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Abstract 

Tumor mutational signatures are informative for cancer diagnosis and treatment. However, 

targeted sequencing, commonly used in clinical settings, lacks specialized analytical tools and a 

dedicated catalogue of mutational signatures. Here, we introduce SATS, a scalable mutational 

signature analyzer for targeted sequencing data. SATS leverages tumor mutational burdens to 

identify and quantify signatures in individual tumors, overcoming the challenges of sparse 

mutations and variable gene panels. Validations across simulated data, pseudo-targeted 

sequencing data, and matched whole-genome and targeted sequencing samples show that SATS 

can accurately detect common mutational signatures and estimate their burdens. Applying SATS 

to 111,711 tumors from the AACR Project GENIE, we created a pan-cancer mutational signature 

catalogue specific to targeted sequencing. We further validated signatures in lung, breast and 

colorectal cancers using an additional 16,774 independent samples. This signature catalogue is a 

valuable resource for estimating signature burdens in individual targeted sequenced tumors, 

facilitating the integration of mutational signatures with clinical data.  

 

Introduction 

Tumors accumulate somatic mutations that form specific patterns, known as mutational 

signatures1,2. These signatures reveal the mutational processes driving carcinogenesis and can 

guide both the detection3-5 and treatment6-9 of cancer. To decipher these mutational signatures, 

multiple algorithms have been proposed10-14, and catalogues of reference mutational signatures 

have been established for tumors analyzed through whole exome or whole genome sequencing 

(WES/WGS) in research settings1,2. 

 

Analyzing mutational signatures in clinical settings poses unique challenges due to the 

widespread use of diverse targeted sequencing panels. These panels, targeting cancer driver 

genes with therapeutic relevance, generate sparser mutation data compared to WES/WGS. 

Traditional de novo signature extraction10-12 or signature refitting methods13,14, optimized for 

WES/WGS, are not feasible to use with these limited data. In fact, de novo signature extraction 

requires a large number of samples with identical sequencing regions, which is rarely achievable 

with diverse targeted panels. Signature refitting, useful for limited samples (e.g., a single tumor), 

relies on pre-established reference signatures from WES/WGS data to estimate signature 

activities. The accuracy of this method depends on selecting reference signatures that are present 

in the sample, while excluding those that are not, to avoid misassigning mutations to irrelevant 

signatures15. However, the reference signatures found in WES/WGS tumors may miss signatures 

present in targeted sequenced tumors (e.g., treatment-induced) or may include rare signatures 
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unlikely to be present in targeted sequencing. Additionally, patient populations undergoing 

WES/WGS in research settings might differ from those undergoing targeted sequencing in real-

world clinical settings, particularly for subjects under treatment, with rare cancer subtypes, or 

from underrepresented populations lacking WES/WGS data, which further complicates the 

application of traditional methods and WES/WGS-based reference signatures. 

 

Recently, clustering methods have been proposed for detecting specific mutational signatures in 

targeted sequenced tumors. For example, the SigMA16 algorithm is tailored to detect the HRD-

associated signature SBS3, requiring pre-training with WGS data from individual tumors. 

However, this method detects just one signature, not multiple active mutational signatures 

simultaneously. The Mix17 method, presents an alternative clustering strategy that does not rely 

on pre-training. However, it estimates signature activities at the cluster level rather than in 

individual samples. Hence, specialized analytical methods and a comprehensive catalogue of 

mutational signatures tailored to targeted sequenced tumors are needed. 

 

Here, we introduce SATS (Signature Analyzer for Targeted Sequencing), a mutational signature 

analysis tool explicitly developed for targeted sequencing data. Unlike existing methods 

optimized for WES/WGS, SATS accounts for the variable size and genomic context of targeted 

gene panels and leverages large sample sizes of targeted sequencing studies. Our tests with 

simulated data, pseudo-targeted sequencing data generated by down-sampling whole exome and 

genome data, and matched WGS and targeted sequencing data showed that SATS outperforms 

other methods in detecting mutational signatures and estimating their burdens. Applying SATS, 

we established a pan-cancer catalogue of mutational signatures in 111,711 targeted sequenced 

tumors from a real-world clinico-genomic cancer registry, the AACR (American Association for 

Cancer Research) Project GENIE (Genomics Evidence Neoplasia Information Exchange, version 

13.0-public, described below)18,19. Additionally, we validated the mutational signatures of lung, 

breast and colorectal cancers in an additional 13,425 samples from a newer version (15.1) of the 

AACR project GENIE, and confirmed signatures of lung and colorectal cancers in an 

independent Chinese cohort of 3,349 targeted sequenced tumors20. Finally, we show that through 

integration with clinical data, mutational signatures derived from targeted sequencing can 

identify the potential tissue of origin for tumors of unknown primary, find signatures enriched in 

early-onset hypermutated colorectal cancers, and serve as a biomarker for cancer immunotherapy 

response.  

 

Results 

Building a targeted sequencing-based mutational signature catalogue using SATS 

SATS is developed for targeted sequencing to detect mutational signatures within a patient 

cohort and refit detected signatures to estimate signature burdens in individual patients. While 

we use single base substitutions (SBS) for the purpose of illustration, SATS is also adaptable to 

other types of somatic mutations, such as double base substitutions (DBS).  

 

In analyzing SBS mutational signatures, SATS uses a mutation type matrix 𝐕 as input that 

contains the counts of SBS across 96 mutation types within 32 trinucleotide contexts, such as a C 

to G mutation at the trinucleotide context TCT (i.e., a T[C>G]T mutation type). Additionally, 

SATS incorporates a panel context matrix 𝐋 that specifies the number of trinucleotide contexts 

where a specific mutation type (e.g., TCT for T[C>G]T substitutions) could potentially occur in 
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the targeted genes. SATS is based on a Poisson Nonnegative-Matrix Factorization (pNMF) 

model (Methods). The pNMF model decomposes the mutation type-by-patient matrix 𝐕 into a 

mutation type-by-signature matrix 𝐖 that describes signature profiles and a signature-by-patient 

matrix 𝐇 that quantifies signature activities, while adjusting panel sizes by the panel context 

matrix 𝐋 (Fig. 1a). 

  

SATS comprises signature detection and signature refitting steps as outlined in Fig. 1b. In the 

signature detection phase, SATS first employs signeR11 to discover de novo signatures from a 

targeted sequencing patient cohort. signeR is based on the pNMF model and adjusts for 

differences in the sizes of gene panels (Supplementary Note). Next, the de novo signature 

profiles are mapped to reference signatures from the pan-cancer COSMIC catalogue1 using 

penalized nonnegative least squares (pNNLS)21. This allows to identify reference signatures that 

are present within the de novo signature profiles. Notably, these reference signatures can 

originate from any cancer type featured in the pan-cancer catalogue, not restricted to the specific 

cancer type of the patient cohort. During the signature refitting stage, we have developed an 

Expectation–Maximization (EM) algorithm, refitting the detected reference signatures to 

estimate signature activities in individual patients. Given that a variety of mutations can 

contribute to a mutational signature, we further estimate the expected number of mutations 

attributed to a reference signature, termed the signature burden, for each patient (Methods). 

 

While direct detection of mutational signatures in a single patient is challenging, SATS can 

effectively estimate signature burdens at an individual level by adapting (“refitting”) signatures 

previously identified in a large group of patients who have the same type of cancer and have 

been subjected to targeted sequencing. To enable this feature, we have compiled a pan-cancer 

catalogue of mutational signatures specific to targeted sequencing by analyzing 111,711 tumors 

from the AACR Project GENIE.  

 

The AACR Project GENIE is a publicly accessible cancer registry that provides real-world 

clinico-genomic data. The registry (version 13.0-public) includes 111,711 primary or metastatic 

tumors collected from 16 hospitals or cancer centers (Fig. 1c), representing diverse populations: 

55,973 Asians (5.3%); 5,545 Blacks (5.0%); 78,003 Whites (69.8%); 5,311 individuals from 

other racial groups (4.8%); and 16,879 individuals of unknown race (15.1%). This diversity 

ensures representative sampling of the cancer patient populations at the participating institutions. 

The registry encompasses 102 cancer types, grouped into 23 analysis cancer type groups (See 

Supplementary Note), including 14,983 lung and 12,144 breast tumors (Fig. 1d). It features 757 

subtypes of different cancers as defined by OncoTree22, which is much more comprehensive than 

subtypes analyzed in previous studies. For instance, while the TCGA ovarian cancer study23 

focuses on high-grade serous ovarian cancer, the AACR Project GENIE dataset involves 34 

ovarian cancer subtypes, including high-grade serous ovarian cancer, clear cell ovarian cancer, 

low-grade serous ovarian cancer, and endometrioid ovarian cancer, among others (Fig. 1e). In 

summary, the AACR Project GENIE offers a comprehensive and representative dataset for 

examining targeted sequencing-based mutational signatures across diverse cancer types and 

subtypes in real-world clinical settings. 
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SATS identifies signatures of tumor mutation burden 

One key advancement of SATS lies in its ability to discern signatures of tumor mutation burden 

(TMB), circumventing the requirement of identical genomic region sequenced across tumor 

samples for mutational signature analysis. SATS achieves this through approximating 𝐕 by 𝐋 ∘
𝐖𝐇 (i.e., 𝐕 ≈ 𝐋 ∘ 𝐖𝐇), where ∘ denotes element-wise product. SATS allows for the analysis of 

diverse gene panels, each covering different sequenced genomic regions, by using the panel 

context matrix 𝐋 (measured in megabase (Mb) pairs) to account for these differences. The 

resulting signature profile matrix 𝐖 thus characterizes TMB signatures. In contrast, conventional 

mutational signature analysis algorithms implicitly require identical sequenced regions across 

tumor samples (e.g., through WES or WGS). These algorithms employ the canonical NMF 

method to factorize a mutation type matrix 𝐕 into a 96 × 𝐾 signature profile matrix 𝐖′ and a 

𝐾 × 𝑁 signature activity matrix 𝐇′ (i.e.,𝐕 ≈ 𝐖′𝐇′). Thus, the estimated 𝐖′ delineates tumor 

mutation count (TMC) signatures. Since TMB signature profiles account for the variability in 

mutation context across different panels (Supplementary Fig. 1), whereas TMC signature profiles 

do not (Methods), TMB signatures are particularly useful for studies involving multiple different 

targeted gene panels. 

 

We compared the shape of TMB and TMC signature profiles using the Shannon equitability 

index (Methods). A higher index value corresponds to a flatter signature profile, whereas a lower 

value indicates a distinct or spikier profile. Although TMB and TMC signature profiles are 

largely similar (Pearson correlation coefficient r = 0.915, Supplementary Fig. 2a), there are 

notable exceptions. For example, the TMC SBS5 profile (Shannon equitability index EH = 0.941) 

is relatively consistent across all 16 trinucleotide contexts of C to T mutations, whereas the TMB 

SBS5 profile (EH = 0.903) shows increased C to T mutations at the NCG trinucleotides (N 

represents any nucleotide, Supplementary Fig. 2b), since these trinucleotides are depleted in the 

human genome due to frequent deamination of 5-methylcytosine to thymine24,25 (Supplementary 

Fig. 2c). In addition, TMB signature SBS10b and SBS15 (EH = 0.192 and 0.391 respectively) 

exhibit more pronounced spikes compared to their TMC counterparts (EH = 0.491 and 0.624 

respectively, Supplementary Fig. 2d).   

 

Factors impacting signature detection and signature burden estimation by SATS  

We investigated factors that may affect the performance of SATS in detecting signatures and 

estimating signature burdens. These factors include the size of the targeted gene panels, the 

prevalence of the signatures, the shape of the TMB signature profile (measured by the Shannon 

equitability index), and the cancer types. We generated pseudo-targeted sequencing data SBSs 

that were called in The Cancer Genome Atlas (TCGA) WES studies1,26 and located in the regions 

covered by various targeted sequencing panels (Methods). In addition, we generated pseudo-

targeted sequencing data based on 560 breast tumors27 with WGS data (Methods and 

Supplementary Fig. 3a). Our analysis focused on common signatures contributing more than 5% 

of SBSs based on WES or WGS analyses for a given cancer type. While the sample size could 

also impact signature detection, we could not assess it using limited pseudo-targeted sequencing 

data. Thus, we conducted in silico simulations to examine the impact of sample size. 

 

First, we analyzed pseudo-targeted sequencing data based on WES and showed that SATS is 

capable of detecting common signatures, though detection probabilities vary across cancer types, 

targeted gene panels, and the specific signatures. For instance, larger gene panels generally 
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uncovered more signatures (Fig. 2a). Additionally, there was an inverse relationship (r = -0.452) 

between the detection probability of a signature and its Shannon equitability index (Fig. 2b). This 

suggests that “spikier” signatures are more likely to be detected than “flatter” ones, consistent 

with observations based on WES/WGS data9. To simultaneously quantify the impact of these 

factors on the detection probabilities, we applied a generalized linear mixed model (GLMM) that 

included cancer type, panel size, signature prevalence, and the Shannon equitability index of the 

signature (Methods). Our results revealed that cancer types accounted for 53.26% of the variance 

of detection probabilities at the logit scale (Fig. 2c). This is because certain cancer types possess 

more distinctive and easily distinguishable signatures. Additionally, cancer types with high TMB 

(e.g., lung squamous cell carcinoma, median TMB: 10.07 mutations/Mb) had a higher 

probability of signature detection compared to those with lower TMB (e.g., thyroid 

adenocarcinoma, median TMB: 0.47 mutations/Mb). Within a specific cancer type, GLMM 

indicated that spikier (odds ratio (OR) = 0.962, 95% confidence interval (CI) = 0.956-0.967 for a 

0.01 increase of the Shannon equitability index, Fig. 2d) and more prevalent (OR = 1.12, 95% CI 

= 1.14-1.27 for a one percent increase of signature prevalence) signatures are more detectable, 

especially when using large gene panels (OR = 1.21, 95% CI = 1.14-1.27 for 1Mb increase in 

gene panel size). This conclusion was also evident in our analysis of pseudo-targeted sequencing 

data based on WGS (Supplementary Fig. 3b). This finding helps explain the challenge in 

detecting signatures in thyroid adenocarcinoma, where spikier signatures like SBS1 are less 

common (the prevalence 6.58%), while the most common signature, SBS5 (28.26%), is flat and 

may be confused with other flat signatures like SBS3 or SBS40. 

 

Next, we evaluated the signature refitting steps of SATS for estimating signature burdens - the 

number of mutations attributed to each signature. We compared the signature burdens calculated 

using WES1 with these estimated using SATS from pseudo-targeted sequencing data of the same 

tumors (as an example, see Supplementary Fig. 4a for SBS4 in lung cancer based on the MSK-

IMPACT468 panel). A strong correlation between the two would indicate that targeted 

sequencing panels are a feasible alternative to WES for assessing signature burdens. We found 

that the median Pearson correlation coefficient was 0.7 for panels with sizes greater than 1Mb 

(Fig. 2e), with higher correlation coefficients for certain signatures, such as SBS4 in lung 

adenocarcinoma (r = 0.91) and SBS7a and SBS7b in melanoma (r = 0.98 and 0.95 respectively, 

Supplementary Fig. 4b and 4c). Similar results were also observed in pseudo-targeted sequencing 

data based on WGS (Supplementary Fig. 3c). 

 

It is important to note that the sample sizes for pseudo-targeted sequencing data, which consist of 

hundreds of tumors, are significantly smaller than those for available targeted sequenced tumors, 

which include thousands of tumors. As a result, the number of mutational signatures detected in 

pseudo-targeted sequencing data is restricted. To explore the impact of sample size on mutational 

signature detection, we conducted in silico simulations with varying sample sizes, using breast 

cancer as a case study (consisting of 12 mutational signatures with at least 1% prevalence in the 

TCGA breast cancer study, Supplementary Fig. 5a).  We simulated the mutation burden of 96 

SBS mutation types for up to 1 million tumors across 21 different targeted sequencing panels, 

each with the size larger than 1Mb (Methods). In this way, we could use the "truly" mutational 

signatures present in in silico simulations as benchmarks. Our findings demonstrated that as the 

number of targeted sequenced tumors increases, SATS can eventually detect almost all common 

mutational signatures (>5% prevalence) in breast cancer, including the HRD-associated signature 
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SBS3, while maintaining a low false positive rate (Supplementary Fig. 5b, detailed in the 

Supplementary Note). This study underscores the importance of sample size in the extraction of 

mutational signatures from targeted sequenced tumors, as detecting certain signatures might 

necessitate a larger cohort of samples.  

 

Evaluation of SATS and other methods by in silico simulations 

To assess the performance of SATS in mutational signature detection and burden estimation, we 

conducted in silico simulations, comparing it with other methods. Using signature profiles and 

distributions of signature activities from the AACR Project GENIE, we simulated mutation type 

matrices for lung, breast, colorectal, and lymphoid-derived hematologic cancers (Methods).  

 

First, we ran SATS, SigProfilerExtractor12 and Mix17 to detect signatures and compared the 

detected signatures to the ‘prespecified signatures’ used in the simulations. We observed that 

SATS could accurately detect most prespecified signatures, except for few flat or rare signatures. 

For lung and breast cancers, SATS identified all nine prespecified signatures in every replicate 

(Fig. 3a). In colorectal cancer, SATS detected five out of six prespecified signatures in all 

replicates, with SBS44 being more elusive. SBS44, as the second flattest signature in colorectal 

cancer, is challenging to distinguish from the common flat signature SBS5. In lymphoid-derived 

hematologic cancer, all prespecified signatures were detected. The only false positive signatures 

in four cancer types were SBS10c and SBS92 in colorectal cancer for one replicate. In contrast, 

SigProfilerExtractor and Mix failed to detect signatures SBS29 and SBS89 in lung cancer (Fig. 

3a). SigProfilerExtractor did not identify SBS44 in colorectal cancer, and Mix missed the 

majority of signatures in lymphoid-derived hematologic cancer. Besides false negative 

detections, SigProfilerExtractor incorrectly identified SBS24 in lung cancer and SBS7b in 

lymphoid-derived hematologic cancer. These results suggest that SATS outperforms 

SigProfilerExtractor and Mix in signature detection for targeted sequenced tumors, effectively 

identifying most prespecified signatures with minimal false positives. 

 

Next, we applied SATS, SigProfilerAssignment14 and Mix17 to estimate signature burdens, 

comparing these estimates with the simulated “ground truth”. SATS showed high accuracy in 

estimating burdens for common or spiky signatures, such as SBS2/13 in breast cancer (r = 0.96, 

Fig. 3b), SBS4 in lung cancer (r = 0.86) and SBS10a and SBS10b in colorectal cancer (r = 0.99 

for both). However, the correlation was lower for flatter or rarer signatures, such as SBS89 in 

breast cancer (r = 0.55) and SBS6 in colorectal cancer (r = 0.74). The correlations for signature 

burdens estimated by SigProfilerAssignment and Mix were generally lower than those by SATS, 

particularly for signatures like SBS6 in colorectal cancer and SBS84/SBS87 in lymphoid-derived 

hematologic cancer (Fig. 3b). Overall, these results suggest that SATS can more accurately 

estimate signature burdens for the majority of signatures than other methods. 

 

Finally, we investigated the impact of including irrelevant signatures in signature refitting. 

Simulating breast cancer targeted sequencing data using signatures SBS1, SBS2/13, and SBS5, 

we performed signature refitting using 12 signatures (including the three true signatures) from 

TCGA WES breast cancer study. We found that a considerable proportion of mutations were 

incorrectly attributed to non-existent signatures in the simulated data (Supplementary Fig. 6). 

This result emphasizes the importance of choosing an appropriate set of refitted signatures, 
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tailored for targeted sequencing, to enhance the accuracy of signature refitting in targeted 

sequencing studies.  

 

Evaluation of SATS and other methods in tumors with both WGS and targeted sequencing 

We further assessed SATS using 72 kidney tumors that had undergone both whole genome 

sequencing and targeted sequencing28. Due to the sample size constraints, we focused on refitting 

the common signatures to estimate their burdens in the targeted sequencing data using SATS, 

SigProfilerAssignment14, Mix17 and deconstructSigs13. The common signatures included SBS1, 

SBS5, and SBS40, all of which had been identified in kidney tumors from the AACR Project 

GENIE, as well as through WGS-based mutational signature analyses of 72 kidney tumors28. 

 

Our analysis showed a consistent correlation between the estimated burdens of flat signatures 

(SBS5/40) from targeted sequencing and those from WGS across all methods. Specifically, we 

observed that samples with a higher burden of mutations attributed to flat signatures in targeted 

sequencing also had a higher burden of these signatures in WGS (Fig. 3c left panel; Wilcoxon P-

value = 2.48 x 10-3, 2.35 x 10-7, 2.35 x 10-7, 1.79 x 10-8 for SATS, SigProfilerAssignment, Mix 

and deconstructSigs, respectively). However, for the less frequent signature SBS1, the 

association of signature burdens was observed only in SATS (Fig. 3c right panel; Wilcoxon P-

value = 3.62 x 10-7). SigProfilerAssignment and deconstructSigs assigned zero burdens to SBS1 

in all samples but one for SigProfilerAssignment, while Mix categorized all samples as one 

cluster with minimal SBS1 signature burdens. This indicates the limitations of other refitting 

methods in accurately estimating burdens for less common signatures like SBS1 in targeted 

sequencing data. 

 

The pan-cancer repertoire of targeted sequencing-based mutational signatures 

We applied SATS to create a pan-cancer repertoire of SBS signatures based on the targeted 

sequenced tumors in the AACR Project GENIE. This repertoire can serve as a valuable resource 

for refitting mutational signatures derived from targeted sequencing, even for a single tumor.  

 

First, we examined the signature prevalence for individual cancer types (Methods). A significant 

share of the mutations in many cancer types was found to be attributable to flat signatures 

(SBS3/5/40), with some notable exceptions (Fig. 4a top panel). Specifically, skin cancer or 

melanoma is primarily characterized by UV-induced signatures (SBS7a/7b), while endometrial 

cancer is dominated by signatures related to DNA mismatch (SBS6/14/15) and replication repair 

deficiency (SBS10a/10b). Additionally, APOBEC-induced signatures (SBS2/13) are most 

frequent in bladder cancer, whereas tobacco- and APOBEC-induced signatures (SBS4/29 and 

SBS2/13, respectively) dominate in lung cancer. 

 

Next, we evaluated the presence of mutational signatures for individual cancer types (Methods). 

Our analysis revealed the ubiquitous presence of SBS1, caused by deamination of 5-

methylcytosine to thymine, and flat signatures (SBS3, SBS5 and SBS40 combined) across all 

cancer types (Fig. 4a bottom panel). In contrast, other SBS signatures were cancer type specific. 

For instance, signatures of endogenous processes such as SBS2/13 (APOBEC cytosine 

deaminases), SBS6/14/15/44 (mismatch DNA repair deficiency) and SBS10a/b/c (polymerase 

epsilon (POLE) exonuclease domain mutations) were observed in nine, eight, and nine cancer 

types, respectively. Signatures associated with environmental exposures, such as SBS4/29 
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(smoking or tobacco-chewing) and SBS7a/b (UV radiation), were found in lung cancer, head and 

neck cancer, skin cancer/melanoma or soft tissue cancer, and cancers of unknown primary. We 

also detected signatures associated with treatment, including SBS11 in glioma, SBS32 in 

pancreatic cancer, and thiopurine chemotherapy treatment-induced signature SBS87 in 

lymphoid-derived hematologic cancer29. Signature SBS11 is caused by temozolomide, a 

common chemotherapeutic agent for glioma30. Signature SBS32, previously found in skin 

cancers31, is caused by azathioprine used to treat autoimmune conditions. Although signature 

SBS32 has not been previously identified in pancreatic cancers, there are reports which associate 

azathioprine with acute pancreatitis32,33, a known risk factor for pancreatic cancer34,35. 
 

In addition to SBS signatures, we generated a pan-cancer repertoire of DBS mutational 

signatures for targeted sequenced tumors (Fig. 4b bottom panel). We found seven DBS 

signatures, which exhibited a low mutation burden (less than one mutation per mega base, Fig. 

4b top panel). We observed that the DBS1 signature, associated with UV exposure, is present in 

head and neck cancer, skin cancer or melanoma, soft tissue cancer, and cancers of unknown 

primary, consistent with the presence of UV exposure SBS signatures in these cancer types. 

Furthermore, the DBS2 signature, associated with smoking, was identified in bladder and lung 

cancers. We also observed DNA repair deficiency-associated signatures DBS3 in non-colorectal 

bowel cancer. 

 

Validation of targeted sequencing-based mutational signatures 

To validate the targeted sequencing-derived mutational signature catalogue, we analyzed an 

additional 13,425 tumors (6,280 lung, 5,056 colorectal, and 2,089 breast tumors) from a newer 

version (15.1) of the AACR Project GENIE, excluding ones in the original analysis (GENIE 

version 13.0). Other cancer types had insufficient samples for validation. We observed high 

replication for established signatures, with SBS1, SBS2/13, SBS4/29, SBS5, SBS40, and SBS89 

being consistently detected in lung cancer; SBS1, SBS2/13, SBS5, and SBS40 in breast cancer; 

and SBS1, SBS5, SBS6, SBS10a, and SBS10b in colorectal cancer (Fig. 5a). Only SBS44 was 

absent from the GENIE validation set of colorectal cancers. This high replication rate indicates 

the reliability of the targeted sequencing-based mutational signature catalogue across these three 

cancer types. The GENIE validation analysis identified additional signatures, SBS94 in lung 

cancer and SBS10c and SBS15 in colorectal cancer. However, when we analyzed the entire 

GENIE version 15.1 dataset including ones in the original analysis, SBS94 was no longer 

detected in lung cancers, suggesting a false positive finding. Conversely, SBS10c, SBS15, and 

SBS44 were identified in colorectal cancers using more samples. This observation agrees with in 

silico simulations, highlighting the potential for discovering additional signatures while reducing 

false positive findings with increased sample size. 

 

In another validation study, we analyzed the signatures in an independent cohort of 2,143 lung 

cancers and 1,206 colorectal cancers from Chinese patients20. Sample size of breast cancer (306 

tumors) was too small for validation. Similar to the GENIE validation study, most established 

signatures were validated, including SBS1, SBS2/13, SBS4/29, SBS5, SBS40, and SBS89 in 

lung cancer, and SBS1, SBS5, SBS6, SBS10a, and SBS10b in colorectal cancer (Fig. 5b). SBS3, 

a signature highly similar to SBS5, was detected in the Chinese lung cancer validation set, while 

SBS44 was absent from the Chinese colorectal cancer validation set. These findings not only 

replicated the most established signatures but also implied the potential generalizability of the 

targeted sequencing-based mutational signature catalogue across different races and ethnicities. 
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Applications of targeted sequencing-based mutational signatures 

We provide here examples of utilizing targeted sequencing-based mutational signatures 

generated by SATS to address important clinical questions. 

 

Identification of tissue of origin for tumors of unknown primary. The distinct presence and 

prevalence of targeted sequencing-based mutational signatures across cancer types suggest their 

potential as indicators of tissue of origin, particularly for tumors of unknown primary. Notably, 

when examining the clustering of tumors sequenced at the Memorial Sloan Kettering Cancer 

Center (Fig. 6a, Methods), we observed that most tumors grouped according to their cancer 

types. For instance, lung tumors formed a distinct cluster, separate from other cancer types. 

Similarly, tumors with UV signatures (e.g., head and neck cancer, and skin cancer/melanoma) 

constituted distinct clusters. These clustering patterns were consistently observed in tumors 

sequenced at the Dana-Farber Cancer Institute (Supplementary Fig. 7). In contrast, tumors of 

unknown primary clustered alongside lung tumors, tumors with UV signatures, glioma, 

pancreatic tumors, and others (Fig. 6a), suggesting their potential tissues of origin. 

    

Targeted sequencing-based mutational signatures enriched in early-onset hypermutated 

colorectal cancer. A previous study showed that early-onset non-hypermutated colorectal cancers 

exhibited a lower overall TMB than late-onset cases36. However, the opposite trend was 

observed in hypermutated cases. To examine this discrepancy, we analyzed TMBs attributed to 

specific mutational signatures in non-hypermutated and hypermutated colorectal cancers, 

adjusting for race, sex, hospital site, tumor status and tumor subtype (Methods). First, we 

confirmed the previous findings of the inverse association between overall TMB and early-onset 

status in non-hypermutated and hypermutated colorectal cancers (Fig. 6b and Supplementary 

Fig. 8). Next, we found that in non-hypermutated colorectal cancers, TMBs attributed to most 

signatures (SBS1/5/6/10a/10b) were inversely associated with early-onset status (Fig. 6b left 

panel), leading to an inverse association between the overall TMB and early-onset status (OR = 

0.898, 95% CI = 0.875-0.921, Fig. 6b left panel). In contrast, among hypermutated colorectal 

cancers, the positive association of overall TMB and early-onset status (OR = 1.004, 95% CI = 

1.001-1.007, Fig. 6b right panel) was primarily driven by the TMB attributed to the deficient 

DNA mismatch repair signature (SBS44, OR = 1.015, 95% CI = 1.002-1.027, Fig. 6b right 

panel) and the signature related to deficient replication repair gene POLE (SBS10a, OR = 1.017, 

95% CI = 1.000-1.034) but attenuated by the clock-like signature SBS5 (OR = 0.981, 95% CI = 

0.963-0.999). These results reveal distinct mutational processes operating in early-onset 

hypermutated colorectal cancers. 

 

Targeted sequencing-based mutational signatures associated with immunotherapy response. 

Using treatment regimens and response records from the AACR Project GENIE, we examined 

the association between TMB attributed to specific mutational signatures and progression-free 

survival (PFS) in 470 non-small cell lung cancer patients who received immune checkpoint 

inhibitors. To account for potential confounding factors, we adjusted our analysis for smoking 

history, age, race, sex, cancer stage, cancer subtype, and hospital site. We observed a significant 

association between TMB attributed to SBS1 and poor PFS (HR = 1.31, 95% CI = 1.10-1.56, 

Fig. 6c left panel and top right panel). In contrast, TMB attributed to the smoking or tobacco-

chewing signatures SBS4/29 exhibited a significant association with favorable PFS (HR = 0.94, 

95% CI = 0.90-0.98, Fig. 6c left panel and bottom right panel). TMB attributed to other 
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signatures (SBS2/13, SBS89 and SBS5/40) did not show a significant association with PFS. 

Notably, when considering the overall TMB combining all signatures, only a nominal association 

with favorable PFS was observed (HR = 0.98, 95% CI = 0.95-1.00, Fig. 6c left panel and 

Supplementary Fig. 9a). Consistent results were also observed when analyzing overall survival 

instead of PFS (Supplementary Fig. 9b). These results suggest that signature-specific TMBs, 

particularly SBS1 and SBS4/29, could be used as more effective biomarkers for predicting the 

response to immune checkpoint inhibitors in non-small cell lung cancer, compared to the overall 

TMB. 

  

Discussion  

In this study, we have introduced SATS, a new tool to identify mutational signatures and 

estimate signature burdens in targeted sequenced tumors. We evaluated SATS using pseudo-

targeted sequencing data and found that spiky signature profiles, a high signature prevalence, and 

large sequencing panels (> 1Mb) increase the accuracy of signature detection and refitting. 

Moreover, we showed that SATS outperformed other methods through analyzing in silico 

simulated data and samples with both WGS and targeted sequencing. We utilized SATS to 

analyze 111,711 targeted sequenced tumors in the AACR Project GENIE and developed a pan-

cancer catalogue of SBS and DBS signatures, specifically tailored for targeted sequencing 

tumors. The signatures of lung, breast and colorectal cancers were further validated in additional 

samples. Using this repertoire, SATS can estimate signature burden even in a single sample, 

making it a useful tool in the clinic. Finally, we showed examples of using targeted sequencing-

based signatures to address clinical questions (e.g., mutational signatures associated 

immunotherapy response in non-small cell lung cancer).    

 

Our study has made several important contributions to the analysis of mutational signatures in 

targeted sequenced tumors. First, unique to SATS is the incorporation of panel size in the 

analysis. In contrast, the other mutation signature analysis tools for targeted sequencing data 

assume the same sequencing panels across samples. This adaptability ensures SATS's 

applicability over a wide range of targeted gene panels, enhancing its utility in clinical settings. 

Second, unlike clustering-based methods16,37 that aim to detect a specific mutational signature, 

SATS can identify multiple mutational signatures simultaneously, providing a more 

comprehensive analysis of the mutational landscape of targeted sequenced tumors. Third, to the 

best of our knowledge, this study represents the largest and most comprehensive pan-cancer 

mutational signature analysis for targeted sequenced tumors to date. We have analyzed 23 cancer 

types and 757 cancer subtypes, including many that were underrepresented or absent in previous 

studies, and provide a catalogue of mutational signatures derived from a diverse collection of 

targeted sequenced tumors at various hospitals and cancer centers that could be used as a 

reference resource to study even a single tumor in the clinic. This catalogue contrasts with 

repertoires based on WES/WGS that are often oriented more towards research applications.  

 

This study has several limitations that should be considered. First, the data were collected from 

clinics primarily in the United States and Western Europe as part of the AACR Project GENIE, 

which may limit the representativeness of our findings for targeted sequenced tumors from other 

geographic regions. Nevertheless, validation of signatures in a Chinese cohort for lung and 

colorectal cancers suggests potential generalizability of mutational signatures across races and 

ethnicities. Second, while the identified repertoire of mutational signatures for targeted 
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sequencing tumors is extensive, it may not encompass the entire spectrum of possible signatures. 

The current repertoire mainly includes common signatures with spiky profiles, such as signatures 

related to hypermutation, that are easy to detect with the current sample size per cancer type in 

the AACR Project GENIE. This selection bias towards easily detectable signatures could mean 

that less common or subtler signatures might be underrepresented or missed. Additionally, we 

observed a higher prevalence of hypermutated signatures in our study compared to previous 

studies using WGS or WES. This discrepancy could be attributed to the nature of targeted 

sequencing, which may not capture mutations in non-hypermutated tumors as effectively as 

WGS or WES, potentially leading to an overestimation of the prevalence of hypermutated 

signatures. Lastly, although the largest examined to date, the current sample sizes for each cancer 

type within our study are not large enough to effectively differentiate between flat mutational 

signatures SBS3, SBS5, and SBS40. 

 

To overcome these limitations, it is crucial to increase the number of tumors sequenced by 

targeted gene panels and to share the resulting data. The decreasing costs and increasing 

accessibility of targeted sequencing in clinical practices make the expansion of sample sizes a 

feasible goal. Initiatives like the AACR Project GENIE are already taking steps towards this goal 

by collecting and sharing more targeted sequencing data and inviting new participants from 

underrepresented and underserved populations. Our simulation analyses suggest that as the 

number of targeted sequenced tumors increases, SATS would provide even increased utility as it 

could detect additional common signatures with very low false discovery rates. This is supported 

by our analysis of colorectal cancers using a newer version of AACR Project GENIE with more 

samples. Moreover, with a larger sample pool, SATS has the potential to differentiate between 

similar mutational signatures, such as SBS3 (associated with HR deficiency) and other flat 

signatures. This enhanced capability will improve our understanding of the mutational landscape 

across diverse cancer types and populations. 

 

In summary, we have developed a tool for analyzing mutational signatures in targeted sequenced 

tumors and created a pan-cancer repertoire of mutational signatures as a resource tailored for 

targeted sequencing. Our study has highlighted the clinical relevance of these targeted 

sequencing-based signatures. The SATS R package is publicly available on GitHub. We 

anticipate that SATS and the repertoire will enhance applications of mutational signature 

analysis using targeted sequence data in clinical and research settings. 

 

Methods  

Genomic data of AACR Project GENIE 

We retrieved the AACR Project GENIE dataset (version: 13.0-public) from Synapse 

(https://synapse.org/genie). This dataset includes tumors that were collected as part of routine 

clinical practice at 16 hospitals or cancer centers in the U.S., Eruope and U.K. and sequenced by 

targeted sequencing. If multiple tumors were sequenced from a given patient, we randomly 

selected one for analysis. Additionally, we selected tumors sequenced by gene panels larger than 

50Kb. Patients provided their consent, and the study was approved by an institutional review 

board (IRB). The dataset includes self-reported sex: 58,576 females, 47,694 males, 2 other, and 

5,439 of unknown sex.  
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The tumors were sequenced at CLIA-/ISO-certified labs with high read depth (median: 519X 

reads, 1st quantile: 307X, 3rd quantile: 808X). Somatic mutations were called at participating 

centers with various tools, including Mutect2 (ref38) and Strelka39. Germline variants and 

artifacts were filtered out using pooled external controls and databases of known germline 

variants, such as the Genome Aggregation Database (gnomAD)40. For more information on the 

filtering process, please refer to the "AACR GENIE 13.0-public Data Guide" 

(https://www.aacr.org/wp-content/uploads/2023/03/13.0_data_guide-1.pdf). The dataset includes 

1,213,674 single base substitutions (SBS) and 18,519 double base substitutions (DBS). We 

further removed somatic mutations with a read depth of less than 100 or an alternative allele read 

count of less than 5. This resulted in 982,095 SBS and 15,149 DBS from 111,711 tumors 

(Supplementary Table 1) for mutational signature analysis. 

 

It is worth noting that the choice of mutation calling pipelines may impact the signature analysis 

results. The influence on signature detection is likely to be less pronounced than on signature 

burden estimation. This is because signature detection is based on aggregated data from a group 

of patients, which tends to mitigate the variations caused by different mutation calling 

approaches. We recommend for users of SATS to review mutation calling pipelines used by the 

contributing institutions of the AACR Project GENIE (described in the AACR GENIE 13.0-

public Data Guide) and to follow best practices41,42 when applying mutation callers and 

specifying filtering thresholds. 

 

A Poisson NMF model for signature analysis of tumor mutation burden 

We define a Poisson Non-Negative Matrix Factorization (pNMF) model for SATS. The pNMF 

model assumes that the SBS count 𝑣𝑝𝑛 for the  𝑝𝑡ℎ mutation type in the 𝑛𝑡ℎ targeted sequenced 

tumor follows a Poisson distribution with mean 𝑒𝑘𝑝𝑛 = ℓ𝑝𝑛 ∑ 𝑤𝑝𝑘ℎ𝑘𝑛
𝐾
𝑘=1  for 𝐾 signatures, 𝑝 =

1,2, … ,96, 𝑛 = 1,2, … , 𝑁 and 𝑘 = 1,2, … , 𝐾. The 𝑣𝑝𝑛, ℓ𝑝𝑛, 𝑤𝑝𝑘 and ℎ𝑘𝑛 represent elements of 

the corresponding matrices 𝐕 (dimension 𝑁 by 96), 𝐋 (dimension 𝑁 by 96), 𝐖 (dimension 𝑁 by 

𝐾) and 𝐇 (dimension 𝐾 by 96), respectively. This model specification is equivalent to the one 

used in signeR11. 

 

The 𝐖 and 𝐇 are the parameters of interest that will be estimated based on the log-likelihood 

function of the pNMF model: 

 

log{𝑃(𝐕|𝐋, 𝐖, 𝐇)} = ∑ ∑ log {𝑒−ℓ𝑝𝑛 ∑ 𝑤𝑝𝑘ℎ𝑘𝑛
𝐾
𝑘=1 ×

(ℓ𝑝𝑛 ∑ 𝑤𝑝𝑘ℎ𝑘𝑛
𝐾
𝑘=1 )

𝑣𝑝𝑛

𝑣𝑝𝑛!
}

96

𝑝=1

𝑁

𝑛=1

 

= ∑ ∑ {𝑣𝑝𝑛 log (ℓ𝑝𝑛 ∑ 𝑤𝑝𝑘ℎ𝑘𝑛

𝐾

𝑘=1
) − ℓ𝑝𝑛 ∑ 𝑤𝑝𝑘ℎ𝑘𝑛

𝐾

𝑘=1
− log(𝑣𝑝𝑛!)}

96

𝑝=1

𝑁

𝑛=1

. (1) 

 

When the genomic regions sequenced across all samples are identical, as in WES or WGS, the 

maximum likelihood estimate based on equation (1) is equivalent to that based on the canonical 

NMF, which is detailed below. Thus, the proposed pNMF model includes the canonical NMF as 

a special case. 

 

pNMF model extends the canonical NMF 
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The pNMF model proposed here incorporates the panel context matrix 𝐋, extending the 

canonical NMF, the standard method for identifying mutational signatures in tumors sequenced 

by WES or WGS. When all samples are sequenced using the same genomic regions (i.e., ℓ𝑝𝑛 =

ℓ𝑝), the log-likelihood function in equation (1) is simplified as  

  
log{𝑃(𝐕|𝐋, 𝐖, 𝐇)} = −𝐷𝐾𝐿(𝐕|𝐖′, 𝐇) + 𝐶, 

 

where 𝐶 is a constant irrelevant to 𝐖 and 𝐇. It is worth noting that 
 

𝐷𝐾𝐿(𝐕|𝐖′, 𝐇) = ∑ ∑ {𝑣𝑝𝑛 log (
𝑣𝑝𝑛

∑ 𝑤𝑝𝑘
, ℎ𝑘𝑛

𝐾
𝑘=1

) + ∑ 𝑤𝑝𝑘
, ℎ𝑘𝑛

𝐾
𝑘=1 − 𝑣𝑝𝑛}96

𝑝=1
𝑁
𝑛=1                  (2) 

 
is equivalent to the objective function of the canonical NMF43 with 𝑤𝑝𝑘

, = ℓ𝑝𝑤𝑝𝑘.  

 

Extraction of de novo TMB signatures 

We utilize signeR11 to extract de novo signatures �̂� based on the pNMF model. However, 

because signeR is computationally demanding due to its use of the Markov Chain Monte Carlo 

(MCMC) method11, we grouped samples to improve computational efficiency. Our results below 

reveal that grouping samples does not affect the TMB signatures profile (𝑤𝑝𝑘). Specifically, we 

define 𝐶 as the sample index set {1,2, … , 𝑁}, and 𝐶𝑚 as the mutually exclusive set such that 𝐶 =
⋃ 𝐶𝑚

𝑀
𝑚=1 . For 𝑣𝑝𝑚

# = ∑ 𝑣𝑝𝑛𝑛∈𝐶𝑚
, the sum of the mutation count for the targeted sequencing 

tumors with index 𝑛 belonging to the set 𝐶𝑚, we can show that: 

 

𝐸(𝑣𝑝𝑚
# ) = ∑ ∑ 𝑒𝑘𝑝𝑛𝑛∈𝐶𝑚

𝐾
𝑘=1 = ∑ 𝑙𝑝𝑚

# 𝑤𝑝𝑘ℎ𝑘𝑚
#𝐾

𝑘=1 , 

 

where 𝑙𝑝𝑚
# =  ∑ ℓ𝑝𝑛𝑛∈𝐶𝑚

 and ℎ𝑘𝑚
# =

∑ ℓ𝑝𝑛ℎ𝑘𝑛𝑛∈𝐶𝑚

∑ ℓ𝑝𝑛𝑛∈𝐶𝑚

. Notably, the TMB signature profile 𝑤𝑝𝑘 

remains unchanged. The panel size of combined samples 𝑙𝑝𝑚
#  is the sum of the panel size of 

individual samples ℓ𝑝𝑛 , and signature activity ℎ𝑘𝑚
#  is the weighted sum of the signature 

activities of individual samples ℎ𝑘𝑛. The mutation count of combined samples 𝑣𝑝𝑚
#  follows a 

Poisson distribution, as the sum of independent Poisson counts is still Poisson distributed.  

 

Grouping samples can significantly reduce computation time. For example, when analyzing 

10,000 samples using SATS, analysis by grouping 100 tumors can be completed in 28.5 minutes 

on a laptop with a Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz processor and 16 GB of 4267 

MHz RAM. In contrast, analyzing the same samples without grouping tumors takes 

approximately 13 hours. 

 

Mapping de novo TMB signatures to COSMIC reference TMB signatures 

Due to the limited number of somatic mutations detected by targeted gene panels, the detected de 

novo TMB signature profiles may be a linear combination of COSMIC reference TMB signature 

profiles. To address this limitation, we map the de novo signature profile matrix �̂� = [�̂�𝑝𝑘] to 

reference TMB signatures 𝐖0 (e.g., a 96 × 76 COSMIC TMB signature profile matrix for 76 

reference SBS TMB signatures), using penalized non-negative least squares21:  
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min
𝜷

‖�̂� − 𝐖0𝜷‖
2

2
+ 𝜆‖𝜷‖1  subject to 𝜷 > 0 and  𝜆 ≥ 0, 

 

where 𝜷 is a coefficient vector and the tuning parameter 𝜆 is selected based on cross-validations. 

Compared with the non-negative least squares, 

  

min
𝜷

‖�̂� − 𝐖0𝜷‖
2

2
  subject to 𝜷 > 0, 

 

the penalized non-negative least squares allow us to shrink small values of 𝜷 towards zero and 

select a smaller number of reference signatures with the profile matrix 𝐖∗ that have a significant 

contribution to the de novo signature profiles. To reduce the randomness caused by the cross-

validation step to select 𝜆, we repeat this process 100 times, and select only reference TMB 

signatures with a coefficient 𝛽 greater than 0.1 in more than 80 replicates. 

 

Estimation of signature activities by an expectation-maximization algorithm 

We propose an expectation-maximization (EM) algorithm to estimate the signature activity 

matrix 𝐇 = [ℎ𝑘𝑛],  given the mutation type matrix 𝐕 = [𝑣𝑝𝑛], the panel context matrix 𝐋 =

[ℓ𝑝𝑛], and the mapped reference TMB signature profiles 𝐖∗ = [𝑤𝑝𝑘
∗ ]. The element 𝑣𝑝𝑛 in 𝐕 can 

be expressed as the sum of independent latent counts 𝑣1𝑝𝑛, 𝑣2𝑝𝑛, ⋯ , 𝑣𝐾𝑝𝑛 attributed to 𝐾 

signatures. These latent counts are treated as the missing data, following Poisson distributions 

with expectations ℓ𝑝𝑛𝑤𝑝1
∗ ℎ1𝑛, ℓ𝑝𝑛𝑤𝑝2

∗ ℎ2𝑛, ⋯ , ℓ𝑝𝑛𝑤𝑝𝐾
∗ ℎ𝐾𝑛, respectively. Introducing latent 

counts allows us to compute the complete data log-likelihood as:  

 

∑ ∑ ∑ {−ℓ𝑝𝑛𝑤𝑝𝑘
∗ ℎ𝑘𝑛 + 𝑣𝑘𝑝𝑛 𝑙𝑜𝑔(ℓ𝑝𝑛𝑤𝑝𝑘

∗ ℎ𝑘𝑛) − 𝑙𝑜𝑔(𝑣𝑘𝑝𝑛!)}𝐾
𝑘=1

𝑁
𝑛=1

96
𝑝=1 .  

 

In addition, the conditional distribution of 𝑣𝑘𝑝𝑛 given 𝐕, 𝐋, 𝐖∗ and 𝐇𝑡 (the 𝐇 at the 𝑡’th iteration 

of the EM algorithm) follows a multinomial distribution with parameters 𝑣𝑝𝑛 and 𝑝𝑘 =

𝑤𝑝𝑘
∗ ℎ𝑘𝑛

𝑡 / ∑ 𝑤𝑝𝑗
∗ ℎ𝑗𝑛

𝑡𝐾
𝑗=1 . 

 

In the E-step, we compute 𝑄(𝐇|𝐇𝒕) as the expected complete data log-likelihood: 

 

𝑄(𝐇|𝐇𝒕) = 𝐸[∑ ∑ ∑ {−ℓ𝑝𝑛𝑤𝑝𝑘
∗ ℎ𝑘𝑛 + 𝑣𝑘𝑝𝑛 𝑙𝑜𝑔(ℓ𝑝𝑛𝑤𝑝𝑘

∗ ℎ𝑘𝑛)}𝐾
𝑘=1

𝑁
𝑛=1

96
𝑝=1 |𝐕, 𝐋, 𝐖∗, 𝐇𝒕]  

= ∑ ∑ ∑ {−ℓ𝑝𝑛𝑤𝑝𝑘
∗ ℎ𝑘𝑛 + log(ℓ𝑝𝑛𝑤𝑝𝑘

∗ ℎ𝑘𝑛) 𝑣𝑝𝑛

𝑤𝑝𝑘
∗ ℎ𝑘𝑛

𝑡

∑ 𝑤𝑝𝑗
∗ ℎ𝑗𝑛

𝑡𝐾
𝑗=1

}𝐾
𝑘=1

𝑁
𝑛=1

96
𝑝=1 .  

 

In the M-step, the maximizer of 𝑄(𝐇|𝐇𝒕) is obtained by setting the derivative with respect to 

ℎ𝑘𝑛 to 0,  

 

𝜕

𝜕ℎ𝑘𝑛
𝑄(𝐇|𝐇𝒕) = − ∑ ℓ𝑝𝑛𝑤𝑝𝑘

∗96
𝑝=1 +

1

ℎ𝑘𝑛
(∑ 𝑣𝑝𝑛

𝑤𝑝𝑘
∗ ℎ𝑘𝑛

𝑡

∑ 𝑤𝑝𝑗
∗ ℎ𝑗𝑛

𝑡𝐾
𝑗=1

96
𝑝=1 ) = 0, 

  

and the updated activity value ℎ𝑘𝑛
𝑡+1 is given by: 
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ℎ𝑘𝑛
𝑡+1 = ℎ𝑘𝑛

𝑡

∑ 𝑣𝑝𝑛 (
𝑤𝑝𝑘

∗

∑ 𝑤𝑝𝑗
∗ ℎ𝑗𝑛

𝑡𝐾
𝑗=1

)96
𝑝=1

∑ ℓ𝑝𝑛𝑤𝑝𝑘
∗96

𝑝=1

. 

 

Note that the M-step depends on the current value of activities ℎ𝑗𝑛
𝑡  for the 𝑛𝑡ℎ tumor only. 

Therefore, even though the EM algorithm updates the entire activity matrix 𝐇 for all samples 

simultaneously, it is equivalent to updating the activity of one tumor at a time. In other words, 

the EM algorithm of SATS for signature refitting estimates signature activities independently of 

other tumors, enabling signature activities to be estimated accurately for a single tumor or small 

subset of samples. 

 

To complete the EM algorithm, the E-step and the M-step are iterated until convergence and 

output the estimated activity matrix �̂�.  

 

Calculation of signature burdens 

To calculate the expected number of mutations attributed to a signature (referred to as the 

signature burden) 𝑬 = [𝐸𝑘𝑛], we use the estimated activity matrix �̂� = [ℎ̂𝑘𝑛] from the EM 

algorithm. The signature burden 𝐸𝑘𝑛 of the 𝑘𝑡ℎ signature in the 𝑛𝑡ℎ tumor is then calculated as 

the sum of the product of the panel size ℓ𝑝𝑛, the reference signature profile 𝑤𝑝𝑘
∗  and the 

estimated signature activity ℎ̂𝑘𝑛 across 96 SBS types as 𝐸𝑘𝑛 = ∑ ℓ𝑝𝑛𝑤𝑝𝑘
∗ ℎ̂𝑘𝑛

96
𝑝=1 . 

 

Relationship between signatures of TMB and TMC 

The 𝐷𝐾𝐿(𝐕|𝐖′, 𝐇) in equation (2) with 𝑤𝑝𝑘
, = ℓ𝑝𝑤𝑝𝑘 highlights the relationship between 

signatures of TMB and TMC: TMB signature profile 𝑤𝑝𝑘 normalizes TMC signature profile 

𝑤𝑝𝑘
,

, by the number of mutation context ℓ𝑝 (i.e., 𝑤𝑝𝑘 = 𝑤𝑝𝑘
,

/ℓ𝑝). This means that we can create a 

catalogue of TMB signatures based on WGS, dividing the catalogue of TMC signatures (e.g., 

COSMIC WGS reference TMC signatures1) by the number of trinucleotide contexts from which 

the mutation type could occur in the human reference whole genome.  

 

Creating a catalogue of reference TMB signatures  

To create a catalogue of reference TMB signatures in Supplementary Table 2, we normalize 

COSMIC signature profiles of TMC by the size of mutation contexts in the whole genome. This 

is done by following these steps: 

1. Download the COSMIC SBS and DBS signature profiles (version 3.2) from 

https://cancer.sanger.ac.uk/signatures/ 

2. For an SBS signature profile, divide the level of each mutation type (e.g., A[C > G]G) by 

the size of the corresponding mutation context (e.g., ACG for A[C > G]G) that can occur 

in the whole genome (Supplementary Table 3) 

3. Rescale 96 mutation types to sum to one. 

4. Similarly, create DBS signature profiles of TMB (Supplementary Table 4) based on 

COSMIC DBS signature profiles of TMC and the number of genomic contexts 

(Supplementary Table 5) for which DBS can occur. 

 

Shannon equitability index of TMB mutational signatures 
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We use Shannon equitability index to measure the diversity or "flatness" of a signature 

profile44,45. The index is calculated as  

 

𝑆ℎ𝑎𝑛𝑛𝑜𝑛 𝑒𝑞𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 = −
∑ 𝑤𝑝𝑙𝑜𝑔(𝑤𝑝)96

𝑝=1

log (96)
, 

 

where 𝑤𝑝 is the level of signature profile at the 𝑝th mutation type and the sum across all 

mutation types (𝑖=1 to 96) is equal to 1.  

 

A higher value of the index indicates a more even distribution of mutation types. The index 

ranges from 0 to 1, with a value of 1 indicating a completely flat signature profile where all 

mutation types are represented equally and a value of 0 indicating a signature profile with a 

single dominant "spike" where a single mutation type has a proportion of 1 and all other 

mutation types have a proportion of 0. Among SBS TMB signatures with 𝑛 = 96, some profiles 

are characterized by a few specific mutation types at high levels, referred to as "spikes" (e.g., 

SBS1 with the C>T substitution at the NCG trinucleotide has a Shannon equitability index of 

0.317, and SBS10a with the T[C>A]T substitution has a Shannon equitability index of 0.192). 

Other signature profiles are more evenly distributed across all mutation types, referred to as 

"flat" (e.g., SBS3 has a Shannon equitability index of 0.974, SBS5 has a Shannon equitability 

index of 0.903, and SBS40 has a Shannon equitability index of 0.969). 

 

Generation of pseudo-targeted sequencing data  

To investigate the impact of various factors on mutational signature detection, we created 

pseudo-targeted sequencing datasets using the TCGA WES studies1,26 and the Sanger breast 

cancer (BRCA) 560 WGS study27. We assume that targeted sequencing would identify SBSs that 

are identified in the WES or WGS studies, as long as SBSs are located within the targeted 

genomic regions of the panels. This assumption is reasonable since targeted sequencing typically 

provides much higher sequencing coverage than WES or WGS. The steps to generate the 

simulated data are outlined below: 

1. Download the TCGA WES data (mc3.v0.2.8.PUBLIC) from the Cancer Genome Data 

Portal (https://gdc.cancer.gov/about-data/publications/mc3-2017) and WGS data of 

Sanger BRCA560 study (Caveman_560_20Nov14_clean) from 

ftp://ftp.sanger.ac.uk/pub/cancer/Nik-ZainalEtAl-560BreastGenomes.  

2. Download the genomic information file of AACR Project GENIE 

(https://www.synapse.org/#!Synapse:syn26706790) which specifies the chromosome, 

start position, and end position of genomic regions for each targeted sequencing panel. 

3. For SBS in WES or WGS studies, select those located in the genomic regions of a 

targeted sequencing panel to create the SBS mutation type matrix as pseudo-targeted 

sequencing data. We generated 648 pseudo-targeted sequencing datasets, encompassing 

18 TCGA WES cancer types and 36 targeted sequencing panels (panel size: 0.05 Mb to 

9.95 Mb). Each TCGA WES cancer type has at least 200 samples, ensuring a sufficient 

sample size for evaluating the signature detection step of SATS. Note that certain WES 

cases lacked SBS within the genes covered by a targeted sequencing panel. Hence, the 

number of cases in the pseudo-targeted sequencing data is less than that of TCGA WES 

studies (Supplementary Table 8). For instance, out of the 208 TCGA sarcoma WES 

cases, each panel could only detect SBS in a subset of cases (e.g., 169 cases for the 
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DFCI-ONCOPANEL-3 panel and 172 cases for the MSK-IMPACT505 panel). Similarly, 

we generated 36 pseudo-targeted sequencing datasets based on 560 breast tumors with 

WGS data, using 36 targeted gene panels. 

 

Analysis of pseudo-targeted sequencing data 

We calculate the signature detection probability, which represents the percentage of common 

signatures detected by 36 targeted sequencing panels within a cancer type. Next, we employ a 

generalized linear mixed model (GLMM) to analyze the factors that influence the detection 

probability of TMB mutational signatures across 648 pseudo-targeted sequencing datasets (by 18 

TCGA cancer types and 36 targeted sequencing panels). The GLMM incorporates several fixed 

effects, including the flatness of the signature profile (quantified using the Shannon equitability 

index), the prevalence of the mutational signature in the TCGA WES study (as a percentage of 

SBS attributed to the signature), and the panel size (per megabase). To account for any variation 

in the results due to the different cancer types under investigation, we include cancer type as a 

random intercept in the model. 

 

Evaluation of the impact of sample sizes 

We conducted an in silico simulation to investigate the effect of sample size on the ability to 

detect mutational signatures in breast cancer. The simulation was executed using varying sample 

sizes, ranging from one thousand to up to one million samples, based on the panel context 

matrix, signatures profile matrix (consisting of 12 mutational signatures with at least 1% 

prevalence in the TCGA breast cancer study), and signature activity matrix (following the 

distributions of the signature activity matrix of the TCGA breast cancer study). 

 

1. We run signature refitting on the TCGA breast cancer dataset (accessible at 

https://www.synapse.org/#!Synapse:syn11726618), using12 known mutational 

signatures (SBS1, 2, 3, 5, 7a, 10a, 10b, 13, 15, 29, 30, 44 and 58) that have a prevalence 

greater than 1% (based on https://www.synapse.org/#!Synapse:syn11801497). 

Specifically, we applied the EM algorithm to estimate the signature activity matrix 𝐇𝐵
∗ , 

from the mutation type matrix 𝐕𝐵, the panel context matrix 𝐋𝑊𝐸𝑆 of the whole exome 

sequencing, and the pre-defined TMB signature matrix 𝐖𝐵
∗ .  

2. We simulated mutation type matrix 𝐕𝐵
𝑠𝑖𝑚 for 21 targeted sequencing panels with a panel 

size larger than 1Mb, using a range of sample sizes from 1000 tumors to 1 million 

tumors. Specifically, we simulated mutation type matrix 𝐕𝐵
𝑠𝑖𝑚 from a Poisson 

distribution with the mean 𝐋𝑆 ∘ 𝐖𝐵
∗𝐇𝐵

𝑏 , where 𝐋𝑆 represents the panel size matrix for a 

given targeted sequencing panel (S), 𝐇𝐵
𝑏  is sampled from the estimated signature activity 

matrix 𝐇𝐵
∗ . As the activities of APOBEC signatures SBS2 and SBS13 are highly 

correlated, their activities were jointly sampled. Finally, we excluded any tumors with 

zero mutation count. 

3. We applied signeR to extract de novo signatures �̂�𝐵
𝑆 from the simulated mutation type 

matrix 𝐕𝐵
𝑠𝑖𝑚. Then, we employed penalized non-negative least squares to select the 

mapped reference TMB signatures, 𝐖𝐵
𝑆∗. Finally, we estimated signature activities and 

burdens using the EM algorithm. 

4. To evaluate the ability to detect the pre-specified signatures, we analyzed the proportion 

of 21 panels that were able to rediscover the prespecified 12 mutational signatures using 
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SATS. We also tracked the probability of detecting false positive signatures that were 

not used to simulate mutation counts. 

 

Evaluation of SATS by in silico simulations  

We conducted in silico simulations to evaluate whether SATS can detect and estimate the 

prespecified signatures in simulated datasets. When multiple flat signatures were present (e.g., 

SBS5/40 in lung cancer and SBS3/5/40 in lymphoid-derived hematologic cancer), we combined 

them into a single flat signature as the sample size of the AACR Project GENIE is insufficient to 

distinguish between these flat signatures accurately. 

 

1. We first calculated the expectation matrix 𝐄𝑐
∗ as 𝐄𝑐

∗ = 𝐋𝑐 ∘ 𝐖𝑐
∗𝐇𝑐

∗, where ∘ denotes 

element-wise product, 𝐋𝑐 a panel size matrix, 𝐖𝑐
∗ a signature profile matrix and 𝐇𝑐

∗ a 

signature activity matrix of a cancer type (𝑐). The matrices 𝐖𝑐
∗ and 𝐇𝑐

∗ were estimated 

from the AACR Project GENIE, allowing us to generate simulated data that accurately 

reflects actual observations. 

2. We generated ten replicates of the mutation type matrix 𝐕𝑐
𝑠𝑖𝑚 for lung cancer, breast 

cancer, colorectal cancer, and lymphoid-derived hematologic cancer respectively by 

simulating data from the Poisson distribution using expectation matrix 𝐄𝑐
∗. The number of 

simulated samples is the same as in the corresponding AACR Project GENIE studies.  

3. We applied signeR and penalized non-negative least squares to estimate TMB signatures 

𝐖𝑐
𝑒𝑠𝑡 for each simulated mutation type matrix 𝐕𝑐

𝑠𝑖𝑚. We then compared these estimated 

signatures with the ground truth signatures 𝐖𝑐
∗. 

4. Using the simulated mutation type matrices (𝐕𝑐
𝑠𝑖𝑚), panel size matrices (𝐋𝑐), and 

estimated TMB signatures (𝐖𝑐
𝑒𝑠𝑡), we estimated the signature activity matrix (𝑯𝑐

𝑒𝑠𝑡) for 

all tumors using the EM algorithm. We then calculated the signature burden based on 

𝑯𝑐
𝑒𝑠𝑡, which is compared with the simulated signature burden as the ground truth. For 

lung cancer, we also estimated 𝑯𝑐
𝑒𝑠𝑡 for a subset of samples or even for one sample, as 

detailed in the Supplementary Note.  

 

Applications of other methods for in silico simulations 

We applied SigProfilerExtractor12 on the simulated mutation type matrix 𝐕𝑐
𝑠𝑖𝑚 to extract 

signatures. Considering the computational intensity of SigProfilerExtractor, we grouped the 

simulated samples in 𝐕𝑐
𝑠𝑖𝑚. To obtain the mapped COSMIC signatures (version 3.2), we ran 

SigProfilerExtractor with its default options, setting the number of signatures to be extracted 

within the range of 1 to 10. After extracting these signatures, we utilized 

SigProfilerAssignment14 to compute the corresponding signature burdens based on the mapped 

COSMIC signatures. 

 

Moreover, we applied Mix17 to the same simulated data. Mix clustered samples while 

simultaneously learning the mixture model; hence we used the original simulated matrix  𝐕𝑐
𝑠𝑖𝑚 as 

the input. We specified the number of clusters and signatures ranges from 1 to 20 and 1 to 10, 

respectively. Bayesian Information Criterions (BICs) were computed to identify the optimal 

combination of the numbers of clusters and signatures. Under the selected optimal combination, 

the exposure matrix was calculated. As Mix lacks a mapping step to COSMIC signatures, we 

annotated Mix signatures as COSMIC signatures with the highest cosine similarity. To obtain the 

signature burden, the total number of mutations was multiplied by the exposure matrix. 
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Validation of SATS in tumors with both WGS and targeted sequencing 

We analyzed 72 kidney tumors with both WGS and targeted sequencing. For WGS, genomic 

DNA was extracted from fresh frozen tissue using the QIAmp DNA mini kit (Qiagen) and 

subsequently sequenced on the Illumina HiSeqX platform. The mean sequencing depth was 

65.7x for tumor tissue and 40.1x for normal tissue. For targeted sequencing, genomic DNA was 

purified using Agencourt AMPure XP Reagent (Beckman Coulter Inc., Brea, CA, USA). A 

targeted driver gene panel (size 1.90 Mb) was designed, encompassing 254 candidate cancer 

driver genes46. The targeted sequences were captured by NimbleGen’s SeqCap EZ Choice 

(custom design; Roche NimbleGen, Inc., Madison, WI, USA). Subsequent targeted sequencing 

was conducted on an Illumina HiSeq 4000, achieving a mean depth of 500x for both tumor and 

normal tissue. The details of whole-genome and targeted sequencing and sequencing data 

preprocessing, alignment and somatic mutation calling were described previously28.  

 

We utilized SATS, SigProfilerAssignment14, Mix17 and DeconstructSigs13 to refit the common 

signatures, namely SBS1, SBS5, and SBS40, estimating their burdens in the targeted sequencing 

data. Next, we calculated signature burdens for SBS1 and the combined flat signatures 

(SBS5/40) in the targeted sequencing data and compared these with the corresponding signature 

burdens derived from WGS. This comparison allowed us to assess the consistency of estimating 

mutational signature burdens between the two sequencing methods. 

 

Generation and validation of targeted sequencing-based mutational signature repertoire 

We generated a pan-cancer repertoire of targeted sequencing-based mutational signatures using 

data from the AACR Project GENIE (version 13.0). Mutational signatures were analyzed using 

the SATS pipeline for one cancer type at a time by grouping 100 tumors to expedite 

computation. The GENIE validation data (version 15.1) were obtained from Synapse 

(https://www.synapse.org/Synapse:syn55234548). For validation, we selected samples not 

included in GENIE version 13.0 for three cancer types with large sample size (lung, colorectal, 

breast cancers). The Chinese validation data of lung and colorectal cancers were acquired from 

cBioPortal (https://www.cbioportal.org/study/summary?id=pan_origimed_2020). The same 

pipeline was applied to the GENIE and Chinese validation datasets, grouping 50 tumors and 

replicating 10 times with different random seeds due to the smaller size of these datasets. For the 

Chinese validation dataset, we excluded samples with extremely high tumor mutation burdens 

(three lung cancers with more than 42 mutations/Mb and twelve colorectal cancers with more 

than 130 mutations/Mb). 

 

Visualization of SBS mutational signature profiles using UMAP 

We applied UMAP47 (Uniform Manifold Approximation and Projection) to reduce the 

dimensionality of SBS mutational signature profiles and visualized tumors in a two-dimensional 

scatterplot. To facilitate visualization, tumors within each cancer type are first clustered based on 

their mutational signature burden profiles using hierarchical clustering with Ward's minimum 

variance method. A cut-off value of 0.05 is applied for clustering. The UMAP projections are 

computed based on the median signature burden for each cluster of tumors, with each dot 

representing a group of tumors with similar signature burden profiles. 

 

Association between mutational signatures and the risk of early-onset colorectal cancer 
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To investigate the relationship between mutational signatures and the risk of early-onset 

colorectal cancer (sequencing age < 50 years), we analyzed the mutational signature profiles of 

9,562 colorectal cancer patients along with their clinical data. We stratified the patients into non-

hypermutated cases (TMB < 10 mutations/Mb, early-onset: 2,495 cases; late-onset: 6,009 cases) 

and hypermutated cases (early-onset: 790 cases; late-onset: 268 cases). 

 

We employed a generalized linear mixed model (GLMM) to compare early-onset vs late-onset 

cases for the non-hypermutated and hypermutated colorectal cancer, respectively. The GLMM 

incorporated tumor status (primary vs metastasis), race, sex, and individual signatures' TMBs 

(SBS1, SBS6, SBS10a, SBS10b, SBS44, and flat SBS) as fixed effects, while center and subtype 

were considered random effects. The GLMMs were fitted using the 'lme4' package in R. 

  

Analysis of mutational signatures as immunotherapy predictive biomarkers 

The AACR Project GENIE Biopharma Collaborative released comprehensive clinical data for 

1,846 non-small cell lung cancer (NSCLC) patients (v2.0-public dataset) from four hospitals 

(MSKCC, DFCI, VICC and UHN). Within this dataset, we focused on a subset of 470 NSCLC 

patients who underwent treatment with immune checkpoint inhibitor (ICI), including 

Pembrolizumab, Nivolumab, Atezolizumab, and Durvalumab. We aimed to investigate the 

predictive value of mutational signature-specific TMB for ICI immunotherapy. 

 

We employed a mixed-effect Cox model to analyze progression-free survival, which measures 

the time interval between the initiation of ICI treatment and the radiologist or oncologist's 

assessment of cancer progression or patient death.  In the mixed-effect Cox model, we included 

variables including age, sex, smoking history, tumor stage (IV vs. others), and individual 

mutational signature-specific TMBs (SBS1, SBS2/13, SBS4/29, SBS89, and flat SBS) as fixed 

effects. Additionally, we considered the hospital site and tumor subtype as random effects. We 

also applied the same model to evaluate overall survival, which measures the time interval 

between the start of ICI treatment and patient death or the last follow-up date. 

 

Software  

 

The R package SATS is publicly available at https://github.com/binzhulab/SATS. 
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Figure legends: 

Fig. 1 Overview of SATS and the AACR Project GENIE study. a. The schematic workflow 

of SATS starts with summarizing somatic mutations (e.g., single base substitutions) identified 

through targeted sequencing into a mutation type matrix V. In addition, SATS requires a panel 

context matrix 𝐋 that specifies the number of trinucleotide contexts for individual panels.  SATS 

is based on a Poisson Nonnegative-Matrix Factorization (pNMF) model, which approximates the 

matrix 𝐕 by 𝐋 ∘ 𝐖 × 𝐇 (i.e., 𝐕 ≈ 𝐋 ∘ 𝐖 × 𝐇), where ∘ denotes the element-wise product and 

× represents the matrix multiplication operator. b. The analysis procedure of SATS involves 

signature detection for a patient cohort and signature refitting for individual patients. In this 

illustrative example, SATS initially identifies two de novo tumor mutation burden (TMB) 

signatures in the cohort, subsequently mapping them to reference TMB signatures 1, 2/13 and 5. 

Next, SATS carries out signature refitting for six patients (e.g., Pt.1, Pt.2, …, Pt.6), estimating 

the activities of the mapped reference TMB signatures and the expected number of mutations 

attributed to each signature, termed the signature burden. For instance, the activities of SBS1, 

SBS2/13 and SBS5 for patient 3 (Pt.3) are 0.27, 0.84 and 0.18, respectively. Additionally, we 

estimate 0.67, 1.16 and 3.17 SBS attributed to signature SBS1, SBS2/13 and SBS5, respectively. 

c. The participating hospitals or cancer centers were located in the United States, United 

Kingdom, and Europe. The sample size for each site is included in parentheses. The sites 

include: Children's Hospital of Philadelphia (CHOP), The Herbert Irving Comprehensive Cancer 

Center at Columbia University (COLU), Cancer Research UK Cambridge Centre (CRUK), 

Dana-Farber Cancer Institute (DFCI), Duke Cancer Institute (DUKE), Institute Gustave Roussy 

(GRCC), Johns Hopkins Sidney Kimmel Comprehensive Cancer Center (JHU), The University 

of Texas MD Anderson Cancer Center (MDA), Memorial Sloan Kettering Cancer Center 

(MSK), Netherlands Cancer Institute (NKI), Swedish Cancer Institute (SCI), University of 

Chicago Comprehensive Cancer Center (UCHI), University of California, San Francisco 

(UCSF), Princess Margaret Cancer Centre, University Health Network (UHN), Vall d' Hebron 

Institute of Oncology (VHIO), Vanderbilt-Ingram Cancer Center (VICC), Wake Forest Baptist 

Medical Center (WAKE), and Yale Cancer Center (YALE). d. The histograms show the number 

of tumors included in the mutational signature analyses for each cancer type. The colors 

correspond to primary tumors, metastatic tumors, and unspecified or hematological 

malignancies. e. Subtypes of lung cancers, breast cancers, and gynecological cancer-ovarian 

cancers included in the AACR Project GENIE study. The subtypes were reported by each 

clinical institution based on OncoTree and are not necessarily mutually exclusive. For example, 

NSCLC includes both LUAD, LUSC and other subtypes. The size of each tile is proportional to 

the sample size of the corresponding subtype. The abbreviations for lung cancer, ALUCA: 

Atypical Lung Carcinoid, CSCLC: Combined Small Cell Lung Carcinoma, LCLC: Large Cell 

Lung Carcinoma, LNET: Lung Neuroendocrine Tumor, LUAD: Lung Adenocarcinoma, LUAS: 

Lung Adenosquamous Carcinoma, LUCA: Lung Carcinoid, LUNE: Large Cell Neuroendocrine 

Carcinoma, LUPC: Pleomorphic Carcinoma of the Lung, LUSC: Lung Squamous Cell 

Carcinoma, NSCLC: Non-Small Cell Lung Cancer, NSCLCPD: Poorly Differentiated Non-
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Small Cell Lung Cancer, PPB: Pleuropulmonary Blastoma, SARCL: Sarcomatoid Carcinoma of 

the Lung, SCLC: Small Cell Lung Cancer. The abbreviations for breast cancer, BA: Breast 

Angiosarcoma, BRCA: Invasive Breast Carcinoma, BRCANOS: Breast Invasive Cancer, NOS, 

BRCNOS: Breast Invasive Carcinoma, NOS, BREAST: Breast, DCIS: Breast Ductal Carcinoma 

In Situ, IBC: Inflammatory Breast Cancer, IDC: Breast Invasive Ductal Carcinoma, ILC: Breast 

Invasive Lobular Carcinoma, IMMC: Breast Invasive Mixed Mucinous Carcinoma, LCIS: Breast 

Lobular Carcinoma In Situ, MBC: Metaplastic Breast Cancer, MDLC: Breast Mixed Ductal and 

Lobular Carcinoma, MPT: Malignant Phyllodes Tumor of the Breast, PT: Phyllodes Tumor of 

the Breast, SPC: Solid Papillary Carcinoma of the Breast. The abbreviations for ovarian cancer, 

CCOV: Clear Cell Ovarian Cancer, EOV: Endometrioid Ovarian Cancer, GRCT: Granulosa Cell 

Tumor, HGSFT: High-Grade Serous Fallopian Tube Cancer, HGSOC: High-Grade Serous 

Ovarian Cancer, LGSOC: Low-Grade Serous Ovarian Cancer, MBOV: Mucinous Borderline 

Ovarian Tumor, MOV: Mucinous Ovarian Cancer, MXOV: Mixed Ovarian Carcinoma, OCS: 

Ovarian Carcinosarcoma/Malignant Mixed Mesodermal Tumor, ODYS: Dysgerminoma, OGCT: 

Ovarian Germ Cell Tumor, OIMT: Immature Teratoma, OMT: Mature Teratoma, OOVC: 

Ovarian Cancer, Other, OSMCA: Ovarian Seromucinous Carcinoma, OVT: Ovarian Epithelial 

Tumor, OYST: Yolk Sac Tumor, SBMOV: Serous Borderline Ovarian Tumor, Micropapillary, 

SBOV: Serous Borderline Ovarian Tumor, SCCO: Small Cell Carcinoma of the Ovary, SCST: 

Sex Cord Stromal Tumor, SCT: Steroid Cell Tumor, NOS, SLCT: Sertoli-Leydig Cell Tumor, 

SOC: Serous Ovarian Cancer. 

 

Fig. 2: Assessing the determinants of SATS performance in signature detection and 

signature burden estimation a. Detection probability of common signatures, which contribute 

at least 5% of single base substitutions (SBSs) per a cancer type in the TCGA WES study (e.g., 

SBS1, SBS5, SBS10a, SBS10b, SBS15 and SBS40 in glioblastoma). Detection probability is 

defined as the percentage of these signatures detected by SATS in pseudo-targeted sequencing 

samples for each cancer type across 36 panels. For instance, if SATS detects three out of six 

common signatures in glioblastoma (e.g., SBS1, SBS10b, SBS15), the detection probability is 

50%. The median sample size for pseudo-panel data across all panels is denoted in parentheses 

on the y-axis, and the size of genomic regions covered by each sequencing panel is indicated on 

the x-axis. b. The percentage of common TCGA WES signatures detected by 36 targeted 

sequencing panels versus the Shannon equitability index of the signature profile. The blue line 

refers to the linear regression line. The color dots refer to the detected signatures and gray dots 

refer to the undetected signatures. c. The proportion of variance in detection probabilities of 

common TCGA WES signatures that can be explained by determinant factors, including the 

Shannon equitability index of the signature profile (flatness), the frequency of TCGA WES 

signatures (prevalence), panel size, and cancer type. d. The odds ratio of determinant factors. 

Bars represent the 95% confidence intervals (CIs). e. The median Pearson correlation coefficient 

for all detected common WES signatures across 18 TCGA cancer types was compared to panel 

size. The Pearson correlation coefficient is a measure of the correlation between the number of 

single base substitutions (SBS) attributed to a signature, estimated from the pseudo-panel data, 

and the number of SBS attributed to the same signature previously reported in the TCGA WES 

study. The blue curve represents LOWESS (Locally Weighted Scatterplot Smoothing) curve, and 

the shaded area is 95% CIs. CA: cervical cancer; HCC: hepatocellular carcinoma; RCC: renal 

cell carcinoma; CNS: central nervous system; GBM: glioblastoma; AdenoCa: adenocarcinoma; 
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SCC: squamous cell carcinoma; Thy: thyroid; Prost: prostate; Colorect: colon or rectum; DLBC: 

diffuse large B cell lymphoma. 

 

Fig. 3 Comparison of SATS and other methods. a. Detection frequency of mutational 

signatures in 10 replicates for lung, breast, colorectal, and lymphoid-derived hematologic 

cancers. The signatures on the x-axis are used to simulate mutation counts and are considered as 

the “ground truth”. The dot size is proportional to the detection frequency by SATS, 

SigProfilerExtractor and Mix. b. Pearson correlation coefficients between the simulated SBS 

signature burdens (as the benchmark) and the burdens estimated by SATS, 

SigProfilerAssignment and Mix. Bars represent the average the Pearson correlation coefficient, 

and the intervals are the average plus or minus one standard deviation. c. Boxplots illustrating 

mutational signature burdens of flat signatures (SBS5/SBS40) and SBS1 obtained from WGS, 

separated by signature burden group based on targeted sequencing (flat signature high: flat 

signature burden > 4 mutations per sample; SBS1 high: SBS1 burden > 1 mutation per sample). 

The median of the burdens is marked by the line in each box, which spans from the first to the 

third quartiles. Whiskers extend to the furthest points within 1.5 times the interquartile range 

from the quartiles. Each dot represents a data point of mutational signature burdens in WGS. 

 

Fig. 4 Repertoire of mutational signatures in the AACR Project GENIE. a. Single base 

substitution (SBS) signatures. The top bar chart displays the stacked tumor mutation burden 

(TMB) attributed to specific signatures, with the colors indicating different mutational 

signatures. The bottom panel illustrates the presence of SBS signatures for individual cancer 

types, with dot sizes representing the proportion of tumors in which an SBS signature is present. 

The sample size of targeted sequenced tumors is indicated between the top and bottom panels, 

and the proposed etiology of the mutational signature is included in parentheses. b. Double base 

substitution (DBS) signatures. The top stacked bar chart shows the TMB of DBS signatures, and 

the bottom panel shows the proportion of tumors for which a DBS signature is present. 5meC: 5-

Methylcytosine; APOBEC: apolipoprotein B mRNA-editing enzyme, catalytic polypeptide, 

MMR: mismatch repair; UV: ultraviolet radiation; POLE-exo*: mutations in polymerase epsilon 

exonuclease domain; TMZ: temozolomide; BER: base excision repair; AZA: azathioprine; AID: 

activation-induced deaminase; TP: thiopurine. 

 

Fig. 5 Validation of targeted sequencing-based mutational signatures using the GENIE 

version 15.1 validation dataset (a) and the Chinese validation dataset (b). The signatures 

identified in GENIE version 13.0 discovery dataset are listed on the left of the circos plots, while 

signatures identified in the validation datasets are listed on the right. If a signature was validated, 

a line is drawn between the signature names. The width of the lines is proportional to the number 

of replicates in which the signature was validated. 

 

Fig. 6 The associations between targeted sequencing-based mutational signatures and 

clinical outcomes. a. UMAP visualization of SBS mutational signature profiles. The UMAP 

(Uniform Manifold Approximation and Projection) scatterplot displays 2-dimensional 

projections of the signature burden profiles for tumors obtained from Memorial Sloan Kettering 

Cancer Center. Each color represents a cancer type. b. The odds ratios (ORs) for the association 

between the status of colorectal cancer onset (early-onset vs. late-onset) with overall tumor 

mutation burden (TMB) or burdens attributed to individual signature (e.g., SBS1, SBS6, 
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SBS10a, SBS10b, SBS44, SBS5). The left panel illustrates the results for non-hypermutated 

colorectal cancer, while the right panel displays the findings for hypermutated colorectal cancer. 

The bars represent 95% confidence intervals (CIs) for the corresponding OR estimates. c. The 

left panel shows the hazard ratio (HR) of overall tumor mutation burden (TMB) or burdens 

attributed to individual signature (e.g., SBS1, SBS2/13, SBS4/29, SBS89 and SBS5/40) with 

95% CIs for progression-free survival (PFS) in lung cancer patients treated with immune 

checkpoint inhibitors (ICI). The remaining two panels show the proportion of lung cancer 

patients who remain progression free after receiving ICI, stratified by high or low mutational 

signature-specific TMB levels. The top right panel represents TMB attributed to signature SBS1, 

while the bottom right panel represents TMB attributed to smoking or tobacco-chewing 

signatures SBS4/29. The P-value was calculated using the log-rank test. 

 

Supplementary figure legends: 

Supplementary Fig. 1 Boxplots of mutation context ratios between targeted sequences vs. 

whole genome sequence. Each dot represents the ratio between the proportion of a mutation 

context (e.g., CCG) in the genomic regions targeted by a sequencing panel and the proportion of 

the same mutation context in the whole genome. 

 

Supplementary Fig. 2 Mutation profiles and contexts in the human whole genome. a. 

Scatterplot of the Shannon equitability index of TMC and TMB signature profiles. The black line 

represents the diagonal line, the blue line the linear regression line, and the shaded area is 95% 

confidence intervals. The dots are annotated when the differences of Shannon equitability index 

between TMC and TMB signature profiles are more than 0.1. b. Profiles of SBS5 signature 

based on tumor mutation count (TMC) and tumor mutation burden (TMB), respectively, with 96 

mutation types on the x-axis and contributions on the y-axis. c. 32 mutation contexts for single 

base substitutions (SBS) in the human whole genome, with significantly depleted ACG, TCG, 

GCG, and CCG trinucleotides. d. Profiles of SBS10b and SBS15 signatures based on TMC and 

TMB, respectively. 

Supplementary Fig. 3 Results of pseudo-targeted sequencing data based on Sanger breast 

cancer 560 WGS study. a. The Shannon equitability index of the signature profile and the 

percentage of single base substitutions (SBS) attributed by a signature for the Sanger breast 

cancer (BRCA) 560 WGS study. The signatures with > 5% prevalence are highlighted in color, 

while others are shown in gray. b. The odds ratio of the Shannon equitability index of the 

signature profile, frequency of Sanger BRCA 560 WGS study signatures, and panel size. The 

bars represent 95% confidence intervals (CIs). c. The median of the Pearson correlation 

coefficient for all common WGS signatures detected. The blue curve represents LOWESS 

(Locally Weighted Scatterplot Smoothing) curve with the shaded area for 95% CIs. 

Supplementary Fig. 4 Results of pseudo-targeted sequencing data based on TCGA WES 

study. a. Scatterplot of the number of mutations attributed to the smoking-related signature 

SBS4 (on the y-axis) in the MSK-IMPACT 468 panel compared to the number of mutations 

attributed to the same signature in the TCGA WES study (on the x-axis). The black line 

represents the ratio of the MSK-IMPACT 468 panel size to the WES size. The blue line 

represents the linear regression line, and the shaded area represents 95% confidence intervals 

(CIs). b. and c. Medians of Pearson correlation coefficients for signatures SBS4 (b) and SBS7a/b 
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(c) are shown. Pearson correlation coefficient measures the correlation between the number of 

mutations attributed to a signature using the pseudo-targeted sequencing data and the number of 

mutations attributed to the same signature reported previously in the TCGA WES study. The 

curve represents LOWESS (Locally Weighted Scatterplot Smoothing) curve, with the shaded 

area representing 95% CIs.  

Supplementary Fig. 5 Impact of sample sizes on mutational signature detection. a. The 

scatterplot of the flatness (measured by Shannon equitability index) of signature profiles and 

percentage of single base substitutions (SBS) attributed to the signatures in the TCGA breast 

cancer (BRCA) WES study. The reference line with Shannon equitability index one refers to the 

theoretical maxima (by a completely flat signature). b. The probability of signature detection. 

Each dot represents the probability of signature detection, measuring the proportion of 21 

targeted sequencing panels (with panel size larger than 1Mb) that can identify the signature at a 

given sample size. The blue line is the LOWESS (Locally Weighted Scatterplot Smoothing) 

curve, and the shaded area represents 95% confidence intervals (CIs). 

 

Supplementary Fig. 6 The proportion of tumors in which the mutation signatures were 

detected in simulated breast cancer data. Mapped signatures SBS1, SBS2/13, and SBS5 were 

used for simulation. Mapped signatures or WES-based signatures were used for signature 

refitting, respectively. WES-based signatures include SBS1, SBS2/13, SBS5, SBS3, SBS7a, 

SBS10a, SBS10b, SBS15, SBS29, SBS30, SBS44 and SBS58, which are present in more than 

1% of mutations in TCGA WES breast cancer study. The horizontal lines represent the actual 

proportions in the simulated data. The error bars in the figure represent the mean plus or minus 

one standard deviation. 

 

Supplementary Fig. 7 UMAP visualization of SBS mutational signature profiles. The 

UMAP (Uniform Manifold Approximation and Projection) scatterplot displays 2-dimensional 

projections of the signature burden profiles for tumors obtained from the Dana-Farber Cancer 

Institute. The colors represent cancer types.  

 

Supplementary Fig. 8 The opposite association between overall tumor mutation burden 

(TMB) and early-onset (age < 50) colorectal cancer in non-hypermutated and 

hypermutated tumors. In non-hypermutated tumors, late-onset cases exhibit a higher overall 

TMB, while in hypermutated tumors, early-onset cases demonstrate a higher overall TMB. 

 

Supplementary Fig. 9 The associations between targeted sequencing-based mutational 

signatures and immunotherapy response.  a. The proportion of lung cancer patients who 

remain progression free after receiving immune checkpoint inhibitors (ICI), stratified by high (> 

10 Mut/Mb) or low overall TMB levels. The P-value was calculated using the log-rank test. b. 

The hazard ratio (HR) of TMB attributed to individual signatures for overall survival (PFS) in 

lung cancer patients treated with ICI.  

 

Supplementary Fig. 10 Detection probability of TCGA breast cancer signatures in 

simulations. The probability of signature detection is shown for increasing sample sizes (a. up to 

10,000 tumors, b. up to 1,000,000 tumors). Each dot represents the proportion of targeted 

sequencing panels (with a panel size larger than 1Mb) that are able to identify the signature at the 
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corresponding sample size. Blue curves are LOWESS (Locally Weighted Scatterplot Smoothing) 

curves, and shaded areas represent 95% confidence intervals. 

 

Supplementary Fig. 11 The Pearson correlation coefficient between simulated and 

estimated SBS signature expectancies in lung cancer with various sample sizes for signature 

refitting. The bars in the figure represent the mean Pearson correlation coefficient for simulation 

replicates, while the x-axis indicates the number of samples used for signature refitting, 

including 100 samples, 10 samples, or even one sample at a time. The error bars in the figure 

represent the mean plus or minus one standard deviation. 

 

References 

1. Alexandrov, L.B. et al. The repertoire of mutational signatures in human cancer. Nature 
578, 94-101 (2020). 

2. Degasperi, A. et al. Substitution mutational signatures in whole-genome-sequenced 
cancers in the UK population. Science 376, abl9283 (2022). 

3. Poon, S.L., McPherson, J.R., Tan, P., Teh, B.T. & Rozen, S.G. Mutation signatures of 
carcinogen exposure: genome-wide detection and new opportunities for cancer 
prevention. Genome Med 6, 24 (2014). 

4. Wan, J.C.M. et al. Genome-wide mutational signatures in low-coverage whole genome 
sequencing of cell-free DNA. Nat Commun 13, 4953 (2022). 

5. Poon, S.L. et al. Genome-wide mutational signatures of aristolochic acid and its 
application as a screening tool. Sci Transl Med 5, 197ra101 (2013). 

6. Van Hoeck, A., Tjoonk, N.H., van Boxtel, R. & Cuppen, E. Portrait of a cancer: mutational 
signature analyses for cancer diagnostics. BMC Cancer 19, 457 (2019). 

7. Davies, H. et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on 
mutational signatures. Nat Med 23, 517-525 (2017). 

8. Buisson, R., Lawrence, M.S., Benes, C.H. & Zou, L. APOBEC3A and APOBEC3B Activities 
Render Cancer Cells Susceptible to ATR Inhibition. Cancer Res 77, 4567-4578 (2017). 

9. Koh, G., Degasperi, A., Zou, X., Momen, S. & Nik-Zainal, S. Mutational signatures: 
emerging concepts, caveats and clinical applications. Nat Rev Cancer 21, 619-637 (2021). 

10. Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., Campbell, P.J. & Stratton, M.R. Deciphering 
signatures of mutational processes operative in human cancer. Cell Rep 3, 246-59 
(2013). 

11. Rosales, R.A., Drummond, R.D., Valieris, R., Dias-Neto, E. & da Silva, I.T. signeR: an 
empirical Bayesian approach to mutational signature discovery. Bioinformatics 33, 8-16 
(2017). 

12. Islam, S.M.A. et al. Uncovering novel mutational signatures by de novo extraction with 
SigProfilerExtractor. Cell Genom 2, None (2022). 

13. Rosenthal, R., McGranahan, N., Herrero, J., Taylor, B.S. & Swanton, C. DeconstructSigs: 
delineating mutational processes in single tumors distinguishes DNA repair deficiencies 
and patterns of carcinoma evolution. Genome Biol 17, 31 (2016). 

14. Diaz-Gay, M. et al. Assigning mutational signatures to individual samples and individual 
somatic mutations with SigProfilerAssignment. Bioinformatics 39(2023). 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted July 31, 2024. ; https://doi.org/10.1101/2023.05.18.23290188doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.18.23290188


Resource 

 27 

15. Maura, F. et al. A practical guide for mutational signature analysis in hematological 
malignancies. Nat Commun 10, 2969 (2019). 

16. Gulhan, D.C., Lee, J.J., Melloni, G.E.M., Cortes-Ciriano, I. & Park, P.J. Detecting the 
mutational signature of homologous recombination deficiency in clinical samples. Nat 
Genet 51, 912-919 (2019). 

17. Sason, I., Chen, Y., Leiserson, M.D.M. & Sharan, R. A mixture model for signature 
discovery from sparse mutation data. Genome Med 13, 173 (2021). 

18. Consortium, A.P.G. AACR Project GENIE: Powering Precision Medicine through an 
International Consortium. Cancer Discov 7, 818-831 (2017). 

19. Pugh, T.J. et al. AACR Project GENIE: 100,000 Cases and Beyond. Cancer Discov 12, 2044-
2057 (2022). 

20. Wu, L. et al. Landscape of somatic alterations in large-scale solid tumors from an Asian 
population. Nat Commun 13, 4264 (2022). 

21. Tibshirani, R. Regression shrinkage and selection via the lasso: a retrospective. Journal of 
the Royal Statistical Society Series B-Statistical Methodology 73, 273-282 (2011). 

22. Kundra, R. et al. OncoTree: A Cancer Classification System for Precision Oncology. JCO 
Clin Cancer Inform 5, 221-230 (2021). 

23. Cancer Genome Atlas Research, N. Integrated genomic analyses of ovarian carcinoma. 
Nature 474, 609-15 (2011). 

24. Russell, G.J., Walker, P.M., Elton, R.A. & Subak-Sharpe, J.H. Doublet frequency analysis 
of fractionated vertebrate nuclear DNA. J Mol Biol 108, 1-23 (1976). 

25. Bird, A.P. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 8, 
1499-504 (1980). 

26. Bailey, M.H. et al. Comprehensive Characterization of Cancer Driver Genes and 
Mutations. Cell 174, 1034-1035 (2018). 

27. Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome 
sequences. Nature 534, 47-54 (2016). 

28. Zhu, B. et al. The genomic and epigenomic evolutionary history of papillary renal cell 
carcinomas. Nat Commun 11, 3096 (2020). 

29. Li, B. et al. Therapy-induced mutations drive the genomic landscape of relapsed acute 
lymphoblastic leukemia. Blood 135, 41-55 (2020). 

30. Stupp, R. et al. Effects of radiotherapy with concomitant and adjuvant temozolomide 
versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-
year analysis of the EORTC-NCIC trial. Lancet Oncol 10, 459-66 (2009). 

31. Inman, G.J. et al. The genomic landscape of cutaneous SCC reveals drivers and a novel 
azathioprine associated mutational signature. Nat Commun 9, 3667 (2018). 

32. Floyd, A., Pedersen, L., Nielsen, G.L., Thorlacius-Ussing, O. & Sorensen, H.T. Risk of acute 
pancreatitis in users of azathioprine: a population-based case-control study. Am J 
Gastroenterol 98, 1305-8 (2003). 

33. Weersma, R.K. et al. Increased incidence of azathioprine-induced pancreatitis in Crohn's 
disease compared with other diseases. Aliment Pharmacol Ther 20, 843-50 (2004). 

34. Kirkegard, J., Cronin-Fenton, D., Heide-Jorgensen, U. & Mortensen, F.V. Acute 
Pancreatitis and Pancreatic Cancer Risk: A Nationwide Matched-Cohort Study in 
Denmark. Gastroenterology 154, 1729-1736 (2018). 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted July 31, 2024. ; https://doi.org/10.1101/2023.05.18.23290188doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.18.23290188


Resource 

 28 

35. Sadr-Azodi, O., Oskarsson, V., Discacciati, A., Videhult, P., Askling, J. & Ekbom, A. 
Pancreatic Cancer Following Acute Pancreatitis: A Population-based Matched Cohort 
Study. Am J Gastroenterol 113, 1711-1719 (2018). 

36. Holowatyj, A.N. et al. Racial/Ethnic and Sex Differences in Somatic Cancer Gene 
Mutations among Patients with Early-Onset Colorectal Cancer. Cancer Discovery 13, 
570-579 (2023). 

37. Georgeson, P. et al. Identifying colorectal cancer caused by biallelic MUTYH pathogenic 
variants using tumor mutational signatures. Nature Communications 13, 3254 (2022). 

38. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing 
next-generation DNA sequencing data. Genome Res 20, 1297-303 (2010). 

39. Saunders, C.T., Wong, W.S., Swamy, S., Becq, J., Murray, L.J. & Cheetham, R.K. Strelka: 
accurate somatic small-variant calling from sequenced tumor-normal sample pairs. 
Bioinformatics 28, 1811-7 (2012). 

40. Karczewski, K.J. et al. The mutational constraint spectrum quantified from variation in 
141,456 humans. Nature 581, 434-443 (2020). 

41. Karimnezhad, A. et al. Accuracy and reproducibility of somatic point mutation calling in 
clinical-type targeted sequencing data. BMC Med Genomics 13, 156 (2020). 

42. Koboldt, D.C. Best practices for variant calling in clinical sequencing. Genome Med 12, 91 
(2020). 

43. Févotte, C. & Cemgil, A.T. Nonnegative matrix factorizations as probabilistic inference in 
composite models. in 2009 17th European Signal Processing Conference 1913-1917 
(2009). 

44. Islam, S.M.A. et al. Uncovering novel mutational signatures by de novo extraction with 
SigProfilerExtractor. Cell Genom 2, 100179 (2022). 

45. Shannon, C.E. A mathematical theory of communication. The Bell system technical 
journal 27, 379-423 (1948). 

46. Lawrence, M.S. et al. Discovery and saturation analysis of cancer genes across 21 
tumour types. Nature 505, 495-501 (2014). 

47. McInnes, L., Healy, J. & Melville, J. Umap: Uniform manifold approximation and 
projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018). 

 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted July 31, 2024. ; https://doi.org/10.1101/2023.05.18.23290188doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.18.23290188


Fig.1

Targeted Sequencing

Signature activity 
matrix H

×

Signature profile 
matrix W

Panel context 
matrix L

⊙

Mutation type 
matrix V

≈
Patients

M
ut

at
io

n 
ty

pe
s 

M
ut

at
io

n 
ty

pe
s 

Patients

M
ut

at
io

n 
ty

pe
s 

Signatures

Si
gn

at
ur

es

Patients

Si
gn

at
ur

e 
2

Si
gn

at
ur

e 
1

…

Si
gn

at
ur

e 
K

Pa
tie

nt
 2

Pa
tie

nt
 1 …

Pa
tie

nt
 N

Poisson Nonnegative-Matrix Factorization (pNMF) model 

Input Model

Analysis procedure and output

a

b
Signature detection for a patient cohort Signature refitting for individual patients 

a. De novo TMB signature discovery, 
adjusting panel sizes b. Mapping to the reference TMB signatures

c. Estimating activities of 
reference TMB signatures

d. Calculating burdens of  
reference TMB signatures 

Reference TMB 
signature profiles

De novo TMB 
signature profiles

Signature burden matrix ESignature activity matrix H

C>A C>G C>T T>A T>C T>G

Sig1

Sig2
0.00

0.03

0.06

0.09

0.00

0.05

0.10

0.15

C
on
tri
bu
tio
ns

De novo sig.1

De novo sig.2

C>A C>G C>T T>A T>C T>G

SBS1

SBS2_13

SBS5

0.00
0.10
0.20
0.30
0.40

0.00
0.05
0.10
0.15
0.20

0.00
0.02
0.05
0.08

C
on
tri
bu
tio
ns

SBS1

SBS2/13

SBS5

Mutation type 
matrix V

Patients

M
ut

at
io

n 
ty

pe
s 

Panel context 
matrix L

M
ut

at
io

n 
ty

pe
s 

Patients

0 0.01 0.67 1.47 1 0

0 0 1.16 0 0 0.19

1 4.99 3.17 3.53 0 4.81SBS5

SBS2/13

SBS1

Pt.1 Pt.2 Pt.3 Pt.4 Pt.5 Pt.6

0 0 0.27 0.34 0.39 0

0 0 0.84 0 0 0.16

0.07 0.34 0.18 0.1 0 0.31SBS5

SBS2/13

SBS1

Pt.1 Pt.2 Pt.3 Pt.4 Pt.5 Pt.6

a

b

Gynecologic Cancer−Ovarian (5061)

CCOV EOV

GRCT

HGSFT

HGSOC

LGSOC

MBOV

MOV

MXOV

OCS

ODYS

OGCT

OIMT

OMT

OOVC

OSMCA

OVT

OYST

SBMOVSBOV SCCOSCST

SCT

SLCT

SOC

Lung Cancer (14983)

ALUCA

CSCLC

LCLC

LNET

LUAD

LUAS

LUCA

LUNE

LUPC

LUSC

NSCLC

NSCLCPD

PPB

SARCL

SCLC

c

e

d

Breast Cancer (12144)

BA

BRCA

BRCANOS

BRCNOS

BREAST

DCIS
IBC

IDC

ILC

IMMC LCIS

MBC

MDLC

MPT

PTSPC



SBS1
SBS10b

SBS15

SBS2/13

SBS3

SBS4

SBS40

SBS44

SBS5SBS6

SBS7a

SBS7b

0

20

40

60

0.25 0.50 0.75 1.00
Shannon equitability index of signature profile

Pe
rc

en
ta

ge
 o

f T
C

G
A 

si
gn

at
ur

e 
de

te
ct

ed

Panel size
(1 Mb)

Prevalence
(1 percent)

Flatness
(0.01 in 

Shannon 
equitability index)

1.0 1.1 1.2
Odds Ratio

Breast_cancer(640)

Lung_AdenoCa(456)

DLBC(485)

ColoRect_AdenoCa(348)

Prost_AdenoCa(326)

Thy_AdenoCa(377)

Head_SCC(450)

Lung_SCC(413)

Skin_Melanoma(400)

Stomach_AdenoCa(379)

Transitional_cell_carcinoma(382)

Ovary_AdenoCa(58)

CNS_GBM(254)

Kidney_RCC(290)

Liver_HCC(292)

Cervix_CA(255)

Kidney_Papillary(208)

Sarcoma(156)

UHN−
55

5−
BLADDER−

V1(9
.95

Mb)

UCSF−
IDTV5−

TN(6.
14

Mb)

JH
U−

50
0S

TP(3.
8M

b)

DFCI−O
NCOPA

NEL−
3(2

.76
Mb)

UCSF−
NIM

V4−
TN(2.

52
Mb)

UHN−
55

5−
V2(2

.25
Mb)

MDA−
40

9−
V1(1

.77
Mb)

VICC−
01
−D

2(1
.72

Mb)

DUKE−
F1−

T7(1
.57

Mb)

PROV−
TRISEQ−

V2(1
.51

Mb)

DFCI−O
NCOPA

NEL−
2(1

.43
Mb)

VICC−
01
−T

6B
(1.

39
Mb)

COLU−
CCCP−

V1(1
.27

Mb)

MSK−
IM

PA
CT50

5(1
.26

Mb)

DFCI−O
NCOPA

NEL−
1(1

.24
Mb)

CRUK−
TS(1.

19
Mb)

MSK−
IM

PA
CT46

8(1
.17

Mb)

DUKE−
F1−

DX1(1
.15

Mb)

DUKE−
F1−

T5A
(1.

12
Mb)

MSK−
IM

PA
CT−

HEME−
40

0(1
.11

Mb)

MSK−
IM

PA
CT41

0(1
.06

Mb)

MSK−
IM

PA
CT34

1(0
.93

Mb)

CHOP−
COMPT(0.

75
Mb)

VICC−
01
−T

4B
(0.

69
Mb)

PROV−
TST17

0−
V1(0

.53
Mb)

CHOP−
HEMEP(0.

41
Mb)

UHN−
OCA−

V3(0
.4M

b)

YA
LE−

OCP−
V2(0

.26
Mb)

UCHI−O
NCOHEME55

−V
1(0

.25
Mb)

GRCC−
MOSC3(0

.15
Mb)

GRCC−
MOSC4(0

.15
Mb)

UHN−
54
−V

1(0
.09

Mb)

SCI−P
MP68

−V
1(0

.09
Mb)

NKI−P
ATH−

NGS(0.
07

Mb)

VICC−
01
−M

YELOID(0.
07

Mb)

VHIO
−U

RINARY−
BLADDER−

V01
(0.

05
Mb)

0.00
0.25
0.50
0.75
1.00

Percentage of common WES signatures (>5%) detected by targeted sequencing panel

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7 8 9 10
Size of targeted sequencing assay (Mb)

Th
e 

m
ed

ia
n 

of
 P

ea
rs

on
 c

or
re

la
tio

n

a

e

Panel size: large to small

Fig.2

c

Prevalence Flatness Panel size Cancer type

b

Flatness of signature profile: spiky to flat 

53.26%

2.76%

16.06%

27.92%

d



a

b

Fig.3

c

Flat signature burden in targeted sequencing   

Fl
at

 si
gn

at
ur

e 
bu

rd
en

 in
 W

G
S

SBS1 signature burden in targeted sequencing 

SB
S1

 si
gn

at
ur

e 
bu

rd
en

 in
 W

G
S



0
3
6
9

Mutations per Mb

4370 5035 3608 10496 4207 14983 3717 2186 4886 7607 1655 5325 12144 2599 1340 5061 5348 4209 2088 3991 1720 3248 1888

Artefactes(SBS46/50/51/57)
Flat(SBS3/5/40)

SBS94(Unknown)
SBS89(Unknown)

SBS87(TP treatment)
SBS84(AID)

SBS44(Defective MMR)
SBS32(AZA treatment)
SBS30(Defective BER)

SBS19(Unknown)
SBS15(Defective MMR)
SBS14(Defective MMR)
SBS11(TMZ treatment)

SBS10c(POLE−exo*)
SBS10b(POLE−exo*)
SBS10a(POLE−exo*)
SBS7b(UV exposure)
SBS7a(UV exposure)

SBS6(Defective MMR)
SBS4/29(Tobacco)

SBS2/13(APOBEC)
SBS1(Deamination of 5meC)

Gyn
ec

olo
gic

 Can
ce

r−E
nd

om
etr

ial

Skin
 Can

ce
r o

r M
ela

no
ma

Blad
de

r C
an

ce
r

Bow
el 

Can
ce

r−C
olo

rec
tal

Can
ce

r o
f U

nk
no

wn P
rim

ary

Lu
ng

 Can
ce

r

Eso
ph

ag
og

as
tric

 Can
ce

r

Hea
d a

nd
 Nec

k C
an

ce
r

Hem
ato

log
ic C

an
ce

r−L
ym

ph
oid

CNS or
 Brai

n C
an

ce
r−G

liom
a

Bow
el 

Can
ce

r−O
the

r

Hem
ato

log
ic C

an
ce

r−M
ye

loid

Brea
st 

Can
ce

r

Hep
ato

bili
ary

 Can
ce

r

Gyn
ec

olo
gic

 Can
ce

r−O
the

r

Gyn
ec

olo
gic

 Can
ce

r−O
va

ria
n

Pan
cre

ati
c C

an
ce

r

Pros
tat

e C
an

ce
r

Kidn
ey

 Can
ce

r

Soft
 Tiss

ue
 Can

ce
r

Thy
roi

d C
an

ce
r

Rare
 Can

ce
r

CNS or
 Brai

n C
an

ce
r−O

the
r

Proportion of tumors with the signature 0.3 0.5 0.7 0.9
0.0
0.2
0.4

Mutations per Mb

2172 491 131 164 48 1940 98 313 246 354 54 420 176 41 96 53 188 247

DBS11(Unknown)

DBS9(Unknown)

DBS6(Unknown)

DBS4(Unknown)

DBS3(POLE−exo*)

DBS2(Tobacco smoking 
 or other mutagens)

DBS1(UV exposure)

Skin
 Can

ce
r o

r M
ela

no
ma

Can
ce

r o
f U

nk
no

wn P
rim

ary

Hea
d a

nd
 Nec

k C
an

ce
r

Soft
 Tiss

ue
 Can

ce
r

Hem
ato

log
ic C

an
ce

r−M
ye

loid

Lu
ng

 Can
ce

r

Rare
 Can

ce
r

Hem
ato

log
ic C

an
ce

r−L
ym

ph
oid

Blad
de

r C
an

ce
r

Brea
st 

Can
ce

r

Bow
el 

Can
ce

r−O
the

r

Bow
el 

Can
ce

r−C
olo

rec
tal

Gyn
ec

olo
gic

 Can
ce

r−E
nd

om
etr

ial

Gyn
ec

olo
gic

 Can
ce

r−O
the

r

Hep
ato

bili
ary

 Can
ce

r

Thy
roi

d C
an

ce
r

Gyn
ec

olo
gic

 Can
ce

r−O
va

ria
n

CNS or
 Brai

n C
an

ce
r−G

liom
a

Proportion of tumors with the signature 0.1 0.3 0.5 0.7 0.9

a

b

Fig.4

0
3
6
9

12
Mutations per Mb

5080 3747 2970 10764 359814428 6625 3129 2696 2063 1522 113894313 2180 4574 1381 3421 1760 3425 2400 3399 1962 1532 2119

Artefactes(SBS50/51/57/58)
Flat(SBS3/5/40)

SBS92(Tobacco smoking)
SBS89(Unknow)

SBS87(TP treatment)
SBS84(AID)

SBS44(Defective MMR)
SBS33(Unknown)

SBS32(AZA treatment)
SBS30(Defective BER)

SBS19(Uknown)
SBS15(Defective MMR)
SBS14(defective MMR)
SBS11(TMZ treatment)

SBS10c(POLE−exo*)
SBS10b(POLE−exo*)
SBS10a(POLE−exo*)
SBS7b(UV exposure)
SBS7a(UV exposure)

SBS6(Defective MMR)
SBS4(Tobacco smoking)

SBS2/13(APOBEC)
SBS1(Deamination of 5meC)

Skin
 Can

ce
r o

r M
ela

no
ma

Gyn
ec

olo
gic

 Can
ce

r−E
nd

om
etr

ial

Blad
de

r C
an

ce
r

Bow
el 

Can
ce

r−C
olo

rec
tal

Can
ce

r o
f U

nk
no

wn P
rim

ary

Lu
ng

 Can
ce

r

CNS or
 Brai

n C
an

ce
r−G

liom
a

Eso
ph

ag
og

as
tric

 Can
ce

r

Hem
ato

log
ic C

an
ce

r−M
atu

re 
B−

Cell 
Neo

pla
sm

s

Hea
d a

nd
 Nec

k C
an

ce
r

Bow
el 

Can
ce

r−O
the

r

Brea
st 

Can
ce

r

Gyn
ec

olo
gic

 Can
ce

r−O
va

ria
n

Hep
ato

bili
ary

 Can
ce

r

Pan
cre

ati
c C

an
ce

r

Gyn
ec

olo
gic

 Can
ce

r−O
the

r

Pros
tat

e C
an

ce
r

Kidn
ey

 Can
ce

r

Hem
ato

log
ic C

an
ce

r−O
the

r

Rare
 Can

ce
r

Soft
 Tiss

ue
 Can

ce
r

CNS or
 Brai

n C
an

ce
r−O

the
r

Thy
roi

d C
an

ce
r

Hem
ato

log
ic C

an
ce

r−L
eu

ke
mia

Proportion of tumors with the signature 0.1 0.3 0.5 0.7 0.9
0.0
0.2
0.4
0.6

Mutations per Mb

278 1682 97 120 156 1334 163 114 219 259 35 60 31 125 197

DBS11(Unknow)

DBS10(Defective MMR)

DBS9(Unknow)

DBS4(Unknow)

DBS3(POLE−exo*)

DBS2(Tobacco smoking)

DBS1(UV exposure)

Can
ce

r o
f U

nk
no

wn P
rim

ary

Skin
 Can

ce
r o

r M
ela

no
ma

Hea
d a

nd
 Nec

k C
an

ce
r

Soft
 Tiss

ue
 Can

ce
r

Hem
ato

log
ic C

an
ce

r−M
atu

re 
B−

Cell 
Neo

pla
sm

s

Lu
ng

 Can
ce

r

Blad
de

r C
an

ce
r

Gyn
ec

olo
gic

 Can
ce

r−E
nd

om
etr

ial

Brea
st 

Can
ce

r

Bow
el 

Can
ce

r−C
olo

rec
tal

Thy
roi

d C
an

ce
r

Kidn
ey

 Can
ce

r

Bow
el 

Can
ce

r−O
the

r

Gyn
ec

olo
gic

 Can
ce

r−O
va

ria
n

CNS or
 Brai

n C
an

ce
r−G

liom
a

Proportion of tumors with the signature 0.1 0.3 0.5 0.7 0.9



Fig.5
a b

GENIE discovery
dataset

GENIE validation
dataset

Colorectal cancer 

GENIE discovery
dataset

Lung cancer

GENIE validation
dataset

GENIE discovery 
dataset

Breast cancer

GENIE validation
dataset

GENIE discovery
dataset

Chinese validation
dataset

Colorectal cancer 

GENIE discovery
dataset

Lung cancer
Chinese validation

dataset



+++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+ ++
++ +++ + + + +++ + ++ ++ + + +p = 0.0310.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
Time in months

Pr
og

re
ss

io
n 

fre
e 

su
rv

iva
l p

ro
ba

bi
lit

y

SBS1 + +Low High

SBS1 of Lung Cancer

++++++++++
+++++++++
+++++++++++++++++++++++++++++++ + +

+ + + + + + +

+

+++++++
++++++++++++++++++++ ++

+
++ ++ +

++ ++
+

+ +p = 0.000230.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
Time in months

Pr
og

re
ss

io
n 

fre
e 

su
rv

iva
l p

ro
ba

bi
lit

y

SBS4/29 + +Low High

SBS4/29 of Lung Cancer

Non-hypermutated colorectal cancer Hypermutated colorectal cancer 

a

b

c

Fig.6

Flat(SBS5)

SBS44

SBS10b

SBS10a

SBS6

SBS1

TMB

0.8 0.9 1.0
Odds Ratio (per mutations/Mb)

 

 

0.898

0.874

0.888

0.853

0.823

0.954

0.910

0.9500.9751.0001.0251.050
  

OR

(0.875, 0.921)

(0.829, 0.922)

(0.843, 0.936)

(0.757, 0.962)

(0.731, 0.927)

(0.884, 1.030)

(0.882, 0.939)

0.9500.9751.0001.0251.050
  

95% CI

Flat(SBS5)

SBS44

SBS10b

SBS10a

SBS6

SBS1

TMB

0.96 0.98 1.00 1.02
Odds Ratio (per mutations/Mb)

 

 

1.004

1.001

0.992

1.017

1.001

1.015

0.981

0.9500.9751.0001.0251.050
  

OR

(1.001, 1.007)

(0.981, 1.022)

(0.977, 1.008)

(1.000, 1.034)

(0.982, 1.020)

(1.002, 1.027)

(0.963, 0.999)

0.9500.9751.0001.0251.050
  

95% CI

Lung cancer PFS by SBS1 level

Lung cancer PFS by SBS4/29 level

Flat(SBS5/40)

SBS89

SBS4/29

SBS2/13

SBS1

TMB

1.0 1.2 1.4
Hazard Ratio (per mutations/Mb)

 

 

0.98

1.31

0.97

0.94

0.97

1.01

0.9500.9751.0001.0251.050
  

HR

(0.95, 1.00)

(1.10, 1.56)

(0.92, 1.03)

(0.90, 0.98)

(0.89, 1.06)

(0.95, 1.07)

0.9500.9751.0001.0251.050
  

95% CI


