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ABSTRACT 
 

Multiplex immunofluorescence (mIF) imaging can provide comprehensive quantitative and spatial 

information for multiple immune markers for tumour immunoprofiling. However, application at scale to 

clinical trial samples sourced from multiple institutions is challenging due to pre-analytical 

heterogeneity. This study reports an analytical approach to the largest multiparameter immunoprofiling 

study of clinical trial samples to date. We analysed 12,592 tissue microarray (TMA) spots from 3,545 

colorectal cancers (CRC) sourced from more than 240 institutions in two clinical trials (QUASAR 2 and 

SCOT) stained for CD4, CD8, CD20, CD68, FoxP3, pan-cytokeratin and DAPI by mIF. TMA slides were 

multi-spectrally imaged and analysed by cell-based and pixel-based marker analysis. We developed an 

adaptive thresholding method to account for inter- and intra-slide intensity variation in TMA analysis. 

Applying this method effectively ameliorated inter- and intra-slide intensity variation improving the image 

analysis results compared to methods using a single global threshold. Correlation of CD8 data derived 

by our mIF analysis approach with single-plex chromogenic immunohistochemistry (IHC) CD8 data 

derived from subsequent sections indicates the validity of our method (Spearman’s rank correlation 

coefficients ρ between 0.63 and 0.66, p-value ≪ 0.01) as compared to current gold standard analysis 

approach. Evaluation of correlation between cell-based and pixel-based analysis results confirms 

equivalency (ρ > 0.8, p ≪ 0.01, except for CD20 in epithelium region) of both analytical approaches. 

These data suggests that our adaptive thresholding approach can enable analysis of mIF-stained 

clinical trial TMA datasets by digital pathology at scale for precision immunoprofiling.  
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INTRODUCTION 
 

Immunoprofiling, the assessment of the density, state and spatial distribution of immune cells, is a 

crucial part of the examination of a tumour and its microenvironment [1]. Immunoprofiling can help to 

identify predictive markers for better assignment of patients to treatment with immune modulators such 

as immune checkpoint inhibitors [2,3]. Considering the potential for severe adverse effects of these 

therapies, improved patient stratification is an urgent need [4]. At a more fundamental level, 

immunoprofiling can also provide new insights into cancer biology and contribute towards a better 

understanding of tumour progression. Multiplex immunofluorescence (mIF) imaging is a powerful 

method for spatially visualising multiple biomarkers at a cell-level resolution on a single slide [5], [6], 

enabling comprehensive cell phenotyping in the cancer microenvironment as compared to standard 

single-plex immunohistochemistry (IHC) staining. However, immunofluorescence (IF) imaging is prone 

to imaging artefacts when applied to clinical samples [7]. These artefacts can be caused by pre-

analytical variation introduced by samples from multiple institutions, differences in fixation, embedding 

or by the imaging process [8]. During imaging, different types of fluorophores, exposure time, 

illumination intensity and bleaching effects can lead to variations in the resulting images [9]. Additionally, 

tissue-intrinsic fluorescence can distort the signal. In mIF imaging, channel cross-talk can add further 

complexity due to spectral overlap, which can be exacerbated when large panels are used due to the 

proximity of the different channels in the wave spectrum. Additionally, mIF staining and imaging 

technologies are cutting-edge technologies and, while single platforms themselves are standardised, 

no overarching standards across platforms exist. Therefore, considerable pre-analytical heterogeneity 

due to both staining and imaging of the histological slides can be frequently observed and the expected 

range of variation observed increases with the size and sample heterogeneity of the clinical cohorts 

under study. Tissue microarrays (TMAs) are a key tool for efficient analysis of large clinical trial cohorts 

[10] and allow simultaneous analysis of hundreds of patient samples on a single slide. TMA design 

including multiple punches from the same sample helps to capture intra-patient heterogeneity [11], 

making the downstream analysis more robust. Combining TMA technology with digital image analysis 

is an excellent approach to extract information from digitised TMA slides in a semi-automated manner 

[12]. Nevertheless, image analysis often relies on the assumption of relative homogeneity across the 

entire cohort which may not hold true for large multiplexed cohorts with samples from multi-centric 

clinical studies. Consensus approaches for quantitative image analysis in clinical cohorts are therefore 

of increasing importance as recognised by the consensus statement of the Society for Immunotherapy 

of Cancer (SITC) on best practices for multiplex IHC and IF staining and validation [13]. One method to 

handle signal variation by digital image analysis is pre-processing with the aim to normalise signal 

intensity and reduce signal variation within the dataset [14,15]. Ideally, normalisation reduces the impact 

of confounding pre-analytical factors while preserving biologically relevant heterogeneity. In the context 

of image analyses relying on thresholds, adaptive thresholding [16] can be applied to handle variation 

within a dataset instead of normalising the data beforehand. Adaptive thresholding denotes methods 

not using a single threshold for an entire dataset (global threshold) but choosing different thresholds 

(local thresholds) for different regions of analysis based on certain properties in the region to be 
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analysed and its environment, thereby better reflecting intra-sample (e.g., at the pixel level in a single 

image) and inter-sample variation (e.g., at the image level in a cohort with multiple images) introduced 

by staining and imaging heterogeneity.  

 

In this study, we develop a spatially resolved protocol for the detection and quantification of immune 

cells and systematically address different issues in the application of image analysis to multiplexed 

staining and imaging in application to the currently largest mIF clinical trial dataset reported in the 

literature. We report strategies for adaptive thresholding in the TMA setting when staining intensity 

varies substantially between and within images and systematically compare different strategies for cell-

level quantification using both traditional cell segmentation techniques as well as pixel-based 

quantification metrics for individual channels. Last, we test the consistency and methodological 

robustness of our approach by comparison of the multiplexed data to the current gold standard of single-

plex chromogenic IHC staining. The current study thus provides valuable data on the challenges and 

possible solutions for the quantitative image analysis of mIF data from clinical trials carried out in a 

series of institutions and multiple countries. 

 

MATERIALS AND METHODS 
 

Cohorts 
The cohorts under study consist of high-risk stage II and stage III CRC cases from two clinical trials: 

QUASAR 2 (Q2) [17] & SCOT [18]. Q2 investigated whether the addition of bevacizumab to 

capecitabine improves the three-year disease-free survival after surgery of histologically proven stage 

III or high-risk stage II CRC and included 1952 patients from 170 hospitals in seven countries. The 

SCOT trial investigated whether three months of oxaliplatin-containing adjuvant chemotherapy is non-

inferior to six months of the same treatment for high-risk stage II and stage III CRC. The SCOT trial 

included 6,088 patients from 244 centres in six countries: United Kingdom (England, Scotland, Wales 

and Northern Ireland), Denmark, Spain, Sweden, Australia and New Zealand. The CRC tissues from 

both trials were arranged into 79 TMA slides, containing 15,121 spots from 3,545 patients (between two 

and eight spots per patient; spot diameter 1.0 mm for Q2 and 0.6 mm for SCOT), see Table 1. SCOT 

tissue samples were processed at the NHS Greater Glasgow and Clyde. All TMA slides were stained 

with a Vectra Polaris Opal™ (Akoya Biosciences, Marlborough, MA, US) 7-plex IF panel (see Table 2) 

at the Translational Histopathology Laboratory, Department of Oncology, University of Oxford, United 

Kingdom. The multi-IF slides were processed by multispectral imaging on the Vectra Polaris (Akoya 

Biosciences, Marlborough, MA, USA) quantitative pathology imaging system at 20x magnification, 

spectrally unmixed using inForm (Akoya Biosciences, Marlborough, MA, USA) and stitched together 

using the HALO Image Analysis Platform (Indica Labs, Inc., Albuquerque, NM, USA), resulting in multi-

channel IF whole-slide images (WSI) with a resolution of 0.4976 µm per pixel. See Figure 1 for an 

example of a mIF image from the dataset and see Figure 2 for visualisations of the variation observed 

in the image dataset. 
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 Q2 SCOT Total 

Number of TMA slides 29 50 79 

Spot diameter 1.0 mm 0.6 mm — 

Number of spots 3,465 11,656 15,121 

Number of valid spots 2,650  9,942 12,592 

Number of cases 1,195 2,350 3,545 

Number of cases with valid 
spots 

1,120 2,350 3,470 

Number of spots per case 2 (120 cases) or 3 
(1,075 cases) 

4 (1,786 cases) or 
8 (564 cases) 

— 

Amount of analysed area 2,624.66 mm2 3,310.78 mm2 5,935.44 mm2 

Number of classified cells 17,886,688 — — 

Table 1: Dataset characteristics 
 

Fluorophore Excitation  Emission Marker Cell compartment Target of interest 

Spectral DAPI 368 nm 461 nm DNA nuclear Nuclei 

Opal™ 520 494 nm 525 nm CD4 membranous Helper T cells,  
Regulatory T cells 

Opal™ 540 523 nm 536 nm CD20 membranous B lymphocytes 

Opal™ 570 550 nm 570 nm CD8 membranous Cytotoxic T cells 

Opal™ 620 588 nm 616 nm FoxP3 nuclear Regulatory T cells 

Opal™ 650 627 nm 650 nm pan-
cytokeratin 

cytoplasmic Epithelial cells 

Opal™ 690 676 nm 694 nm CD68 membranous Macrophages 

Table 2: Marker panel 
 

Image Analysis 
The scanned TMA slides were analysed using HALO v3.4 (Indica Labs, Albuquerque, NM, USA). First, 

we segmented the TMA WSIs into square images of individual spots. Empty spots, spots with low 

amounts of tissue and spots with large staining artefacts (e.g. due to dust or air bubbles), blurry regions, 

tissue artefacts, tissue floaters or folds were excluded from the analysis. After exclusions, 12,592 valid 

spots remained in total for further analysis (for a detailed flow diagram according to REMARK guidelines 

[19] see Figure 3). We trained a deep learning algorithm for classification of the images into different 

regions, namely Tumour, Stroma, Muscle, Necrosis, Folds and Background using pathologist-validated 

tissue regions. For this purpose, we annotated a representative selection of each class and then trained 
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the algorithm (HALO AI DenseNet V2) with these annotations. While the tissue classes Tumour and 

Stroma represent the classes of interest for spatially resolving marker expression analysis, the classes 

Necrosis, Folds, Muscle and Background were used for the exclusion of non-informative regions. The 

marker analysis was performed using marker-specific binary thresholds to classify cells or pixels as 

positive or negative, depending on whether the marker signal intensity was above or below the 

threshold. Pan-cytokeratin was used for tissue classification only and was not quantitatively evaluated 

on the cell- or pixel-level. CD4 (Opal 520) was excluded from marker analysis due to a low signal-to-

noise ratio, especially in the epithelium area, where strong autofluorescence in the 500-550 nm range 

was observed. In a subset of slides in the SCOT cohort, we observed an increased bleed-through of 

the pan-cytokeratin channel (Opal 650) into the CD68 (Opal 690) channel. For these samples, 

intraepithelial CD68 data was excluded from further study. 

 

Cell-based marker analysis 
In the cell-based marker analysis approach, the marker expression is evaluated per cell based on the 

segmentation of individual nuclei using a pre-trained nuclei segmentation network from the HALO AI 

platform within the HALO HighPlex FL v4.0.3 analysis module. The baseline cell segmentation was 

refined by setting cell morphometry parameter constraints, such as nuclear size and roundness. The 

cytoplasm of each cell was defined as the region around the nucleus within a radius of 1 µm (or half the 

distance to the neighbouring cell nuclei, if the distance between two cells was lower than 1 µm). The 

marker expression was evaluated separately for each cell compartment (nucleus and cytoplasm).  We 

applied the cell-based marker analysis approach to the Q2 cohort for CD8, CD20 and FoxP3 with 

adaptive thresholding using slide-specific marker thresholds. We tested cell-based analysis for CD68, 

but based on the irregular shape and large cell size of macrophage infiltrates gave preference to pixel-

based analysis for CD68 from cell-based analysis in consistency with prior work [20]. 

 

Pixel-based marker analysis 
In the pixel-based marker analysis, the marker expression is not evaluated per cell or cell compartment 

but per pixel. A pixel was classified as marker-positive or -negative using the HALO AreaQuantification 

FL v2.1.10 analysis module. We applied the pixel-based marker analysis to the Q2 cohort and the SCOT 

cohort for CD8, CD20, CD68 and FoxP3 with adaptive thresholding using spot-specific marker 

thresholds.  

 

Statistical analysis 
The image analysis results were exported from HALO as .csv files and analysed in RStudio with R 

(version 4.1.2). The correlation between cell-based and pixel-based analysis results and the correlation 

between mIF-derived CD8 data and IHC-derived CD8 data was assessed using Spearman’s rank 

correlation test and expressed by Spearman’s correlation coefficient.  

 

RESULTS 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 16, 2023. ; https://doi.org/10.1101/2023.05.19.23290216doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.19.23290216
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

Development of Adaptive Thresholding Methods for TMA cohorts 
For developing an adaptive thresholding approach for application on large TMA cohorts, we extracted, 

separately for each marker, the average marker signal intensity for each slide in the cohort and the 

average marker intensity of each TMA spot. The slide-level average marker signal intensities were used 

to calculate the slide-specific marker thresholds. The spot-level average marker intensities were used 

for developing a method for calculating spot-specific marker thresholds. Due to their relatively small 

size, we considered individual TMA spots as sufficiently homogeneous to apply a single threshold on 

the entire spot. Based on the observation that global staining intensity gradients run smoothly across 

an entire slide, while spots with high intensity due to biological variation are distributed sparsely across 

the slide, we implemented a comparison with neighbouring spots to get a good estimation of the local 

background intensity while preserving the biologically relevant outliers. We tested different methods to 

aggregate the spot-level marker intensities into local marker threshold values for each single TMA spot 

including variation in the size of the neighbourhood that is taken into account for the calculation of the 

threshold of a single spot, and weighting of the influence of each spot during the calculation. The 

different methods were evaluated based on a systematic comparison with the ground truth defined by 

pathologist visual review identifying a combination of slide-specific and spot-specific thresholds as the 

optimal approach for TMA marker analysis to account for intra- and inter-slide intensity variation as 

described below. Visual assessment of the image analysis results with and without adaptive 

thresholding by pathologist experts showed that the analysis using adaptive thresholding achieved 

more accurate marker analysis and delineation of positive vs. negative pixels/cells (see Figure 4 for 

visualisations). 

 

Accounting for Inter-Slide Variation: Calculating Slide-Specific Thresholds 
For calculating slide-specific marker thresholds, we first extracted the mean marker signal intensity 

(mean intensity of all cells) for each slide in the cohort, separately for each marker. We defined a slide 

without noticeable artefacts that served as a reference and set the intensity thresholds 𝑇𝑇𝑚𝑚𝑅𝑅 for this 

reference slide based on pathology review, separately for each marker 𝑚𝑚. After that, the marker 

thresholds 𝑇𝑇𝑚𝑚𝑠𝑠  for the other slides were calculated based on the average intensity 𝐼𝐼𝑚𝑚𝑠𝑠  of the slide 𝑠𝑠 

compared to the average intensity 𝐼𝐼𝑚𝑚𝑅𝑅  of the reference slide: 𝑇𝑇𝑚𝑚𝑠𝑠 = 𝑇𝑇𝑚𝑚𝑅𝑅 ⋅  
𝐼𝐼𝑚𝑚𝑠𝑠

𝐼𝐼𝑚𝑚𝑅𝑅
 

 

Accounting for Intra-Slide Variation: Calculating Spot-Specific Thresholds 
For calculating marker thresholds for each TMA spot individually, we first extracted the average marker 

intensities (average intensity of all pixels) for each channel and TMA spot location. The threshold for 

each spot was calculated individually based on the marker intensity of the spot itself and that of its 

neighbouring spots. For the final analysis, the marker threshold 𝑇𝑇𝑚𝑚
𝑠𝑠,𝑖𝑖,𝑗𝑗 for the spot with position 𝑖𝑖, 𝑗𝑗 in the 

TMA grid of slide 𝑠𝑠 and marker 𝑚𝑚, was calculated as a weighted median of the intensity 𝐼𝐼𝑚𝑚
𝑠𝑠,𝑖𝑖,𝑗𝑗 (with the 

amount of valid tissue 𝑤𝑤𝑚𝑚
𝑠𝑠,𝑖𝑖,𝑗𝑗 serving as corresponding weight) of the spot itself and the intensities of all 

spots which lie within a square of side length 7 centred on the spot, multiplied with a marker-specific 

factor 𝐹𝐹𝑚𝑚: 𝑇𝑇𝑚𝑚
𝑠𝑠,𝑖𝑖,𝑗𝑗 = 𝐹𝐹𝑚𝑚 ⋅ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚({𝐼𝐼𝑚𝑚

𝑠𝑠,𝑘𝑘,𝑙𝑙 ,𝑤𝑤𝑚𝑚
𝑠𝑠,𝑘𝑘,𝑙𝑙}𝑖𝑖−3≤𝑘𝑘≤𝑖𝑖+3,𝑗𝑗−3≤𝑙𝑙≤𝑗𝑗+3). The median function was 
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chosen due to its property to be not affected by single outliers (in contrast to the mean function, which 

is heavily influenced by strong outliers). In our case, when spots with very high intensity compared to 

neighbouring spots are observed due to biological reasons, this property was extremely helpful, since 

we aimed to control for the background intensity and not to smooth the overall intensity values. The 

amount of valid tissue in each spot served as a weight for the calculation of the weighted median. Thus, 

spots with greater amounts of valid tissue, which are more informative, get more weight in the 

calculation, and empty or invalid spots were ignored for the threshold calculation.  

The marker-specific factors were set by visual assessment. The following values were set: 𝐹𝐹𝐶𝐶𝐶𝐶20 = 10, 

𝐹𝐹𝐶𝐶𝐶𝐶8 = 6, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3 = 8, 𝐹𝐹𝐶𝐶𝐶𝐶68 = 2.5. For the threshold calculation for CD68, whose analysis results are 

more sensitive to the choice of threshold, we added two additional features: 1) We noticed that for spots 

with high marker intensity, higher thresholds are more appropriate. Therefore, the weight of the centre 

spot (the spot for which the threshold is calculated) was multiplied by the number of neighbouring spots 

to give it equal weight as all the other spots together. 2) Since the spots at the boundary of the slides 

miss a balanced neighbourhood, we added a virtual complement for these spots, to achieve a balanced 

neighbourhood for all spots. For all positions where a spot is missing, we determined the marker 

intensity of the spot on the opposite side in the direction of the centre spot, subtracted the mean value 

of all present spots, and replaced the missing value with the result.  

 

Validation of Pixel-Based Analysis 
To check the robustness of the pixel-based marker analysis, we compared the distribution of the marker 

densities derived from pixel-based analysis (percentage of positive area per spot) between the Q2 

cohort and the SCOT cohorts (see Figure 5A). This comparison showed a similar distribution of the 

marker densities for both datasets, indicating consistency of the analysis results across both cohorts. 

For cross-validation of the pixel-based analysis against the cell-based analysis, we checked the 

correlation between the results of both analysis types. This comparison was performed on the 2,650 

TMA cores of the Q2 cohort. The correlation was calculated separately for the epithelium and the stroma 

tissue due to their different characteristics regarding bleed-through and marker expression. The 

correlation between the number of positive cells and the size of the positive area (in µm2), were 

calculated by Spearman’s rank test (Spearman’s correlation coefficient ρ, see Figure 5B). For CD8 and 

FoxP3 we determined a very strong correlation both in the stroma and the epithelium tissue (ρ ≥ 0.9). 

For CD20, a very strong correlation in the stroma (ρ > 0.9), and a moderate correlation in the epithelium 

(ρ = 0.59) was observed. In concordance with the clinical importance of the densities of positive cells 

per area and the percentage of positive area per total area, we also calculated the correlation between 

the densities of positive cells (cells per mm2) and the percentage of the positive area from the total area 

(see Figure 5C). We found a very strong correlation in both tissue compartments (ρ > 0.9) for CD8. For 

FoxP3 and CD20, a very strong correlation in the stroma (ρ > 0.9) was seen, whereas a strong 

correlation for FoxP3 in the epithelium (ρ = 0.84) and a moderate correlation for CD20 in the epithelium 

(ρ = 0.57) was observed. For all groups, the p-value is close to 0 (p ≪ 0.01). For the exact Spearman’s 

correlation coefficient, we refer to Figure 5B-C. 
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Validation of Multiplex Analysis 
For CD8, we compared the pixel-based analysis results in the Q2 cohort against IHC measurements 

from the same cohort provided by [21]. In consistency with the IHC data, we aggregated the spot-level 

data into case-level data by adding up spot-level cell numbers and area counts and calculated density 

measurements on a case level. We then compared the mIF-derived number of CD8+ cells and amount 

of CD8+ area across the whole tissue area with the IHC-derived number of CD8+ cells per spot and the 

corresponding fraction of CD8+ cells by IHC of the total number of cells or per total area, respectively. 

For all comparisons we see a moderate correlation (ρ between 0.63 and 0.65, with p ≪ 0.01), see 

Figure 6. 

 

DISCUSSION 
 

Digital pathology and multiplexed staining are important tools for efficient analysis of clinical trial 

datasets. This is recognised by the recent consensus statement of the Society for Immunotherapy of 

Cancer (SITC) on best practices for multiplex IHC and IF staining and validation [13]. However, the 

evaluation of large cohorts with high-content image data is often compounded by a notable signal 

variation between as well as within images introduced by pre-analytical and analytical variables. The 

need for the development of standardised approaches for multiplexed IHC and IF output is equally 

recognised by the SITC but has not yet been addressed in guideline format. To address the unique 

challenges of multiplexed imaging datasets on clinical trial samples sourced from multiple institutions, 

we developed an adaptive thresholding method to account for both inter-slide and intra-slide variation 

in TMAs by digital pathology, improving the image analysis results compared to methods using a single 

global threshold. By comparing the results of cell-based marker analysis and pixel-based marker 

analysis, we show that a pixel-based marker analysis is a valid alternative to cell-based marker analysis, 

both when comparing the absolute number as well as density calculations of marker-positive cells. 

Further, by comparing the mIF image analysis results against the orthogonal IHC image analysis 

results, we show that the results of our image analysis are in line with established gold-standard 

methods and promise to confer the same prognostic impact. 

 

This study demonstrates the value of pixel-based marker analysis in application to two large clinical trial 

datasets. Since a pixel-based analysis approach does not require cell segmentation, this approach 

enables quantitative analysis also for cell types with irregular shapes and sectioning artefacts as well 

as on images with insufficient nuclear signal, either intentionally left out or corrupted by error. Malesci 

et al. applied a pixel-based analysis approach for quantification of macrophage density and showed 

that a high density of macrophages in the tumour microenvironment was significantly associated with 

better prognosis in patients treated with 5-fluorouracil adjuvant therapy [20]. We show that there is a 

strong rank correlation between the results of the pixel-based analysis and the cell-based analysis, both 

with respect to absolute measurements as well as density measurements. The moderate correlation of 

CD20 in the epithelium might be affected by the very low CD20+ values in this tissue compartment 

where even small deviations between both measurements lead to numerically stronger effects in the 
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correlation measurement. Taken together, these results indicate that pixel-based analysis is a valid 

approach for mIF fluorescence-stained slides even in the setting of moderate to large pre-analytical 

variation. Thus, we provide a solid reason for applying pixel-based analysis for marker analysis and 

provide evidence that these results can be directly compared with studies based on cell-based analysis. 

 

Normalisation and adaptive thresholding are two closely related concepts, i.e. global thresholding on a 

normalised dataset can be also carried out as adaptive thresholding on non-normalised dataset. In the 

present study, we introduce and validate different approaches for adaptive thresholding. To account for 

inter-slide variation in cohorts stained by multiplexed IF imaging, different approaches are previously 

described. Raza et al. [22] presented a method for pre-processing normalisation of multiplexed 

fluorescence images using linear min-max-normalisation after noise filtering. Chang et al. [23] proposed 

a method accounting for inter-slide variation in multiplexed IF images, which is based on the definition 

of mutually exclusive markers. Thereby, they derived a set of cells which are assumed to be negative 

and serve as the basis to derive the background intensity level. Harris et al. [24] tested different data 

transformation and normalisation methods for accounting for inter-slide variation in multiplexed IF 

images. They found that for inter-slide variation, a division by the mean of the slide is the most accurate 

normalisation method while maintaining biological signals. This is in line with our method for accounting 

for inter-slide variation. However, none of these methods account for intra-slide variation in large 

cohorts, which not only consists of marker intensity variation between different images but also notable 

intensity variation within each slide. In this setting, it is not sufficient to compensate for inter-slide 

variation, but additional consideration of intra-slide variation is required.  

 

To the best of our knowledge, no adaptive thresholding approach exists to address the considerable 

intra-slide variation in mIF TMA datasets including samples from a multitude of patients, institutions and 

regions. In the present work, we consider the image of each spot as a single image and develop an 

approach which accounts for inter-image variation specifically for the TMA spot images. Previously 

reported local thresholding methods mostly work on pixel-level and take into account the mean, median, 

minimal, maximal, and/or standard deviation value of a local neighbourhood of pixels for deciding 

whether a given pixel is considered as negative or positive [25]. Due to the nature of TMA slides, pixel-

level adaptive thresholding methods are not suitable for application in this use case: If the chosen 

neighbourhood size is too small (smaller than the spot diameter), the background intensity gradient 

running across the whole slide is not captured. If the chosen neighbourhood size is larger than the spot 

diameter, the resulting data can be skewed by the large background area typical for TMA slides. Our 

proposed method accounts for inter- and intra-slide variation and solves the drawback of pixel-level 

adaptive thresholding methods by only taking into account tissue regions for the calculation of the spot-

level thresholds. The method could be considered as an adapted median local thresholding approach 

applied to the TMA spots by considering each TMA spot as a single data point.  

 

Previous reports present analyses of retrospective population-based mIF CRC TMA cohorts with 927 

and 746 included patients respectively [26,27]. We are not aware of any other multiplex CRC clinical 
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trial cohorts of comparable size or complexity in terms of the number of patients included, participating 

institutions or regional variation as in the present study. The analysis approach using digital pathology 

methods in combination with automated marker quantification allowed immunoprofiling in a high-

throughput manner. Further, the availability of orthogonal data by the current gold-standard single 

marker IHC allowed direct cross-validation of our proposed image analysis approach, which is an 

additional strength of our study. As quantitative cell-based image analysis allows to link cellular identity 

(e.g., lineage marker expression) to a defined x-y location on the slide, future efforts could focus on 

determining the precise spatial relationship of specific immune cells to cancer cells in their immediate 

proximity (e.g., by nearest neighbour analysis) in the context of clinical outcomes. 

 

However, our study has also some limitations. The applicability of our adaptive thresholding methods 

to other multiplex cohorts will have to be further tested and validated for other markers with different 

expression patterns. The intra-slide adaptive thresholding method is based on individual spot images 

and therefore not a priori applicable to non-TMA WSIs. While the cell-based analysis approach allows 

capturing concurrent marker-positivity for each cell individually, the pixel-based analysis approach did 

not allow us to capture multi-positive pixels, thus limiting the applicability to settings where the accurate 

quantification of well-defined lineage or functional markers is of central interest. Further technical 

optimisation of staining and imaging protocol may be addressed in the future to increase signal-to-noise 

ratio and reduce observed bleed-through artefacts, hereby enabling extended marker analysis. 

 

In conclusion, pixel-based analysis and adaptive thresholding methods enable a reliable analysis of 

multiplex image cohorts showing large pre-analytical heterogeneity. Since this allows extraction of 

valuable information from images with pre-analytical signal heterogeneity and out-of distribution 

properties, this promises a broader application of digital image analysis in clinical trial datasets and 

facilitates the integration with clinical data. Our proposed adaptive thresholding approach accounts for 

variation within TMA slides and offers a method for analysing TMA images across large cohorts with 

considerable signal intensity variation between and within slides. Further, we provide evidence that 

pixel based approaches have increased robustness for the quantification of challenging marker sets or 

technical settings while the quantitative results remain robustly comparable to the current gold-standard 

approach of cell-level segmentation and quantification. 
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FIGURES 
 

 
Figure 1: Example of 7-plex colorectal cancer TMA spot image from Q2 cohort 
A. All channels combined. B-H. Individual marker channels (pCK: pan-cytokeratin). I. Autofluorescence. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 16, 2023. ; https://doi.org/10.1101/2023.05.19.23290216doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.19.23290216
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 
Figure 2: Intensity variation across the dataset 
A. Average intensities per slide and marker across the dataset. B. Examples of CD8 staining (Opal 570) 

of different slides from the Q2 cohort illustrating inter-slide variation of single marker channels. Both 

images were taken with the same view settings. C. Example of CD20 staining (Opal 540) of a slide from 

the SCOT cohort illustrating intra-slide variation of single marker channels. E. Spot with distortion of 

nuclear signal (bottom row) compared to spot without distortion of nuclear signal (top row). Left: all 

channels except DAPI; right: DAPI channel. All images were taken with the same view settings. 
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Figure 3: Schematic analysis workflow 
Schematic visualisation of the analysis workflow and corresponding numbers of included/excluded 

spots and cases based on manual quality control (QC). 
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Figure 4: Visual comparison of image analysis with and without adaptive thresholding 

A. Example from the Q2 cohort for cell-based marker analysis (CD8) with and without slide-specific 

thresholding. The two spots are sourced from different slides. Left: original image (blue: DAPI channel; 

orange: CD8 channel; magenta: pan-cytokeratin channel); middle: cell-level markup using suggested 

slide-specific threshold; right: cell-level analysis markup using slide-specific threshold suggested for the 

other spot, simulating global thresholding. Cells marked as marker-positive are indicated by orange 
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cytoplasm in the analysis markup. B. Example from the SCOT cohort for pixel-based marker analysis 

(CD68) with and without spot-specific thresholding. Both spots are from the same slide. Left: original 

image (turquoise: CD68 channel; magenta: pan-cytokeratin channel); middle: pixel-level markup using 

suggested spot-specific threshold; right: pixel-level analysis markup using spot-specific threshold 

suggested for the other spot, simulating global thresholding. Pixels marked as CD68-positive are 

indicated by turquoise colour in the analysis markup. 
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Figure 5: Pixel-based analysis: Density distribution and comparison with cell-based analysis 
A. Comparison of the density distribution across the Q2 and the SCOT cohort. B. Comparison of 

absolute measurements: number of positive cells versus the amount of positive area, separated per 

marker and stromal/epithelial compartment, in the Q2 cohort. C. Comparison of density measurements: 

number of positive cells per area versus the amount of positive area in relation to the total area, 

separated per marker and stromal/epithelial compartment, in the Q2 cohort. 
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Figure 6: Comparison of multiplex analysis with orthogonal method in Q2 cohort 
Comparison of mIF-derived with IHC-derived data about CD8-positivity. Top row: comparison of 

absolute measurements. Bottom row: comparison of density measurements. Left column: comparison 

with cell-level mIF data. Right column: comparison with pixel-level mIF data.  
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