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Abstract 

Background: Medical examinations contain repeatedly measured data from multiple visits, including imaging variables 

collected from different modalities. However, the utility of such data for the prediction of time-to-event is unknown, and 

only a fraction of the data is typically used for risk prediction. We hypothesized that multimodal longitudinal imaging data 

could improve dynamic disease prognosis of cardiovascular and renal disease (CVRD). 

Methods: In a multi-centered cohort of 5114 CARDIA participants, we included 166 longitudinal imaging variables from 

five imaging modalities: Echocardiography (Echo), Cardiac and Abdominal Computed Tomography (CT), Dual-Energy 

X-ray Absorptiometry (DEXA), Brain Magnetic Resonance Imaging (MRI) collected from young adulthood to mid-life 

over 30 years (1985-2016) to perform dynamic survival analysis of CVRD events using machine learning dynamic 

survival analysis (Dynamic-DeepHit, LTRCforest, and Extended Cox for Time-varying Covariates). Risk probabilities 

were continuously updated as new data were collected. Model performance was assessed using integrated AUC and C-

index and compared to traditional risk factors. 

Results: Longitudinal imaging data, even when being irregularly collected with high missing rates, improved CVRD 

dynamic prediction (0.03 in integrated AUC, up to 0.05 in C-index compared to traditional risk factors) from young 

adulthood followed up to midlife. Among imaging variables, Echo and CT variables contributed significantly to improved 

risk estimation. Echo measured in early adulthood predicted midlife CVRD risks almost as well as Echo measured 10-15 

years later (0.01 C-index difference). The most recent CT exam provided the most accurate prediction for short-term risk 

estimation. Brain MRI markers provided additional information from cardiac Echo and CT variables that led to a slightly 

improved prediction.  

Conclusions: Longitudinal multimodal imaging data readily collected from follow-up exams can improve CVRD 

dynamic prediction. Echocardiography measured early can provide a good long-term risk estimation, while CT/calcium 

scoring variables carry atherosclerotic signatures that benefit more immediate risk assessment starting in middle-age. 

Keywords: multimodal, imaging, dynamic survival analysis, machine learning, dynamic prediction, cardiovascular 

disease, prognosis, CARDIA 
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Introduction  

The rapidly expanding availability of large health data sets has fueled the growing research for more accurate risk 

prediction which holds much potential for preventive and monitoring strategies as well as improved disease 

understanding. In many scenarios, imaging data are collected over various modalities (multimodal) such as 

Echocardiography, Magnetic Resonance Imaging, and Computed Tomography, and repeatedly measured in multiple 

follow-up exams. Multimodal longitudinal imaging data could provide a more comprehensive description of the body and 

the development of organ functions and structures over time. In cardiology, numerous imaging markers for subclinical 

atherosclerosis have been demonstrated to be independently predictive of cardiovascular events1,2,3 and cardiac 

dysfunction.4,5 Many published works have focused on a few imaging variables that are low-dimensional, single-modal,2,4–

6 or cross-sectional.7 The utility of high-dimensional, multimodal, and longitudinal imaging data has not been 

investigated.  

Cox Proportional Hazards (Cox-PH) is among the most popular methods for survival analysis but Cox-PH is not suitable 

for high-dimensional data with repeated measures. The extended version of Cox-PH that can work with time-varying 

covariates is still limited because of the high number of variables, nonlinearity of variables, and requirement of data with 

no missingness.8 Machine learning (ML) approaches such as Random Survival Forest9 can mitigate some of Cox’s 

limitations, but many ML methods are limited to static prediction and cannot perform dynamic survival analysis. In static 

prediction, the model does not automatically update as new observations are collected, (new data would require refitting 

an existing model or training a new model). Unlike static prediction, a dynamic survival analysis model automatically 

updates predicted survival probabilities as additional longitudinal observations are collected, and the model is trained only 

once. The ability to dynamically update risk as new information rolls in makes dynamic survival analysis attractive.10,11  

In this work, we demonstrated the utility of dynamic prediction of Cardiovascular and Renal Disease (CVRD) using high-

dimensional, multimodal, longitudinal imaging. Data were collected in CARDIA, which is a large epidemiological study 

of Black and White young adults followed up over 30 years. We also identified the most important imaging predictors for 

CVRD in the CARDIA cohort. 

Methods 

Study Population and Outcome 

The design of the CARDIA study (Coronary Artery Risk Development in Young Adults) has been described elsewhere.12 

Briefly, CARDIA is a prospective, observational cohort study of 5114 (originally 5115, one person withdrew consent) 

White and Black men and women aged 18 to 30 years, at four centers in the United States. The cohort is approximately 

balanced regarding age, race, sex, and educational level. Participants have been followed since 1985, with regular exam 

visits scheduled every 2-5 years. Each exam has collected a wide variety of variables believed to be related to heart 
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disease. The institutional review board of each participating institution approved the study protocol and all participants 

gave informed consent. 

The outcome of this study is cardiovascular and renal disease (CVRD), and the first CVRD event was used as the 

endpoint. These events were adjudicated through August 2019. The primary composite outcome was incident 

cardiovascular disease and renal disease, which included coronary heart disease (CHD, myocardial infarction, acute 

coronary syndrome, or CHD death, including fatal myocardial infarction), stroke, transient ischemic attack, 

hospitalization for heart failure, intervention for peripheral arterial disease, end-stage renal disease, or death from 

cardiovascular or renal causes. Participants who died from a non-CVRD cause were censored at the time of death in the 

survival models. 

Imaging Markers 

CARDIA follow-up exams collect various imaging variables from different sources, such as Echocardiography (Echo), 

Computed Tomography (CT), Carotid Ultrasonography (CARTD), Dual-Energy X-ray Absorptiometry (DEXA), and 

Brain Magnetic Resonance Imaging (MRI). The extracted imaging variables have a high degree of sparsity and 

irregularity, reflecting real-world data. Echo was performed as part of the core study in Y5, Y25, and Y30 and as a 

substudy in Y10; CT was conducted in Y10 as a substudy and in Y15, Y20, and Y25 as the core study, and brain MRI was 

acquired in Y25 and Y30 as a substudy. Figure 1 shows an overview of imaging markers used in this study and Table S1 

shows a detailed list of when the measures were collected. Data collection protocols for each imaging modality are 

available on the CARDIA study website.13 We used the longitudinal imaging CARDIA data from all exam years to 

develop prediction models. 

Variables were pre-filtered with help from domain experts (clinicians who performed image reading daily). Other 

exclusion criteria include removing duplicated variables across modalities, variables available in too few subjects and 

variables with poor documentation. Overall, we included a total of 151 longitudinal imaging markers. In addition, we also 

included 15 traditional risk factors: nine variables from the AHA/ACC ASCVD risk scores and six additional risk factors 

(diastolic blood pressure - DBP, body-mass index - BMI, taking cholesterol-lowering medications, low-density 

lipoproteins - LDL, triglycerides, and fasting glucose). 

Statistical Analysis 

Model Training and Evaluation 

Figure 1 shows the schematic of the statistical analysis procedures. All the models were trained and evaluated on the same 

cohort by 5-fold x 20 times cross-validation scheme. For each time the whole data was split, 20% of the data was used for 

testing, and the remaining 80% was further divided into training and validation sets. The training sets were used to fit the 

models, the validation sets were for hyperparameter tuning, and the testing sets were for assessing model performance. 

Stratified sampling by event was conducted to ensure the same ratio of events to non-events across the splits.  
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Modeling Methods 

We used three algorithms to model data for dynamic survival analysis. To issue dynamically updated survival predictions 

the data requires methods that can incorporate high-dimensional, longitudinal data comprising various repeated 

measurements with varying degrees of missingness. The main algorithm we used is Dynamic-DeepHit.11 Dynamic-

DeepHit is a deep learning-based approach that issues dynamically updated survival predictions without making any 

assumptions about the underlying processes. Briefly, Dynamic-DeepHit consists of two subnetworks: a shared subnetwork 

with a recurrent neural network architecture that handles longitudinal measurements and predicts the next measurements 

of time-varying covariates, and a second subnetwork with cause-specific survival networks of fully connected layers that 

relates the longitudinal data to the survival outcome. Dynamic-DeepHit trains by minimizing the loss function which 

comprises three losses: a survival loss of log-likelihood of joint time-to-event distribution, a ranking loss that adapts the 

idea of concordance that encourages correct ordering of participants based on their time-to-event, and a step-ahead 

prediction loss that encourages correct prediction of longitudinal covariates for the next time step. Detailed description of 

Dynamic-DeepHit can be found elsewhere.11 

We employed two additional methods for dynamic prediction, namely Left-Truncated-Right-Censored Forest 

(LTRCforest)14 and Extended Cox for Time-dependent Covariates.8 Briefly, the Extended Cox is an extension of the fully 

parametric Cox-PH that assumes the variable values remain constant from the last observed value until updated. To 

handle a large number of input covariates, LASSO penalization15 was employed. LTRCforest is an extension of the non-

parametric ML method conditional forest (Cforest) for time-varying covariates. Since LTRCforest and Extended Cox 

require fully available data, missing data were imputed before being input into these models using Multiple Imputation by 

Chained Equations (MICE) for multilevel data.16,17   

As a benchmark, we also fit static survival models at three time points (5 years, 15 years, and 25 years after baseline) to 

compare with the dynamic survival models.18 The idea is similar to landmarking approaches, in which a survival model is 

fit to the subjects who are still at risk at the landmarking time. For consistency in comparison, we used Dynamic-DeepHit 

and made an artificial cut-off at the landmarking time (meaning, covariate measurements after Y5, Y15, and Y25 were 

excluded from the static model at landmarking time 5 years, 15 years, and 25 years after baseline, respectively). Only 

measurements collected before the landmarking time were included.     

Importance of imaging subsets and variables 

To evaluate the effect of each imaging variable subset on CVRD prediction, we built five Dynamic-DeepHit models, each 

with traditional risk factors and imaging markers from a single modality. We also built a model with all imaging markers 

from all modalities and a reference model with only traditional risk factors. Additionally, to assess the complementary 

effects of multiple imaging subsets, we built 25 additional models representing all possible combinations of five imaging 

subsets. In total, 32 models were built (Table S2). 

To examine the effect of imaging variables collected at different ages, we also built separate models for each imaging 

subset that included variables collected from each exam and excluded measurements collected outside of the exam. 
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Additionally, the importance of each imaging marker was quantified using permutation importance, similar to permutation 

testing,19 for the model trained on all variables. The longitudinal trajectories were permuted among participants, and the 

drop in the C-index of permuted variables to the C-index of the original dataset was used as the ranking criteria for 

variable importance. A bigger drop in C-index indicated a more important variable, and a minimal drop suggested that the 

variable was not important, as changing the variable value did not change model performance. Variables with the same 

difference in C-index were assigned the same ranking.   

Performance Evaluation 

Model performance was quantified using the time-dependent area under the receiver-operating curve (AUC) accounting 

for censorship20 and the time-dependent concordance index that accounted for censoring distribution.21 In addition, the 

integrated AUC (iAUC) was used to quantify all time-varying AUCs as one number.22 Statistical significance was 

evaluated using Wilcoxon rank sum test. 

Results 

A total of 5114 participants were included in the analysis. Table 1 describes the characteristics and number of remaining 

participants in the cohort over nine follow-up exams. The mean age was 25 years old in CARDIA Y0 Exam (baseline) and 

55 years old in the last exam (Y30). The cohort consisted of 46% male, 52% black, and 48% white. Over 30 years of 

follow-up, 3358 came back for Y30, the averaged SBP and DBP (systolic and diastolic blood pressure) increased and so 

was the use of hypertensive medication. BMI, total cholesterol, high-density lipoprotein (HDL), and use of cholesterol-

lowering medication increased. The prevalence of diabetes also increased, while the number of smokers decreased. By the 

end of follow-up, 375 participants (7.3%) had developed CVRD. The cumulative incidence of CVRD is shown in Figure 

S1, with very few events happening before Y10 Exam, while the event rate curve is almost exponential after Y20 Exam.  

Dynamic versus static prediction 

Figure 2 shows the performance over time for dynamic prediction versus static prediction. The dynamic survival model 

using Dynamic-DeepHit trained on all 166 variables had a C-index of 0.80-0.82 before Y20 and slightly dropped to 0.78 

by the last time point, 33 years after baseline. The C-index of the dynamic survival model is higher than that of the static 

survival models across all time points, by a margin of 0.01-0.06. Unlike the static survival models that required a separate 

model at each landmarking time, the dynamic model was only trained once and automatically updated survival 

probabilities as a new measurement updated from a follow-up exam.  

Comparison of modeling methods 

Figure S2 shows the performance of dynamic models trained with different algorithms (Dynamic-DeepHit, LTRCforest, 

Extended Cox, and Extended Cox penalized by LASSO). For both cases (trained on all variables and trained on traditional 

risk factors), Dynamic-DeepHit trained on unimputed data and LTRCforest trained on imputed data are consistently the 
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best, whereas Extended Cox consistently underperformed (~0.05-0.10 lower in C-index) for the model with all variables 

and 3-5% lower for model with only traditional risk factors). 

Predictive gain of modalities 

Figure 3 shows the predictive gain from each imaging subset over time and on average over 25 cross-validation folds. The 

best model was the one that included all imaging subsets, while the worst-performing was the one using only traditional 

risk factors (baseline) and using traditional risk factors plus CARTD variables (0.74 C-index at end of follow-up). Using 

all imaging markers resulted in up to a 5% increase in C-index and 3% in iAUC. The model utilizing only CT variables 

was only slightly below (1%) the model using all imaging variables, which helped elevate performance since Y10 Exam 

with a more apparent gain after Y20 Exam when more CT variables were collected. The model trained on Echo variables 

shows that the inclusion of Echo variables in addition to traditional risk factors helped increase prediction accuracy 

throughout the entire follow-up period by ~1.5-2% in C-index. DEXA variables improved performance very slightly up to 

Y25 by C-index (<0.01 absolute difference) and had negligible gain in terms of iAUC. Brain MRI variables, collected at 

Y25 and Y30 Exam, helped boost CRVD prediction performance by 0.01-0.02 C-index gain.    

Table S2 shows the averaged iAUC gain from each of the 32 exhaustive combinations of 5 imaging variable subsets with 

respect to the baseline model. Aside from the best model using all imaging markers, the second-best subset is a 

combination of Echo, CT, and Brain MRI markers with an averaged iAUC gain of 0.027. A combination of Echo and CT 

variables resulted in a 0.022 iAUC gain, and the largest gain from a single imaging subset was from CT variables (0.014 

iAUC gain).   

Temporal Importance  

Figure 4 quantifies the importance of early versus late measurements on CRVD prediction in two imaging subsets with 

the most influence on prediction: Echo and CT. For Echo, the model trained on only early Echo measurements (collected 

in Y5 Exam as a core study and partially in Y10 Exam as a substudy) had just as good overall performance (iAUC = 0.78) 

as the model trained on Echo variables collected later in life (Y20 and Y25 Core Exams) (iAUC=0.78). For longer-term 

risk prediction (25 years after Y0), the C-index of the model trained on early Echo was only 1% less than that of the 

model trained on late Echo. Regarding CT variables, which were collected in Y10 as a substudy and in Y15, Y20, and 

Y25 as core studies, the most recent CT exam provided the most accurate prediction, as evidenced by the immediate bump 

in the C-index after each CT Exam. The most prominent bump is right after CT Y25 which resulted in a 3% increase in C-

index compared to using CT variables from Y20 or earlier (p<0.001). 

Variable importance 

In addition to quantifying the importance of variable subsets relative to each other, variable-level importance was 

quantified. Table 2 shows the top 20 ranked variables at three representative times: 15 years, 25 years, and 33 years 

(endpoint) after Y0. Total cholesterol and low-density lipoprotein cholesterol (LDL) were consistently the most important 

predictors of CVRD. Most of the top 20 variables were either collected by Echo and CT, attesting to their importance to 
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CVRD prediction and consistent with the results in Figure 2. Chronological age is an important variable for year 15 (mean 

age=40) but not among the top 20 as participants got older. The top Echo and CT variables have similar relative variable 

importance in the rankings.    

 

Discussion 

In this work, we investigated the utility of high-dimensional longitudinal imaging data of five modalities, separately and 

together, for dynamic prediction of CVRD in young adults in a multi-centered cohort followed up over 30 years. We used 

the entirety of imaging variables over all exam years for continuously updated predictions of risk. The results suggest that 

longitudinal imaging data, even when irregularly collected and having high missing rates, improved CVRD dynamic 

prediction (3% iAUC, up to 5% C-index in midlife). Among different subsets of imaging markers, Echo and CT 

contributed to most of the improved risk estimation. Brain MRI variables contributed additional information that slightly 

improved prediction when they were collected. DEXA and Carotid IMT contributed little to none to CVRD prediction, 

even though they could be helpful in other aspects of clinical and epidemiological research. In terms of the effects of 

imaging markers measured early or late in life, the results suggested that Echo measured in early adulthood could predict 

long-term CVRD risks almost as well as Echo measured 10-15 years later. For CT, the most recent CT exam provides the 

most accurate prediction for short-term CVRD risk estimation. The results also suggest that the prediction ability of 

models decreased over time, particularly so between the ages of 40 and 50 years, when only traditional risk factors were 

included in the models. The addition of imaging variables helped maintain the prediction ability beyond middle age. 

Multimodal Imaging Markers for Dynamic Prediction 

This work is unique as it is among the first that incorporates high-dimensional longitudinal imaging markers from 

multiple modalities collected with high levels of sparsity (a high percentage of missing values) and irregularity (non-

uniform time intervals between measurements) for dynamic prediction of CVRD. Many previous studies have limited the 

use of imaging data in prediction models, using only cross-sectional data or a few variables, or only including complete 

data. Simple imputation methods are often used to deal with sparsity and irregularity (mean/median imputation or last 

observation carried forward),23 but these can introduce bias and do not fully capture the information in longitudinal data. 

In this work, we employed Dynamic-DeepHit which was capable of dealing with data of high sparsity and irregularity,11 

and thus could overcome the aforementioned challenges and better capture the rich information to improve risk 

estimation.  

We showed that the inclusion of longitudinal multimodal imaging markers led to 0.03-0.05 increase in C-index and iAUC 

compared to not using imaging markers. It is worth noting that the imaging data collected in CARDIA was highly sparse 

and irregular (only available in two or three follow-up exams, collected in a small subset of participants (Table S1). The 

various missingness patterns reflected the nature of real-world data as not all information from a past patient visit will be 
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collected in the current visit. We argue that, despite the variable missingness rates, longitudinal multimodal imaging 

markers still improved prediction up to 5%. More complete and frequently collected data will likely yield greater 

improvement in risk estimation.  

This study found that the predictive accuracy of a model for cardiovascular disease risk dropped after the mean age of the 

participants reached 45 years old, especially when using only traditional risk factors. The inclusion of multimodal imaging 

markers helped stabilize the predictive accuracy and prevented a decline of 6-7% over 13 years. The decline in predictive 

performance when using only traditional risk factors may be due to several factors. First, traditional risk factors may be 

less effective for predicting 10-year cardiovascular risk in people entering midlife despite their demonstrated usage for 

longer-term prediction. Previous studies from our group have shown that traditional risk factors were not among the top 

predictors for short-term prediction in an older population (MESA cohort, mean age = 62),7 and also in the CARDIA 

population.24 Second, some non-traditional risk factors such as mental health, alcohol abuse, and other lifestyle factors, 

were not included in our prediction models. Studies have shown that cumulative effects of stress and alcohol contributed 

to worsening cardiovascular health.25–27  Third, health tends to decline starting in middle-age, when many changes occur 

in the body, making it more challenging to predict cardiovascular disease risk at this age. For example, at this age range, 

menopause often begins and the aortic root could enlarge and dilate, which have been shown to negatively affect 

cardiovascular functions and metabolism.28,28 More generally, metabolic syndrome in those 40–59 years of age were about 

three times as likely to happen as in those 20–39 years old.29  

In this regard, the decline in predictive performance in using only traditional factors further highlighted the role of 

multimodal imaging markers. Even though the traditional risk factors are fundamental to the genesis and progression of 

CVRD, multimodal imaging markers can pick up physiologic signals that are closer to disease initiation and closer to 

adverse outcomes. Furthermore, imaging markers can capture signals from some of the cumulative effects of insults to the 

body that were not captured by traditional risk factors. For example, coronary calcification from CAC/CT has 

demonstrated the proatherogenic effects of heavy alcohol consumption since young adulthood.30 CAC/CT variables 

consistently ranked in the top predictors of outcome in our models (Table 2). Signals signifying the changes in the body at 

middle age could also be recognized by longitudinal imaging, for example, aortic root enlargement captured by Echo and 

was among the top-6 predictors of outcome at year 33, when the average participants’ age was 58. In addition, the 

importance of age decreased over time while the importance of the imaging markers increased (Table 2), suggesting that 

vascular age captured by imaging may be more relevant than chronologic age. Overall, the included multimodal 

longitudinal imaging markers stabilized the decrease in prediction accuracy but may not have captured all relevant 

information. Adding more diverse, high-quality multimodal data may be necessary to further improve prediction in this 

age group. 

Importance of imaging subsets 

In this work, we quantified the importance of imaging markers as whole variable subsets/imaging modalities in addition to 

looking at variable-level importance. We also assessed spatial importance (in one exam) and temporal importance (across 

exams). We found that CT and Echo variables were consistently among the most important predictors. Specifically, within 
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Echo variables, left ventricular dimensions, ventricular septal thickness, aortic root measurements, and circumferential 

peak strain were among the most important. These variables are also reportedly among the top predictors in other large-

scale studies.31 For CT variables, markers from coronary artery calcium (CAC) scans were consistently among the top 

predictors, adding to the growing evidence in the literature about the importance of CAC. Abdominal aortic calcium 

variables such as the number and size of lesions of the abdominal aorta and common iliac aorta are also among the top 30-

50 predictors. Additionally, intermuscular adipose tissue (IMAT) measured by CT also consistently presented in the top 

30, agreeing with previous reports showing IMAT associated with increased subclinical atherosclerosis independent of 

traditional cardiovascular disease risk factors and other adipose depots.5  

In the early years, Echo markers, specifically markers of hypertension (such as septal thickness, LV volume and 

dimension), contributed the most to outcome prediction. However, in later years, CT markers played a larger role in 

prediction (Figures 3, 4, and Table 2). This suggests that at a young age, hypertension is the main driver of CVD, whereas 

at middle age, markers of atherosclerosis become the main driver, which can be more efficiently captured by CT/calcium 

scoring. Variables from the other subsets (e.g., DEXA, CARTD) contributed weakly to the prediction. Regarding brain 

MRI markers, total brain volume, including gray matter, white matter and cerebral spinal fluid and abnormal tissue 

volumes, primarily in white matter were among the top 15-20, and overall brain markers helped improve CVRD 

prediction in the immediate years after they were added. Previous studies have reported that cardiovascular risk burden is 

associated with cognitive decline, structural brain differences, and brain age.32–35 However, most studies show that CVD 

risk factors predict or are associated with brain structure and function,33,35,36 and not the other direction. Therefore, the 

brain MRI measures may reflect already accumulated CVD risk factors and therefore provide extra information on the 

severity of the risk factors further improving CVRD prediction. 

Algorithmic consideration 

In our study, we compared several dynamic survival analysis algorithms to identify the best technique to handle sparse 

and irregular imaging data. Among the techniques tested, machine learning methods were superior to the Extended Cox 

model. The best-performing models were those using Dynamic-DeepHit trained on unimputed data, which can directly 

handle sparse, high dimensional, and irregular data and provide true dynamic prediction. LTRCforest trained on imputed 

data performed on par with Dynamic-DeepHit but was not a true dynamic prediction algorithm and required imputation 

and more computational time. Therefore, Dynamic-DeepHit may be the most suitable algorithm for dynamic prediction. 

Limitations 

Our study has several limitations. The data collection started in 1985 in a biracial population and followed through for 30 

years describing a certain cohort experience. Caution must be exercised when generalizing to other races and to the 

current population, as there may have been shifts in population characteristics over time. Second, external validation is 

challenging because long-term follow-up studies of young adults with extensive phenotyping like CARDIA are sparse. 

Third, as noted, many imaging markers in CARDIA are highly sparse and irregularly collected, whereas quantification of 

longitudinal multimodal imaging utility would improve with complete data. Despite that, the inclusion of sparse and 
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irregular multimodal imaging data still significantly improved prediction. Finally, the collection of repeated multi-modal 

imaging is practically possible mainly in well-resourced health facilities.  

Conclusions 

We show that longitudinal multimodal imaging data readily collected from follow-ups can improve CVRD dynamic 

prediction. Echocardiography measured early can capture hypertension status and provide a good prediction for long-term 

risk estimation, while CT/calcium scoring variables carry atherosclerotic signatures that benefit more immediate risk 

assessment starting in middle-age. 
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Tables 

Table 1. Characteristics of the study population over time 

 Exam 
Y0 

Exam 
Y2 

Exam 
Y5 

Exam 
Y7 

Exam 
Y10 

Exam 
Y15 

Exam 
Y20 

Exam 
Y25 

Exam 
Y30 

No. subjects 
examined 

(N=5114
) 

(N=4624
) 

(N=4352
) 

(N=4085
) 

(N=3948
) 

(N=3671
) 

(N=3549
) 

(N=3499
) 

(N=3358
) 

Age 24.8 
(3.63) 

26.8 
(3.60) 

29.9 
(3.60) 

31.9 
(3.58) 

34.9 
(3.61) 

40.0 
(3.60) 

45.0 
(3.59) 

50.0 
(3.59) 

55.0 
(3.55) 

Sex (%Male) 2327 
(46%) 

2089 
(45%) 

1958 
(45%) 

1836 
(45%) 

1755 
(44%) 

1619 
(44%) 

1527 
(43%) 

1505 
(43%) 

1352 
(43%) 

Race          
  Black 2651 

(52%) 
2300 
(50%) 

2132 
(49%) 

1987 
(49%) 

1938 
(49%) 

1741 
(47%) 

1649 
(47%) 

1632 
(47%) 

1510 
(48%) 

  White 2463 
(48%) 

2323 
(50%) 

2219 
(51%) 

2098 
(51%) 

2010 
(51%) 

1930 
(53%) 

1884 
(53%) 

1842 
(53%) 

1639 
(52%) 

Systolic blood 
pressure (SBP) 

110 
(10.9) 

108 
(10.8) 

108 
(11.6) 

109 
(12.4) 

110 
(12.8) 

113 
(14.9) 

117 
(15.2) 

120 
(16.2) 

121 
(16.6) 

Diastolic blood 
pressure (DBP) 

68.6 
(9.62) 

67.4 
(9.67) 

69.2 
(10.2) 

69.3 
(10.3) 

72.4 
(10.2) 

74.5 
(11.6) 

73.1 
(11.5) 

74.9 
(11.2) 

74.0 
(11.1) 

Use of hypertensive 
medication 

115 
(2%) 

41 (1%) 70 (2%) 81 (2%) 135 
(3%) 

292 
(8%) 

615 
(17%) 

936 
(27%) 

1033 
(33%) 

Body Mass Index 
(BMI) 

24.5 
(5.05) 

25.2 
(5.38) 

26.2 
(5.91) 

26.8 
(6.13) 

27.5 
(6.54) 

28.8 
(6.84) 

29.5 
(7.25) 

30.2 
(7.19) 

30.5 
(7.19) 

Total cholesterol 
(mg/dL) 

177 
(33.5) 

183 
(35.2) 

178 
(34.3) 

177 
(34.3) 

178 
(34.6) 

185 
(35.8) 

186 
(34.9) 

192 
(36.9) 

191 
(38.1) 

Use of cholesterol-
lowering medication 

0 (0%) 0 (0%) 11 (0%) 10 (0%) 19 (0%) 88 (2%) 311 
(9%) 

540 
(16%) 

632 
(20%) 

Total HDL 
cholesterol (mg/dl) 

53.2 
(13.2) 

54.8 
(14.1) 

53.3 
(14.2) 

52.1 
(14.2) 

50.3 
(14.0) 

50.7 
(14.6) 

54.2 
(16.7) 

58.0 
(18.0) 

59.9 
(19.0) 

Total LDL 
cholesterol (mg/dl) 

109 
(31.3) 

113 
(33.3) 

108 
(32.1) 

108 
(31.6) 

109 
(32.1) 

113 
(32.3) 

110 
(32.0) 

112 
(32.8) 

110 
(33.2) 

Triglycerides 
(mg/dl) 

72.9 
(48.5) 

78.9 
(53.4) 

80.8 
(72.2) 

86.4 
(75.7) 

92.1 
(74.7) 

105 
(92.8) 

109 
(79.9) 

114 
(85.9) 

108 
(99.5) 

Fasting glucose 
(mg/100 ml) 

82.6 
(16.3) 

NA 
(NA) 

NA 
(NA) 

90.1 
(19.4) 

88.2 
(20.4) 

86.7 
(21.0) 

98.0 
(26.4) 

99.5 
(28.7) 

102 
(32.0) 

Diabetes Mellitus 43 (1%) 55 (1%) 83 (2%) 142 
(3%) 

173 
(4%) 

212 
(6%) 

273 
(8%) 

373 
(11%) 

442 
(14%) 

Smoking now 1546 
(30%) 

1359 
(29%) 

1243 
(29%) 

1096 
(27%) 

1005 
(25%) 

808 
(22%) 

677 
(19%) 

588 
(17%) 

436 
(14%) 

CVRD event 0 (0%) 0 (0%) 2 (0%) 7 (0.2%) 14 
(0.4%) 

56 
(1.5%) 

112 
(3%) 

208 
(6%) 

313 
(10%) 
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Table 2. Variable Importance Ranking (top 20) 

Year 15 Year 25 Year 33 
Rank RVI Modality Variable Rank RVI Modality Variable Rank RVI Modality Variable 

1 1.00 Traditional Total 
Cholesterol 

1 1.00 Traditional Total Cholesterol 1 1.00 Traditional Total Cholesterol 

2 0.94 Traditional LDL 2 0.94 Traditional LDL 2 0.91 Traditional LDL 

3 0.63 Traditional Age 3 0.55 Echo Circumferential 
Peak Strain (%) 

3 0.74 Echo Mitral 
Regurgitation 
(Moderate Or 
Severe) 

4 0.59 Echo Vent Septal 
Thickness - 
Systole 

4 0.55 Echo LV Internal Dim In 
Diastole 

4 0.64 Echo Tricuspid 
Regurgitation 
(RVsp > 40 Mmhg) 

5 0.59 Echo Vent Septal 
Thickness - 
Diastole 

5 0.54 Echo LV Internal Dim In 
Systole 

5 0.63 Echo Mitral Valve E-
wave To A-wave 
Ratio 

5 0.59 Echo 2D: LV 
Volume In 
Systole 

6 0.51 Echo Tricuspid Annular 
Peak Systolic 
Excursion 

6 0.63 Echo Aortic Root 
Dimension 

6 0.58 Traditional Smoking status 7 0.51 Echo Aortic Root 
Dimension 

7 0.62 Echo Global LV 
Longitudinal Peak 
Strain (%) 

6 0.58 CT Agatston Score 
Left Anterior 
Descending 

8 0.50 Echo Vent Septal 
Thickness - Systole 

8 0.61 Echo LV Ejection 
Fraction 

7 0.58 Echo LV Internal 
Dim In Systole 

9 0.49 Echo LV Volume In 
Systole 

9 0.61 MRI  Volume Of Total 
Brain 

8 0.58 CT Volume Of 
Lesions LAD 

10 0.48 CT Standard Deviation 
Attenuation Of 
Liver 

10 0.61 Echo LV Stroke Volume 

9 0.58 Echo Aortic Root 
Dimension 

11 0.48 Echo Vent Septal 
Thickness - 
Diastole 

11 0.60 Echo LV Internal Dim In 
Systole 

10 0.58 Echo AFVI/EFVI 
Ratio 

12 0.48 Echo LV Post Wall 
Thickness - 
Diastole 

12 0.60 Echo Circumferential 
Peak Strain (%) 

10 0.58 CT No. Of Lesions 
Left Anterior 
Descending 

13 0.47 Echo LV Internal 
Dimension Systole 

13 0.60 Echo  LV Volume In 
Systole 

11 0.58 DEXA Hip: Total 
BMD 

14 0.47 CT Calcium Mass Of 
Lesions Infrarenal 
Abd. Aorta 

14 0.59 MRI Abnormal Tissue 
Volume In Gray 
Matter 

12 0.58 CT No. Of Lesions 
All Coronary 

15 0.47 CT Volume Of Lesions 
Right Coronary 

15 0.59 Echo Vent Septal 
Thickness - Diastole 

12 0.58 Echo LV Ejection 
Fraction 

16 0.47 MRI Volume Of Total 
Brain 

16 0.59 CT Stent Present 

13 0.58 CT Volume Of 
Lesions All 
Coronary 

16 0.47 CT Valve Replacement 
Present 

 0.59 CT Calcium Mass Of 
Lesions LAD 

14 0.58 CT Mean Of 
Lesions Of 
Whole Heart 

17 0.46 CT No. Of Lesions 
Right Common 
Iliac 

18 0.59 CT Coronary Artery 
Bypass Graft 

14 0.58 CT Calcium Mass 
Of Lesions 
LAD 

18 0.46 Echo Doppler Tissue 
Doppler RV S-
wave Velocity 

19 0.59 CT Cardiac Surgery 
Present 

14 0.58 CT Mean Of 
Lesions Left 
Circumflex 

19 0.46 MRI Abnormal Tissue 
Volume In Gray 
Matter 

20 0.58 MRI CSF Volume 

RVI: relative variable importance; LDL: low-density lipoprotein; LV: left ventricular; RV: right ventricular; AFVI/EFVI: 
atrial to early diastolic flow velocity integral; BMD: bone mass density; LAD: left anterior descending artery; CSF: 
cerebrospinal fluid.  
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Figures with Figure Legends 

 
Figure 1. A) Overview of the multimodal data used for prediction. B) Methodology framework visualization for 
dynamic survival analysis. Echo: echocardiography, CT: Computed Tomography, CARTD: Carotid Artery 
Ultrasonography, DEXA: Dual-Energy X-ray Absorptiometry, MRI: Magnetic Resonance Imaging. 
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Figure 2. Dynamic vs. static prediction 
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Figure 3. Predictive Gain from Imaging Variables of Different Modalities. Top: performance over time. The colored 
texts at the top indicate which imaging modalities were collected at each exam. Bottom: integrated AUC (iAUC) Gain 
with respect to the baseline model trained on only traditional risk factors. All pairwise hypothesis tests are significant 
(including All vs. ECHO and All vs. CT), unless otherwise denoted with ‘ns’ (‘non-significant’).  
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Figure 4. Effects of early vs. late imaging measurement. A) Early vs. Late Echo, B) Early vs. Late CT. Early Echo 
provided good overall gain for long-term risk estimation, compared to Late Echo. For CT, the most recent CT exam 
provides the most accurate prediction, evident by immediate bumps after each CT Exam, especially CT Y25. P-values of 
significant pairwise hypothesis tests are shown. 
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