reduced in the frontal, precuneus, posterior-cingulate and pericalcarine regions

(Fig. 6). To our best knowledge, this is the most extensive and detailed list of brain regions to be reported

in association with CVR in DM, and these findings are consistent with regions previously reported to

exhibit CVR impairment in HT [Hussein et al., 2020] and DM [Tchistiakova et al., 2014], reflecting the

comorbidity in this DM+HT group. The implicated regions are known to exhibit high rates of metabolism

[Raichle et al., 2001] and consequently, high blood flow [Chen et al., 2011], rendering them more

susceptible to vascular damage. Like in the case of HT, there is minimal evidence of sex differences in the

CVR impairment.

4.3.Estimation and interpretation of CVR delay

CVR timing has been receiving increasing attention as a marker for detecting vascular abnormalities

[Donahue et al., 2015; Leung et al., 2016; Sam et al., 2016; Stickland et al., 2021; Thomas et al., 2014;

Thrippleton et al., 2018] Using inspired CO2 challenges, Leung et al. uncovered longer CVR delays in

sickle-cell disease [Leung et al., 2016]. Furthermore, Holmes et al. demonstrated extended CVR delay as

a marker with superior sensitivity to the effects of age and Alzheimer’s disease, even when compared to

the long-established CVR amplitude measures [Holmes et al., 2020].

In past literature, the BOLD temporal-lag structure has also been estimated in the resting-state BOLD

signal by regressing the low-frequency (~0.1 Hz) arterial BOLD signal [Tong and Frederick, 2014], venous

BOLD signal [Christen et al., 2015; Tong et al., 2018] or global BOLD signal [Amemiya et al., 2020; Mitra

et al., 2014]. It is understood that the BOLD signal is an indirect measure of blood traversal, as it reflects
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variations in both blood volume and blood oxygenation. Moreover, the use of the resting-state global

signal as a vascular regressor is not entirely supported in concept or by experimental evidence

[Scholvinck et al., 2010], and the arterial signal is not always available due to acquisition coverage

limitations, for instance. An alternative is to track the BOLD signal change during a hyperoxic or

hypercapnic hyperoxic (i.e. carbogen) gas challenge [Yao et al., 2021]. This latter alternative is easier to

administer clinically than blood tagging while eliciting a generally robust BOLD response [Donahue et al.,

2015]. Indeed, CVR-delay estimation is more robust when performed for a respiratory challenge than

using resting-state data [Gong et al., 2023; Stickland et al., 2021; Zvolanek et al., 2023].

The BH task has previously been used for CVR-delay mapping [Aso et al., 2017; Geranmayeh et al.,

2015; Moia et al., 2021]. Moreover, the use of Fourier analysis to elegantly estimate the BOLD-CO2

response lag time was previously proposed with the use of a sinusoidal CO2 stimulus [Blockley et al.,

2011]. It was noted that head motion could negatively affect the accuracy of time-lag estimation using BH

BOLD fMRI. Moia et al. demonstrated the advantage of using independent component analysis on

multi-echo BOLD data to derive a motion-minimized model-independent BH regressor for CVR estimation

[Moia et al., 2021]. The delay times are most commonly estimated as the time shift corresponding to the

maximum cross-correlation or most significant linear regression in a GLM between the reference and the

BOLD signals, with the reference signal being: (1) the PETCO2 recording, (2) the whole-grey-matter (GM)

BOLD signal [Niftrik et al., 2016; Tong and Frederick, 2014], and (3) the respiratory variability signal (RVT)

[Zvolanek et al., 2023].

In our approach, the CVR delay is estimated from the phase of the filtered BOLD signal spectrum and is

equivalent to the time shift mentioned earlier. However, unlike GLM-based approaches, no response

model is required in our approach. Moreover, consistent with previous work demonstrating the

advantages of voxel-wise sinusoidal BOLD response frequency and phase adjustments [Niftrik et al.,

2016], our data-driven Fourier-domain pipeline was able to achieve robust CVR delay estimates. Pinto et

al. added higher-frequency harmonics to the original single-frequency sinusoidal regressor and

demonstrated improvements in CVR model fits [Pinto et al., 2016]. Equivalently, if needed, our method

could easily incorporate the phases of higher-frequency spectral peaks in the delay calculation. Our

chosen reference is the respiratory-belt signal, which is largely driven by BH-related variations. This is not

equivalent to the RVT reference, which is based on lower-frequency respiratory variations. Our estimated

delay embodies not only the transit for the CO2 bolus to reach the brain region of interest but also the

inherent time-to-peak delay of the CO2 response function. The former reflects both systemic blood-flow

velocity and transit through the main cerebrovascular arteries, while the latter reflects localized vascular

elasticity. It is unfortunately not possible to separate these two quantities unless a deconvolution is

performed, presenting its own technical challenges [Atwi et al., 2019; Shams et al., 2022]. The chief

alternative reference signal, in the absence of the respiration belt recordings, is the whole-grey-matter
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BOLD signal [Zvolanek et al., 2023], especially as the global BOLD signal variations during a BH task is

largely driven by breathing. The main advantage of the GM-BOLD signal is that no external monitoring

equipment is required.

In our work, CVR delay in healthy adults spans the range of 10 - 20 s in the GM. Frontal cortical regions

and deep-grey regions exhibit the longest CVR delays, while the temporal and parietal regions tend to

exhibit shorter delays. These observations are consistent with the work of Trippleton et al. in which the

longest GM CVR delays are in the thalamus and the posterior cortex [Thrippleton et al., 2018]. However,

while many publications show maps of CVR delay, few quantify regional differences, limiting our ability for

cross-validation. The observed spatial diversity in CVR delay may in part be driven by differences in flow

patterns in various cerebrovascular territories, including flow transit time and dispersion among others.

The temporal and frontal regions, for instance, are supplied by different arterial offshoots, and borrowing

from the arterial-spin labelling literature, arterial transit time from the base of the brain is thought to be

longest in the occipital region and shortest in deep GM, with flow dispersion following a similar pattern

[Gallichan and Jezzard, 2008]. Thus, we are led to think that vascular anatomy is not the main driver of

these regional delay differences, but rather, CVR delay is driven by regional vascular elasticity. This

supports the utility of CVR delays as potential early indicators of regional physiological integrity.

Of course, the respiratory-belt reference and PETCO2 are not fully synchronized. For instance, we used

BH upon exhale, and an increase in the belt signal corresponds to the inhale following the BH. In the

period immediately after the exhale, CO2 slowly begins to accumulate intravascularly over the 15 s BH

period. Exhaled CO2 variations in turn lag the BH pattern by approximately 15 s, with the PETCO2 value

being measured only at the end of the expiratory plateau, which extends over a 4-6 s period. Thus, our

respiratory-belt based CVR delay times are likely much longer than those estimated using PETCO2

traces. Nonetheless, the advantages of the respiratory belt are apparent when the quality of PETCO2

recordings is insufficient, which can often be the case [Zvolanek et al., 2023]. Moreover, for PETCO2

recording, the need for extra equipment and often insertion of a nasal cannula, with a stipulation to

breathe through the nose or through a facial mask can render participants uncomfortable.

4.4.CVR time lag in diabetes and hypertension

DM is well associated with reduced systemic [Rendell et al., 1989] and cerebral blood flow velocity

[Jansen et al., 2016; Novak et al., 2006]. Reports of CVR amplitude deficits have implicated the bilateral

occipito-parietal regions [Tchistiakova et al., 2014]. In this work, the main DM-related finding is that CVR

delay is a more sensitive marker of diabetes than CVR amplitude, as DM+HT participants exhibited

longer CVR delays in more extensive GM regions (Fig. 9), and delay is associated with more variables

than amplitude (Fig. 7). The lengthened CVR delay can in part be attributed to the reduced systemic
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blood-flow velocity, such as associated with vascular stiffness [Jefferson et al., 2018]. Regional

cerebrovascular damage due to such factors as hyperglycemia [Giordani et al., 2014] may also stem from

the reduction of the blood-derived neurotropic factor [Zhen et al., 2013], further impairing endothelial

repair and survival [Kermani and Hempstead, 2019] in what is potentially a vicious cycle. Such

mechanisms of endothelial dysfunction may well lead to regionally dependent CVR-response slowing akin

to those of other processes such as Alzheimer’s disease and aging [Peng et al., 2018]. The greater

sensitivity of CVR delay than CVR amplitude for detecting the association with disease severity and

patient cohort effects may suggest that the timing of a preserved CVR response is more clinically

significant than the response amplitude itself.

The superior sensitivity of CVR delay to pathology extended to the HT group. One striking finding in this

work is that the CVR delay time is generally shorter in the HT group than in either the CTL or HT+DM

group, and this finding applies to a large number of ROIs. In contrast, there was no significant difference

in CVR amplitude between the HT and CTL groups (Fig. 8), suggesting that a healthy CVR amplitude

may belie early endothelial pathology [Webb and Werring, 2022] and that using CVR amplitude alone

may lead to missed opportunities for understanding the cerebrovascular mechanisms of HT. While

counterintuitive, the finding of reduced CVR delay in HT is consistent with prior ultrasound-based reports

of increased blood-flow velocity in the presence of elevated blood pressure [Perret and Sloop, 2000].

Recent work using a spontaneous hypertensive model demonstrated an increase in reactive astrocytes

and a reduction in microvascular density grew with HT duration [Li et al., 2021]. These changes may well

contribute to a pathological speeding of the CVR response. Notably, hypertension is often comorbid with

diabetes mellitus [Ivankovic et al., 2013]. However, it is common for diabetes patients to receive

hypertension treatment, and as demonstrated in this work, the effect of DM on CVR delay in the DM+HT

group surpasses that of HT alone.

4.5.Limitations

Our data-driven robust CVR approximation algorithm successfully estimates the fundamental BHF from

BH BOLD data for sinusoidal modelling of CVR for BH paradigms with reasonably similar ‘BH’ and

‘baseline’ periods. However, we recognize that many studies may use highly asymmetrical BH timing

paradigms that may not be accurately modelled by a sine-cosine function at the fundamental frequency.

This can be easily addressed by adding harmonics into the signal as reported previously for sinusoidal

modelling [Pinto et al., 2016].

Likewise, while we use a single most common frequency to characterize the CVR for each participant in

this demonstrative study, we can add secondary frequencies in the CVR calculation. Nonetheless, in our

own secondary analyses including 3 instead of 1 frequency peak for CVR estimation, the CVR amplitude
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and timing differences between the groups remained unchanged, demonstrating the robustness of

choosing a single “representative” BH CVR frequency.

Finally, our study used a limited number of participants. In particular, our quality-assurance standards

resulted in a comparatively small DM+HT sample. In practice, it was challenging to meet our recruitment

criteria particularly for the HT and DM+HT groups, resulting in a modest sample size. We hope to

replicate and expand on our findings in future studies.

5. Conclusion

An adaptive data-driven approach is presented for estimating CVR from BH fMRI data to prevent errors

due to subject non-compliance and regional CVR time delay variability. Our frequency-domain-based

approach for CVR estimation ensures robustness in estimating the CVR using the BH task and serving as

quality control of BH data, without the need for PETCO2 recordings. The CVR amplitude is estimated in

units of %∆BOLD directly from the data-driven BHF. Serious deviations from the designed task paradigm

were suppressed and thus did not bias the estimated CVR values. The voxelwise CVR time delay is also

estimated relative to a meaningful non-brain reference point, such as the ventricles, or an external signal

like a respiratory belt recording in this work. Our Fourier-spectrum based approach provides an elegant

means to estimate CVR time delay estimations using phase differences relative to the reference signal

that depends on the BH task.

Our robust data-driven CVR amplitude and time delay estimation can have a wide range of applications in

studying patient populations. We demonstrated our method in the study of diabetes and hypertension.

The CVR amplitude was lowest in HT+DM, and HT had a lower CVR amplitude than CTL regionally but

the voxelwise comparison did not yield statistical significance. Interestingly, the CVR time delay was far

more sensitive than the CVR amplitude to differences across the groups. While HT+DM seems to confer

longer CVR delays, HT seems to confer shorter delays than CTL. These are the first MRI-based

observations of CVR time delay differences between hypertensive-diabetes patients and healthy controls,

demonstrating the feasibility of extracting CVR time delay using BH challenges and the unique clinical

value of CVR time delay information.
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