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Summary

The broad adoption of electronic health records (EHRs) provides great oppor-
tunities to conduct healthcare research and solve various clinical problems in
medicine. With recent advances and success, methods based on machine learn-
ing and deep learning have become increasingly popular in medical informatics.
Combining data from multiple modalities may help in predictive tasks. To as-
sess the expectations of multimodal data, we introduce a comprehensive fusion
framework designed to integrate temporal variables, medical images, and clinical
notes in Electronic Health Record (EHR) for enhanced performance in down-
stream predictive tasks. Early, joint, and late fusion strategies were employed to
effectively combine data from various modalities. Model performance and con-
tribution scores show that multimodal models outperform uni-modal models in
various tasks. Additionally, temporal signs contain more information than CXR
images and clinical notes in three explored predictive tasks. Therefore, models
integrating different data modalities can work better in predictive tasks.

Keywords: Electronic Health Records, Multimodal Deep Learning, Risk
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Introduction

Electronic Health Records (EHRs) are longitudinal electronic records that
contain comprehensive information about a patient’s health, including struc-
tured data like demographics, vital signs, and laboratory test results, as well as
unstructured data such as clinical notes and reports. The United States health-
care system, for example, serves more than 30 million patients each year, and
over the seven years between 2008 and 2015, the adoption rate of at least a Ba-
sic EHR system by non-Federal acute care hospitals increased significantly from
9.4% to 83.8%1. As of 2021, 78% of office-based physicians and 96% non-federal
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acute care hospitals adopted a certified EHR2. This widespread use of EHRs
presents an exceptional opportunity for healthcare researchers to carry out data
mining and machine learning studies.

Machine learning and deep learning techniques have gained popularity in the
healthcare industry due to recent advances and successes3, 4, 5. They hold great
promise in deriving meaningful insights from Electronic Health Records (EHRs),
which can aid in accurately predicting clinical outcomes, such as mortality6 and
readmission6, 7. Predicting these outcomes can improve healthcare and lower
costs. Numerous research studies have utilized these techniques to develop pre-
dictive models based on EHRs. Typically, vital signs, lab test results, and
medication information are used in these models. However, utilizing additional
information available during patient admissions, such as clinical notes and ra-
diography outputs, can significantly improve model performance.

In this study, we concentrate on combining vital signs, lab tests, chest X-ray
radiography (CXR), and radiology notes produced during patient admissions
to enhance performance in risk prediction tasks. We proposed a general fusion
framework to combine EHR variables, CXR images as well as radiology note
text for downstream predictive tasks. We tested our model on the MIMIC-MM
dataset which is composed by joining MIMIC-IV, MIMIC-CXR, and MIMIC-
IV-Note datasets, and use shapley value to figure out the contribution of each
modality in tested predictive tasks.

To summarize, the contributions of our work are:

• We propose a multimodal fusion framework with 3 fusion strategies to
combine EHR (e.g., vital signs, lab tests) with CXR images and radiology
notes.

• We conduct experiments on real-world datasets and the experimental re-
sults in three tasks show that the fusion strategies outperform the uni-
modal models.

• We adopt the shapley value to estimate the contribution of each modality
and the results show that all modalities are helpful for risk predictions,
which further demonstrates the feasibility and effectiveness of the proposed
fusion strategies.

Related Works

Medical datasets are vast collections of patient health records from hospi-
tals, which typically encompass various aspects of patients’ health status, such
as demographic information, lab tests, vital signs, medical images, diagnosis
codes, notes, treatment and medication history, and discharge reports. Ana-
lyzing this data in a manner that is both efficient and effective and extracting
valuable insights from it can be quite appealing. With the advancement of
machine learning techniques and their demonstrated success in analyzing data,
researchers have increasingly utilized machine learning strategies in a variety of
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medical tasks, such as medical predictive modeling, medical recommendations,
disease diagnosis, and medical outcome prediction.

Works on tabular EHR variables. There are plenty of attempts to lever-
age electronic health records (EHR) for predictive modeling tasks. RETAIN3

applied reversed time attention produced by RNN to generate visit level and
variable level attention scores for EHR embedding vectors. It takes into ac-
count diagnosis, medication, and procedure events to generate input vectors.
Med2Vec4 learned EHR visit-level representation and medical codes by min-
ing visit sequence information and medical code co-occurrence information and
tested the representation by predicting future medical codes and Clinical Risk
Groups (CRG) level. Med-BERT5, BEHRT8, and G-BERT9 utilize a BERT-
based framework for EHR feature extraction and are employed in diagnosis
code or medication prediction tasks. G-BERT also takes into consideration the
hierarchical medical ontology structure of the ICD-9 code to enhance the em-
bedding. Ashfaq et al.7 leveraged LSTM on top of learned EHR embeddings to
predict 30-day readmission.

Works on multimodal data input. Medical datasets exhibit multimodal
characteristics, with different types of data such as lab tests and vital signs as
time-series variables, medical images, and clinical notes as unstructured text.
It is natural and promising to take advantage of complementary information
from heterogeneous data10. Zhang et al.6 integrated time series variables with
unstructured clinical notes in MIMIC-III to perform predictive modeling tasks,
using LSTM and CNN for sequential feature extraction. Golovanevsky et al.11

incorporated clinical test scores, genetic information (SNPs), and MRI scan im-
ages for Alzheimer’s disease diagnosis. They adapted cross-modal attention and
self-attention modules to capture intra- and inter-modality correlation. Huang
et al.12 utilized Electronic Medical Record (EMR) and CT scan images to de-
tect pulmonary embolism with three fusion methods and found that late fusion
modal outperformed others. Yao et al.13 concatenated selected clinical features
with 3D CT image features from CNN for pulmonary venous obstruction (PVO)
prediction. They generated a saliency map and claimed that multimodal mod-
els concatenated more on the pulmonary area roughly. Yan et al.14 conducted
breast cancer classification by combining pathological images and 29 selected
features. They concatenated hidden states from multiple CNN inner layers as
the image feature, applied a denoising autoencoder to obtain EMR features,
and concatenated features from images and EMR for classification. Nie et al.15

combined multi-channel medical images, demographical information and tumor-
related features for short overall survival (OS) time prediction. Soenksen et al.16

proposed an early fusion model experiments with tabular data, time series data,
text notes, and chest X-ray on Chest pathology diagnosis, Length-of-Stay pre-
diction, and 48-hour mortality prediction.

Previous research suggests that leveraging heterogeneous data holds great
promise in improving performance on downstream tasks, with early fusion being
the most common modality fusion method, where different features from multi-
modal inputs are directly concatenated as aggregated features for downstream
tasks. Additionally, joint fusion and late fusion strategies are also present in the
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field and worth exploring. Therefore, in this study, we conducted experiments
on three representative risk prediction tasks6 with three modality fusion strate-
gies: early fusion, joint fusion, and late fusion. The detailed definition of the
tasks and fusion strategies will be presented in the following sections. Further-
more, we aimed to quantify the contribution of each modality in each task with
Shapley values, which have been widely employed in the XAI field17, 18, 19.

Methods

This part describes the dataset we included for model training and evalu-
ation, the abstract patient record, and the specific prediction tasks we worked
on.

EHR data

From the tabular patient records in EHR database, we take patients’ demo-
graphic information as well as three types of events as input:

• Chart events refer to charted items that occurred during the patient’s
stay in ICU (e.g. Heart Rate).

• Lab events refer to laboratory measurements made for a single patient
(e.g. Glucose in Blood).

• Procedure events refer to procedures documented during the ICU stay
(e.g. Ventilation).

For demographic information, we consider age, gender, ethnicity, marital
status, language, and insurance condition. They are all categorial items except
for age. However, After converting age to a categorial feature by using 10-year
bins, all demographic features become categorial.

Following the existing work16, we focus on a set of selected variables. For
chart events, we select 6 numeric vital signs and 3 categorial features from the
original feature list. For lab events, we focus on 22 lab test items. For procedure
events, we take 10 specific operations. The full variable list can be found in Table
1. Here NBP means non-invasive blood pressure.

It is worth pointing out that for procedure events, it is categorial means it is
an instant operation, it is numeric means that it is a continuous operation and
keeps working for a period.

CXR data

One patient may have several medical radiology studies during admission
and take multiple radiographs in one study. Therefore, it is more reasonable to
regard medical image data as a special image time series. We use Chest X-ray
images (CXR) in our model as one example.

4

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 26, 2023. ; https://doi.org/10.1101/2023.05.18.23290207doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.18.23290207
http://creativecommons.org/licenses/by-nc-nd/4.0/


Clinical notes

There are various clinical notes during patient admission about their medi-
cal studies, diagnosis, discharge report, etc. For example, The MIMIC-IV-Note
Dataset contains radiology notes and discharge notes during patient admission.
The deidentified notes are provided in the unstructured free text together with
the note date. Since discharge notes may contain death information and diag-
nosis results, we just take the radiology notes from the dataset to avoid possible
overfitting.

Radiology notes contain note records for multiple imaging modalities: X-ray,
computed tomography, magnetic resonance imaging, ultrasound, etc. Therefore,
it is not only a supplement to the CXR modality but a complement to patient
admission.

Patient record configuration

Figure 1: Patient Record Overview. We use demographical information, multiple temporal
signs, chest X-ray images, and clinical radiology notes from the patient admission records and
each event has an exact timestamp indicating the exact time for that event (start and end
time for continuous event).

We can construct and formalize the multimodal patient record by joining
EHR records, CXR records and Note records on patient id and admission id. A
patient P in the dataset is identified by a patient id Ip and an admission id Ia.
the record of the patient denoted as Rp is a tuple

(Ip, Ia, Dp, Ep, Cp, Np)

here Dp is the demographic information of the patient.
Ep = (c, l, p) is the EHR record of the patient, it consists of three types of

events: chart events c, lab tests l, and procedure events p. c and l are two sets
of variables, a variable v is a set of timestamped value v = {(valuei, ti)|ti ∈ Tv},
Tv is the set of observed time for variable v. The value type of variables can be
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either numeric (which is R) or categorial (which is a finite set). p = (oi, oc) is the
union of instant and continuous operations, oi is the set of instant operations
with the form (f, t) where t is the time for the operation f ; oc is the set of
continuous operations with the form (f, ts, te) where ts denotes start time and
te denotes end time.

Cp = {(Mi, ti)|ti ∈ Tcxr} is the CXR record of the patient, it is a set of
timestamped CXR images. Here Tcxr is the set of CXR study time for the
patient. Every Mi is a three dimension tensor Mi ∈ RH×W×C where H,W,C
refer to height, weight, and channel.

Np = {(ni, ti)|ti ∈ Tnote} is the Note record of the patient, a set of times-
tamped radiology notes. Tnote is the set of chart time of the patient’s notes. ni

is a string of the deidentified clinical notes.
The overview of patient records is shown in Figure 1. In a nutshell, the

patient record is the combination of static demographic information and multiple
time series.

Neural Network Architecture

We introduce the designed architecture of our general predictive model in
this section. The model can be decomposed into data processing, embedding,
modal feature extraction, time series representation, classifier, modal fusion
module, and optional attention module. Based on different fusion strategies,
there are 3 models tested: early fusion, joint fusion, and late fusion.

Data processing and embedding

The length of stay and number of events vary a lot between patients. The
ranges of value of each variable are also different. Therefore, we need to further
process the data before the prediction. Additionally, the variable time series are
further embedded into vectors to get better representations.

The process for CXR images is simple. The original CXR images are large
grayscale images. In order to fit images into our ResNet feature extractor, we
resized them to 224×224 and duplicated them across 3 input channels.

For free text notes, typical NLP transformations are applied to convert nat-
ural sentences to token lists. All words in the note are converted to lowercase
and tokenized to form a word sequence, punctuations are removed. For exam-
ple, a sentence like ”History of diarrhea and malaise, now with cardiac arrest.”
will become a sequence: history, of, diarrhea, and, malaise, now, with, cardiac,
arrest.

Given a patient EHR record (Dp, Ep), we first transform it to

E′
p = {(d, ct, lt, pt, t)|t ∈ Tp}

where Tp is the set of all time points that the patient has event record at,
including all chart event time points, all lab event time points, all instant
operation time point, and all continuous operation start time point. ct =
{(ki, vi)|ki is observed at t} and lt = {(ki, vi)|ki is observed at t} are the
sets of observed variables and their values at time t, pt is the set of operations
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that the patients get at time t. Instant operations occur once in some pt, Con-
tinuous operations occur in all pt that have t between the operation start time
and end time.

After the EHR record transformation, we use three kinds of embedding:
variable embedding, value embedding, and time embedding20.

Variable embedding encodes what the variable is into a vector, different
variables have different embedding vectors.

Value embedding encodes the value of variables into a vector. For catego-
rial variables, including demographic features, value embedding is a map from
the variable value range set to a real value vector. For numeric variables, we
discretize the values into V sub-ranges according to all observed values in the
database ensuring that each sub-range gets equal frequency. Then for sub-range
1 ≤ v ≤ V , it is embedded into a vector ev ∈ R2k by

evj = sin(
v × j

V × k
)

evk+j = cos(
v × j

V × k
)

(1)

where 1 ≤ j ≤ k.
Time embedding is similar to value embedding. Timestamps are also dis-

cretized and embedded like variable values.
Thus, given the event that a numeric variable v = val at time t, we can

get variable embedding ev ∈ Rd, value embedding eval ∈ Rd, time embedding
et ∈ Rd, where d is predefined embedding size. Then we use a linear function
to map the concatenation [ev, eval] ∈ R2d to evar ∈ Rd as the embedding of this
event, a numeric variable v = val. Moreover, demographic variables don’t have
timestamps, so we just get the embedding of the variables and values.

With the embedding method, given a patient P at time t, there can be mul-
tiple events at this time. so we use adaptive max pooling to extract important
information from those embeddings. Recall that for any variable and its value,
we have the embedding evar ∈ Rd. Therefore, the set of events at time t forms
a set of embedding {evari |vari observed at t}. Adding demographic embedding
eD ∈ Rd, we get a embedding matrix Et ∈ R∗×d. After adaptive max pooling,
we get the event embedding at time t as E′

t ∈ Rd. Then we concatenate it with
time embedding et and get the final record embedding at time t as E′′

t ∈ R2d.

Modal feature extraction

After data processing and embedding, we use neural network architecture to
extract features from them and produce feature vectors for classification.

We use ResNet for image feature extraction. the original classification head
of ResNet is substituted with a Linear layer that generates feature vectors in
R2d from the output of the convolution layers. For any patient P , we get
Ecxr ∈ R|Tcxr|×2d as the features of CXR images at different timestamps, here
Tcxr is the set of CXR image timestamps. After that, we do a weighted sum of
|Tcxr| feature vectors according to the time gap between their timestamps and
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the patient’s admission time. Given image features I = (M1,M2, · · · ,Mn)
T ∈

Rn×2d and their time gap from admission t1, t2, · · · , tn, their weighted sum over
time is defined as:

Êcxr = softmax(t1, t2, · · · , tn)I ∈ R2d

the weighted sum is taken as the final feature vector extracted from CXR
records.

For free text notes, we train a Doc2Vec module21 with notes in the training
set to serve as a feature extractor of the free text modality. For the patient
P , Enote ∈ R|Tnote|×2d is produced to serve as the feature vector time series
corresponding to the patient note sequence. Given the feature series, we fur-
ther capture the element correlation and sequence characteristic by an LSTM
network22. Given Enote = (n1, n2, · · · , nn)

T ∈ Rn×2d, we fed it through an
LSTM network and do max-pooling over all hidden states to generate a single
feature vector containing information from the entire sequence:

h1, h2, · · · , hn = LSTM(note1, note2, · · · , noten)
Ênote = maxpooling(h1, h2, · · · , hn) ∈ R2d

(2)

EHR features are more relevant to the time dimension. Hence, we use a
bidirectional LSTM network for its ability to recall long-term information. As
mentioned above, after the embedding procedure, the record at time t can be
represented as E′′

t ∈ R2d. Thus, for any patient P , we have Eehr ∈ R|Tehr|×2d

where Tehr is the set of EHR event timestamps. We put it into a bidirectional
LSTM network, the procedure can be described as follows:

−→
h1,
−→
h2, · · · ,

−→
hT =

−−−−→
LSTM(E′′

1 , E
′′
2 , · · · , E′′

T )
←−
h1,
←−
h2, · · · ,

←−
hT =

←−−−−
LSTM(E′′

1 , E
′′
2 , · · · , E′′

T )

hi = concat[
−→
hi ,
←−
hi ], ∀i ∈ {1, 2, · · · , T}

(3)

Here
−−−−→
LSTM and

←−−−−
LSTM are the forward pass and backward pass of bidirectional

LSTM respectively. T is an abbreviation for |Tehr|.
−→
hi ,
←−
hi ∈ Rd, hi ∈ R2d.

After the LSTM layer, we keep the most important information in the series
h1, h2, · · · , hT by max pooling and take the output as the final feature vector
extracted from EHR records.

Êehr = maxpooling(h1, h2, · · · , hT ) ∈ R2d

Classifier

The classifier is built on top of the extracted feature to classify them into
negative class (class 0) and positive class (class 1). The meaning of the two
classes varies according to the predictive task we work on. For example, in in-
hospital mortality prediction, negative means the patient was alive at discharge,
and positive means the opposite.
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We employ the linear classifier for all model settings. The linear classifier is
a simple fully connected layer of the form

fcls(x) = xWcls + bcls

where Wcls ∈ Rk×2 is the weight and b ∈ R2 is the bias. the input x and its
length k depend on the fusion method we use. With joint or early fusion, x =
concat[Êehr, Êcxr] and k = 4d, and with late fusion, x = concat[predcxr, predehr]
and k = 4. We will explain more about the fusion method next.

The output of the classifier is followed by the softmax function to get the
predicted probabilities of each class and the cross entropy is used to measure
the classification loss.

Multimodal fusion

Based on the feature vector extracted from the former steps, inspired by
Kline et al.10 and following the definition of23, we employed three fusion strate-
gies to fuse the CXR feature and the EHR feature and generate prediction based
on the two vectors. The methods are early fusion, joint fusion, and late fusion.

Early fusion joins feature vectors of multiple modalities before feeding them
into the classification network. In practice, we directly concatenate the features
to form a single feature vector. After that, we fed it into the classifier and get
classification results. In this case, the input dimension of the classification layer
is the sum of modality feature dimensions, 6d in our case. For any prediction
task, The feature extractor is trained on each modality respectively and gener-
ates feature vectors for training the classifier. After separate pretraining, the
feature vectors from each modality are used to train the classifier with unimodal
feature extractors fixed. The process is shown in Figure 2.

Figure 2: Early fusion model structure. The feature extractors of each modality are trained
in advance on the target tasks. After the convergence of separate training, extractors with
the best AUROC score on the testing dataset are fixed to extract patient features from each
patient sample. The features are used to train the final classifier.

Joint fusion combines the learned features from intermediate layers of dif-
ferent neural networks for different modalities. The difference between joint
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fusion and early fusion here is that early fusion leverages invariant features pre-
trained on each modality respectively while joint fusion trains an end-to-end
model that propagates gradients to each feature extractor from the classifier.
The network structure is nearly the same as early fusion but the training strat-
egy is different. Directly concatenation is also used here to construct multimodal
feature vectors so the input dimension of the classification layer is also 6d. The
structure of joint fusion is shown in Figure 3.

Figure 3: Joint fusion model structure. The feature extractors are directly connected to the
classifier and trained together in one go. The training starts from the random initialization of
both feature extractors and classifier, then is trained end-to-end on the multimodal dataset.

Late fusion trains different classifiers for modalities respectively and com-
bines their uni-modal prediction to form a global multimodal prediction. It
resembles ensemble learning and is also known as decision-level fusion. There
are different styles of assembling predictions, we select averaging in our imple-
mentation. The strategy is shown in Figure 4.

Now we can reach a conclusion about our proposed multimodal prediction
model. Just as Figure 2, 3, 4 shows, the original data undergoes pre-processing,
encoding(embedding), feature extraction, modal fusion, and classification to
generate final predictions.

Experiment and Discussion

Data description

Medical Information Mart for Intensive Care IV (MIMIC-IV) contains data
from hospital stays for patients who were admitted to the Beth Israel Deaconess
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Figure 4: Late fusion model structure. There are three classifiers attached to each feature
extractor for each modality. The predictions of all three modalities are aggregated by calcu-
lating the average to produce the final prediction. The late fusion model was also trained in
an end-to-end manner.

Medical Center (BIDMC) between 2008 and 2019. MIMIC-IV is separated
into five modules: core (patient stay information), hospital (laboratories and
microbiology), ICU data (ICU stays and events), emergency department, and
CXR (lookup tables to allow linking to MIMIC-CXR).

MIMIC-CXR is a large publicly available database of patient chest radio-
graphs collected from the BIDMC emergency department between 2011 and
2017. It contains 227,835 X-ray studies for 64,588 patients. Each study may
contain multiple images from different view positions and in total there are
377,110 radiographs. Every study also has an associated free-text radiology
report, written at the time of the study.

MIMIC-IV-Note is an extension of MIMIC-IV on free text clinical notes. Us-
ing the same inclusion criteria, MIMIC-IV-Note provides deidentified radiology
notes and discharge notes for each patient admission. It contains 331,794 deiden-
tified discharge summaries from 145,915 patients admitted and 2,321,355 dei-
dentified radiology reports for 237,427 patients. All note records in the database
can be linked to MIMIV-IV by patient and admission id numbers.

We use MIMIC-IV-MM16 to train our model. MIMIC-IV-MM is generated
by joining MIMIC-IV, MIMIC-CXR, and MIMIC-IV-Note on the triplet of pa-
tient subject id, hospital admission id, and ICU-stay id.

MIMIC-IV-MM can be seen as an intersection of the three datasets. There-
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fore, only patients with records in all datasets are included in our study. Patient
records in datasets are combined to form a universal multi-modal patient record
in our study. It is worth mentioning that we treat different hospital admission
of the same patient as different samples in the study and ignore the possible
correlation between them.

Dataset Statistics

Here we list some overall statistics of the MIMIC-IV, MIMIC-CXR, MIMIC-
Note, and MIMIC-MM datasets in Table 2, including the sample number of EHR
records, CXR records, and joint patient samples. Also, the number of positive
samples of each task and ratio are listed.

Cohort preparation

Based on the MIMIC-IV, MIMIC-CXR, and MIMIC-IV-Note datasets, we
evaluated our proposed models on the in-hospital mortality prediction, long
length of stay prediction, and readmission prediction. Patients that are in all
datasets are included. In these patients, patients that have no event records
within the first 48 hours of their admission are removed. After that, there are
12,217 unique patients left, and the distribution over classes is shown in Table
2.

Predictive tasks

We select some prediction problems for our model test. They are all binary
classification problems. The detailed definitions of these problems are stated
below.

In-hospital mortality prediction

Mortality prediction is recognized as one of the primary outcomes of interest.
The overall aim of this task is to predict whether a patient passes away during
the hospital stay. for any patient, we use events, images, and notes within
the first 48 hours from admission as input to the predictive model and generate
binary classification indicating whether the patient passes away at discharge. We
report the F1 score, the area under the receiver operating characteristic curve
(AUROC), the area under the precision-recall curve (AUPRC) of the positive
class, precision, recall, and the overall accuracy to measure the performance of
the model on this task.

Long length of stay prediction

The length of patient stay refers to the length of time from a patient’s
admission to discharge. Identifying possible long hospital stays helps in hospital
resource management. For simplicity, we formalize the length of stay problem
as a binary classification. With observed events, images, and notes in the first
48 hours of admission, the model tries to decide whether the patient will stay in
the hospital for more than 7 days24. Positive samples are patients that stay for
more than 7 days and all other patients are negative samples. The same criteria
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(AUROC, AUPRC, precision, recall, accuracy) are employed to evaluate model
performance. To show a clear margin between methods, we delete samples that
have a stay time shorter than 3 days.

Hospital readmission prediction

It is reported that 13% of the inpatients in the US consume more than half
of the hospital resources by readmission25. Therefore, it is helpful to have a pre-
dictive model to support better readmission prevention and patient satisfaction.
We define hospital readmission as unplanned admission within 30 days following
the initial discharge6, which is a binary classification task. Patient data records
within the first 48 hours from admission are collected to predict if the patient
will be readmitted within 30 days from discharge. The same criteria (AUROC,
AUPRC, precision, recall, accuracy) are used to evaluate model performance.

Implementation details

The model is implemented with PyTorch. All experiment configurations use
the weighted cross-entropy loss as the loss function, with 1 for the negative class
and 10 for the positive class (15 in CXR partial case). Models are optimized
with the Adam optimizer and 0.001 learning rate until they converge for about
20˜30 epochs. For evaluation, we use a 0.72-0.13-0.15 train-validation-test split.
During every epoch, the model is trained and validated once, and the model
with the highest AUROC score on the validation set is saved and chosen as the
final output model. The result is tested with the saved model on the test set,
which is never used during the training phase.

Results

In this section, we report the performance of the proposed models on the
three tasks: in-hospital mortality prediction, long length of stay prediction, and
hospital readmission. For the modality ablation study, We regard EHR as the
main modality, CXR, and note as additional ones. Therefore, besides three
unimodal experiments (denoted as partial in the result table below), we did
experiments on EHR + CXR (E + C), EHR + Note (E + N), and EHR + CXR
+ Note (E + C + N). After showing the performance metrics, we provide the
Shapley value as a measurement of the contribution of each modality.

Model performance

The results are shown in Table 3, 4, and 5. It is shown in the table that EHR
variables works the best for the three tasks, but the performance can be boosted
with additional modalities. The improvement with additional modalities is also
consistent over the three fusion strategies.

Shapley value calculation

Shapley value is a concept in cooperative game theory that distributes the
total surplus reached by the player coalition to every coalition member. The
value is constrained by a collection of axioms so that it is the unique solution
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satisfying the constraints. This concept is also widely used in explainable AI to
explain the contribution of features and samples, etc. Given a coalitional game
defined by a set N of n players and a characteristic function v : 2N → R that
maps player subsets to real number values with v(∅) = 0, the Shapley value of
player 1 ≤ i ≤ N is defined as

ϕi(v) =
∑

S⊆N−{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S))

, which can be seen as a weighted sum of all v(S), S ⊆ N .
Shapley value has many properties, one of which is called the efficiency rule:∑

i∈N ϕi(v) = v(N). This means that the Shapley values of all players add up
to the total profit gained. Therefore, we can normalize the Shapley value of all
players so that they add up to 1, then the normalized Shapley value shows the
proportion of contribution from each player in the game.

In this section, we take every modality as a player and calculate the con-
tribution of each modality by the Shapley value. We regard the classification
task as a cooperative game, the AUROC each modality subset reached is the
characteristic function so that we can distribute the final AUROC to each input
modality. Calculating the Shapley value needs the AUROC on all possible sub-
sets of modalities, including the empty set. We let AUROC be 0 on the empty
set. The Shapley value of each modality on all three tasks is shown in Figure 5.

Discussion

It is worth pointing out that F1 score, precision, recall, accuracy, AUROC,
and AUPRC are reported for evaluation. The performance is highly task-related
and relies on the distribution of the dataset. We can get several insights from
the experiment results above.

Unimodal performance comparison. Among unimodal models, EHR
variables perform better than images and notes in all three tasks. Although get
a slightly lower AUROC in 30-day readmission prediction, EHR performance
surpasses the other two modalities by a considerable gap with all other perfor-
mance metrics. The possible reason is that EHR data contains vital features
(e.g., vital signs) that can directly reflect the patient’s health status. On the
other hand, Chest X-ray images alone may not be sufficient for accurately pre-
dicting long length of stay and 30-day readmission. Its performance is also the
lowest in mortality prediction. The reason might be that chest X-ray image only
shows the condition of the lungs and may not provide a comprehensive view of
the patient’s overall health status.

Multimodal performance boost. It is a general trend that models with
multimodal inputs tend to earn higher AUROC and AUPRC scores than uni-
modal ones due to complementary information from multiple sources, even
though EHR partial model can get comparable F1 scores, precision, recall, and
accuracy. Moreover, models with three modalities tend to earn higher perfor-
mance than those with two modalities in many situations and have comparable
results even if they are not the best.
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Figure 5: shapley value of each modality in different configurations. The values are calculated
based on the AUROC score of each fusion method on each task. The shapley value of the three
modalities is normalized so that they add up to 1, which indicates the percentage contribution
of the modality in the model performance.

Fusion strategy comparison. Late fusion outperforms early and joint
fusion in AUROC and AUPRC metrics, possibly due to its ability to leverage
ensemble learning to mitigate overfitting issues. Additionally, late fusion pro-
vides equal attention to all three modalities, which aids in fine-tuning the three
modality branches. However, no single strategy dominates all performance met-
rics tested, indicating that there is no consistent trend in model performance
and that it may vary depending on the task at hand.

Modality contribution discussion. Figure 5 shows that EHR variables
contribute the most to the three tasks, and CXR contributes the least. The
contribution distribution of modalities tends to be consistent across all three
fusion methods for each task, while slightly different for different tasks. For
mortality prediction, EHR has a contribution close to 40% while CXR and Notes
have a similar contribution of about 30%; For the long length of stay prediction,
a larger contribution gap is present and there is a 0.45-0.33-0.22 contribution
distribution on EHR-Note-CXR; For 30-day readmission, EHR and Note have
comparable contribution and CXR helps less.
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Conclusion

In this paper, we proposed a general framework that can integrate EHR
records, medical images, and clinical notes with 3 different fusion strategies and
generate feature vectors for downstream predictive tasks. Performance on the
three prediction tasks shows that extra modalities improve the performance on
predictive tasks. Additionally, by calculating the contribution proportion of
each modality with shapley value, we found that EHR variables are the most
helpful in the three tasks.

Note that the proposed framework can be easily adjusted to can be readily
adjusted to fit both existing risk prediction models and tasks related to risk pre-
diction. The framework is also compatible with more advanced fusion methods
other than direct concatenation. For example, we can try weighted sum or ten-
sor product to merge feature vectors from different modalities. It is also worth
exploring to generate more fine-grained contribution explanations for variables
and pixels from the input data samples.
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category items type

demographic

Age numeric
Gender categorial

Ethnicity categorial
Marital Status categorial

Language categorial
Insurance Condition categorial

chart events

Heart Rate numeric
NBP systolic numeric
NBP diastolic numeric

NBP mean numeric
Respiratory Rate numeric

O2 saturation pulseoxymetry numeric
GCS - Verbal Response categorial

GCS - Eye Opening categorial
GCS - Motor Response categorial

lab events

Glucose numeric
Potassium numeric

Sodium numeric
Chloride numeric

Creatinine numeric
Urea Nitrogen numeric
Bicarbonate numeric
Anion Gap numeric
Hemoglobin numeric
Hematocrit numeric
Magnesium numeric

Platelet Count numeric
Phosphate numeric

White Blood Cell numeric
Calcium, Total numeric

MCH numeric
Red Blood Cells numeric

MCHC numeric
MCV numeric
RDW numeric

Neutrophils numeric
Vancomycin numeric

procedure events

Foley Catheter numeric
PICC Line numeric

Peritoneal Dialysis numeric
Dialysis - CRRT numeric
Dialysis Catheter numeric

Hemodialysis numeric
Intubation categorial

Bronchoscopy categorial
EEG categorial

Chest Tube Removed categorial

Table 1: Full Selected Variable List of MIMIC-IV
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Total Samples Positive Negative Positive rate

Modalities
EHR samples 31088
CXR (patients/images) 12785/25362
Note (patients/notes) 23796/63289

Task
Distribution

In–hospital mortality 11636 1521 10115 0.131
Long length of stay 10195 6137 4058 0.602
30-day readmission 11636 494 11142 0.042

Table 2: Data Statistics for datasets

Modality AUROC AUPRC F1 Precision Recall Acc

Partial
EHR 0.752 0.439 0.40 0.34 0.490 0.81
CXR 0.656 0.232 0.31 0.21 0.560 0.67
Note 0.706 0.303 0.33 0.24 0.510 0.73

Late
E+C 0.760 0.452 0.41 0.33 0.550 0.80
E+N 0.799 0.407 0.44 0.33 0.660 0.78
E+C+N 0.823 0.495 0.47 0.37 0.640 0.81

Joint
E+C 0.816 0.465 0.42 0.29 0.800 0.72
E+N 0.811 0.470 0.46 0.39 0.540 0.83
E+C+N 0.821 0.471 0.36 0.23 0.860 0.60

Early
E+C 0.788 0.438 0.40 0.31 0.580 0.78
E+N 0.770 0.449 0.43 0.34 0.590 0.80
E+C+N 0.794 0.470 0.47 0.46 0.480 0.86

Table 3: Performance result of different fusion methods and modality combination on in-
hospital mortality prediction
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Modality AUROC AUPRC F1 Precision Recall Acc

Partial
EHR 0.720 0.800 0.72 0.72 0.71 0.66
CXR 0.468 0.584 0.59 0.59 0.58 0.50
Note 0.643 0.740 0.67 0.68 0.67 0.61

Late
E+C 0.730 0.809 0.72 0.74 0.71 0.67
E+N 0.733 0.815 0.72 0.74 0.71 0.67
E+C+N 0.736 0.817 0.72 0.75 0.70 0.67

Joint
E+C 0.732 0.811 0.73 0.74 0.72 0.68
E+N 0.736 0.816 0.74 0.75 0.73 0.68
E+C+N 0.738 0.814 0.72 0.73 0.71 0.67

early
E+C 0.725 0.805 0.72 0.73 0.71 0.66
E+N 0.734 0.815 0.73 0.75 0.72 0.68
E+C+N 0.736 0.817 0.73 0.75 0.72 0.68

Table 4: Performance result of different fusion methods and modality combination on the long
length of stay prediction

Modality AUROC AUPRC F1 Precision Recall Acc

Partial
EHR 0.540 0.060 0.11 0.11 0.10 0.92
CXR 0.478 0.042 0.02 0.02 0.03 0.91
Note 0.552 0.050 0.05 0.05 0.05 0.92

Late
E+C 0.563 0.065 0.09 0.08 0.09 0.91
E+N 0.588 0.064 0.12 0.11 0.13 0.92
E+C+N 0.577 0.073 0.12 0.12 0.13 0.92

Joint
E+C 0.538 0.063 0.10 0.09 0.10 0.91
E+N 0.576 0.070 0.11 0.11 0.12 0.92
E+C+N 0.553 0.062 0.10 0.10 0.10 0.92

early
E+C 0.547 0.059 0.11 0.10 0.12 0.91
E+N 0.578 0.056 0.05 0.05 0.05 0.91
E+C+N 0.575 0.057 0.05 0.04 0.05 0.91

Table 5: Performance result of different fusion methods and modality combination on hospital
readmission prediction
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