1	The health im	pact of wood	dust in Kijisl	ni: Yamanaka	Kijishi Study
---	---------------	--------------	----------------	--------------	---------------

- 2
- 3 **Running head:** Health impact of wood dust
- 4
- 5 Yuki Nakao^{1,2}, Kazuhiro Okada², Yasuhiro Goto³, Yosuke Matsuda⁴,
- 6 Kiyohiko Fujimoto⁴, Yoshiyasu Okuhara⁵
- 7

8 Author Contributions

- 9 Y.N., K.O. and Y.G. conceived the ideas; Y.N., K.O., Y.G., Y.M., and K.F. collected the
- 10 data; Y.N., K.O., Y.G., Y.M., and K.F. analyzed the data; and Y.N., K.O., Y.G., Y.M., K.F.
- 11 and Y.O. led the writing.
- 12

13 Authors' Affiliations

- ¹Graduate School of Integrated Arts and Sciences, Medical Science Program, Kochi Medical
- 15 School, Kochi University, Kochi, Japan
- ¹⁶ ²Kaga Medical Center, Kaga City, Ishkawa Prefecture, Japan
- ¹⁷ ³Ishikawa Prefectural Institute for Yamanaka Lacquerware, Ishikawa Prefectural Training
- 18 Institute of Woodturning, Kaga City, Ishkawa Prefecture, Japan
- ⁴Forestry and Forest Products Research Institute, Tsukuba City, Ibaraki Prefecture, Japan
- ⁵Center of Medical Information Science, Kochi Medical School, Kochi University, Kochi,
- 21 Japan

- 23 Correspondence: Yuki Nakao
- 24 Graduate School of Integrated Arts and Sciences, Medical Science Program, Kochi Medical
- 25 School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan

- 26 Phone: 088-880-2212
- 27 Fax: 088-880-2214
- 28 Email: yukinakao358@gmail.com

30 ABSTRACT

31	Objectives: It is well known that exposure to wood dust can cause Sinonasal carcinomas
32	(SNC) and various respiratory diseases such as allergies. Japanese woodturners called kijishi
33	work in an environment where wood dust is generated from lathes, and they are considered at
34	risk for various diseases. However, there is a dearth of research on the health impacts of
35	wood dust on kijishi. The purpose of this study is to understand the real situation of kijishi
36	that are exposed to wood dust.
37	Methods: A questionnaire survey was conducted with 20 kijishi. We measured the amounts
38	of wood dust two experienced kijishi were exposed to during a typical woodturning session.
39	Results: Approximately half the participants exhibited allergic symptoms such as rhinitis;
40	however, this rate was equivalent to the result of the Japan Comprehensive Survey of Living
41	Conditions 2019. SNC was not observed in any of the participants. The level of exposure to
42	wood dust was low, that is, inhalable dust was 0.03 mg/m^3 , and total dust 0.22 mg/m^3 . The
43	measured values were very low compared to the Occupational Safety and Health
44	Administration (OSHA), National Institute for Occupational Safety and Health (NIOSH),
45	American Conference of Governmental Industrial Hygienist (ACGIH), and Health and Safety
46	Executive Control of Substances Hazardous to Health (HSE COSHH) standards.
47	Conclusions: We concluded that constant ventilation during woodturning reduces exposure
48	to wood dust, thereby preventing harm to the health of kijishi to a considerable extent.
49	

50 Keywords: wood dust, sinonasal carcinomas, woodworkers, Japan, traditional craft, kijishi

51 INTRODUCTION

52	Kijishi are Japanese craftspeople specializing in tableware, including the wan (bowl) and the
53	bon (tray) made by woodturning. Kijishi play important roles in maintaining traditional
54	Japanese craftwork. They first design tableware mentally and then use a rokuro (traditional
55	lathe) to carve each piece from a chunk of wood. The process of woodturning by using a
56	rokuro is called rokurobiki. Yamanaka lacquerware originated in Kaga City, Ishikawa
57	Prefecture, Japan. Yamanaka lacquerware is renowned for its woodturning products, has the
58	largest population of kijishi in Japan, and produces more woodturning products than
59	anywhere else in the country. ¹ Yamanaka Woodturning Technique Preservation Association
60	is one of the associations to which kijishi belong in Yamanaka lacquerware.
61	
62	Wood Dust, Preventing Exposure and Issues
63	Wood dust is generated during the woodturning process while using the rokuro, which may
64	be a problem. Dust refers to solid particulates that are generated when a solid material is
65	processed by a machine and is part of particulate matter floating in the air. In general, dust
66	refers to such particulates with a size of up to 150 μ m. ² The main components of wood dust
67	are cellulose, hemicellulose, and lignin. Wood dust also contains many other low-molecular
68	organic compounds. Studies have found that exposure to wood dust can cause not only
69	respiratory diseases such as asthma and allergy but also sinonasal cancer sinonasal
70	carcinomas (SNC), and it is classified as a Group 1 human carcinogen. ^{3,4}
71	To prevent apprentices from being exposed to wood dust, the training institute has
72	installed ventilators and encourages apprentices to wear a face mask. However, little is
73	known about kijishi who exhibit health problems from wood dust, such as respiratory
74	diseases including asthma, allergies, and SNC. As a result, the training institute has been
75	experiencing difficulty explaining such health problems to apprentices, and some apprentices

76	are feeling anxious. While it is known that kijishi are exposed to wood dust when they
77	engage in wood processing, little research regarding such exposure and related health impacts
78	has been undertaken.
79	This study aimed to shed light on the health impacts of exposure to wood dust on
80	kijishi engaging in the production of Yamanaka lacquerware products. The study was
81	requested by the training institute, and it received support from them; the details are
82	mentioned in the Declarations section.
83	
84	METHODS
85	Participants
86	The study comprised a survey questionnaire and wood dust collection and measurement.
87	Participants were members of The Yamanaka Woodturning Technique Preservation
88	Association. Many of those who had been engaged in <i>rokurobiki</i> for a long time belong to the
89	association. A paper-based questionnaire was sent to all members of the association
90	individually from March 4 to 30, 2020. No compensation was given for completing the
91	questionnaire.
92	
93	Questionnaire Survey
94	A questionnaire survey was administered to 20 kijishi who were members of the association.
95	The questionnaire asked participants about items shown in Table 1.
96	[Table 1 near here]
97	
98	Dust Measurement
99	In this study, levels of exposure to wood dust were measured with support from two kijishi
100	(with 41 and 39 years of experience) who were both members of the association.

101

102 Wood and Conditions for Rokurobiki

103	Sugi (Cryptomeria japonica) is commonly used for building material in Japan; however, it is
104	not suitable for woodturning because the growth rings between its latewood (winter) and
105	earlywood (summer) bands are made of soft fibers that break during woodturning. ⁵ Hence,
106	kijishi rarely choose sugi for woodturning. Instead, they tend to use keyaki (Zelkova serrata)
107	as it can withstand the lathe and has a beautiful texture. Therefore, this study used chunks of
108	dried keyaki (after rough turning) with a water content of 10.1% (measured by comparing
109	samples taken before and after drying). Measurements were taken in a typical kijishi work
110	environment (Figure 1-a). The rokuro was operated at a maximum of 1000 rpm.
111	
112	Conditions for Ventilation
113	Kijishi work as sole traders and have their own workshops. They have ventilation equipment
114	installed in their workshops, such as a dust collector and a ventilation fan. Most kijishi adjust
115	the settings of ventilation equipment depending on the amount of dust being generated. In
116	this study, wood dust was measured while ventilation equipment was being operated because
117	1) almost all kijishi who participated in the questionnaire survey were using ventilation
118	equipment; and 2) kijishi would have been at risk of being exposed to wood dust if the
119	ventilation equipment had not been operated.
120	Additionally, it was found that most kijishi secure an air inlet by opening windows
121	located upstream of the ventilation equipment so that the air flows effectively. As such, the
122	ventilation equipment was in operation, and the sliding door located upstream of the
123	equipment was left ajar during dust measurement. We confirmed that the wind velocity was
124	0.1 m/s or lower at the dust collection point before measurement (Figure 1-b, 1-c).
125	[Figure 1 near here]

126

148

127 Wood Dust Collection Methods

- 128 Dust particle sizes and measurement methods are key in measuring wood dust. 129 In this study, particle-size distribution, inhalable dust, and total dust were measured. 130 An Andersen-type air sampler (Sibata Scientific Technology Ltd., AN-200) was used to 131 measure particle-size distribution. The Andersen-type air sampler collects air samples that 132 include dust at an inhalation flow rate of 28.3 L/min, and (according to the package insert) 133 can classify collected samples into the following nine levels by aerodynamic particle size: 134 ≤0.43 μm, 0.43–0.65 μm, 0.65–1.1 μm, 1.1–2.1 μm, 2.1–3.3 μm, 3.3–4.7 μm, 4.7–7.0 μm, 135 7.0–11.0 μ m, and \geq 11.0 μ m. Thereafter, the masses of the dust samples (mg) were measured 136 for each particle size to obtain mass-based particle sizes. 137 The AN-200 was placed 65 mm away from the center of the bowl toward the kijishi 138 and at a height of 590 mm above the workbench. According to the questionnaire, kijishi 139 spend an average of approximately 8 hours per day on woodturning. Taking into account that 140 the room is sufficiently ventilated during a lunch break, we considered that kijishi are 141 consecutively exposed to wood dust for a mean duration of 4 hours per day. Hence, wood 142 dust for measurement was collected for 4 hours in this study (Figure 1-d). The participating 143 kijishi carried out tasks in 2-hour shifts. Eleven woodturning pieces were completed over the 144 course of 4 hours. 145 An inertial impaction-type air sampler (Sibata Scientific Technology Ltd., NW-354) 146 was used for measuring inhalable dust and total dust. Inertial impaction-type air samplers 147 enable size separation and collection of particles in the air by inertial impaction.⁶ Total dust

refers to dust collected at a velocity of 0.5-0.8 m/s at the inlet of the dust collecting devices.⁷

149 Inhalable dust is defined as dust that penetrates a dust sampler with the following size

150 separation properties: a collection efficiency of 50% for dust with a size of up to 4.0 µm, and

- 151 0% for dust with a size of 10 μ m or greater⁷ (Table 2).
- 152 [Table 2 near here]

153 The NW-354 was placed on the opposite side of the kijishi, 100 mm away from the

- 154 center of the bowl, at a height of 460 mm above the workbench. Wood dust for measurement
- 155 was also collected for a duration of 4 hours.

156 Also, background data were measured inside the room while woodturning was not

157 being performed. Samples for background data were collected under the same conditions as

- 158 those for measuring dust, that is, for 4 hours at a wind velocity of up to 0.1 m/s at the dust
- 159 collection point.
- 160
- 161 **RESULTS**

162 **Questionnaire Results** (Table 3)

163 We collected responses from all 20 kijishi surveyed. The mean age of participants was 59.9

164 years old (±13.6). Only one woman participated. Three participants had previously worked in

165 occupations other than kijishi, namely as a gas station worker, furniture designer, and car

166 mechanic, none of which involve exposure to wood dust. The history of asbestos inhalation

167 and other related information for the three participants could not be confirmed.

168 [Table 3 near here]

169 Nine participants indicated the presence of diseases, including lower back pain and
170 allergy symptoms, such as rhinitis and coughing. Four participants had diabetes, and two had
171 hypertension. None of the participants had SNC. Nine participants were taking medications,

- 172 including analgesics, agents for improving uric acid levels and those for improving liver
- 173 function, and antidiabetic and antihypertensive agents. Regarding family history, four

participants had a family history of lung cancer, two of gastrointestinal cancer, and six ofother cancers (details unknown).

176	As for lifestyle habits, 14 were consuming alcohol and smoking cigarettes. Ten
177	participants were regularly engaging in exercise, such as walking. As for the work
178	environment, only three participants reported using a face mask during woodturning.
179	However, all but one of the participants had a room ventilator installed inside the workshop
180	and were using it during woodturning. Data were considered to have been normally
181	distributed according to the histogram (Figure S1), and median (IQR) or n (%) were used in
182	indicating age (Table 3). As participants included only one woman, a histogram created by
183	gender would have revealed her age. Therefore, the histogram indicates only the age
184	distribution of all participants and the number of participants in each age group.
185	
186	Wood Dust Measurement Results
187	Background data were collected at a room temperature of 25.7°C and humidity of 67.8%.
188	Data for dust measurement were collected at a room temperature of 26.9°C and humidity of

189 62.8%. The particle size distribution of dust could not be calculated as only a limited amount

190 of dust could be collected. Inhalable dust in the background and during woodturning was 0.04

191 mg/m³ and 0.03 mg/m³, respectively. Total dust in the background and during woodturning

192 was 0.04 mg/m^3 and 0.22mg/m^3 , respectively.

193

194 **DISCUSSION**

195 As for inhalable dust, the measured value of 0.03 mg/m^3 during woodturning was almost the

196 same as the background value of 0.04 mg/m^3 , and the smaller value during woodturning was

197 probably due to measurement error. This may show that the dust concentration during

198 woodturning is very small within the error margin. This indicates that the Kijishi were

adequately ventilated during woodturning and that their exposure to inhalable dust was verylow.

201	It is well known that exposure to wood dust can cause a host of illnesses, including
202	reduced respiratory function, lung disease, asthma, and even SNC. The Japanese government
203	has created a list of allergens that can cause allergic respiratory disease (e.g., allergic rhinitis,
204	bronchial asthma, pharyngitis), including western red cedar (Thuja plicata), nezuko (Thuja
205	standishii), lauan, ryobu (Clethra barbinervis), mulberry, hoonoki (Magnolia obovate), and
206	Shirakaba (Betula <i>platyphylla</i>). Allergic respiratory disease caused by exposure to wood dust
207	of these types of wood is treated as an occupational disease in the country. ⁸ Although keyaki
208	(Zelkova serrata) is not on the list, it can also cause allergic respiratory disease.
209	In this study, approximately half of the participants indicated that they had allergic
210	symptoms such as rhinitis. All of those who responded to the survey as such were male. This
211	percentage was almost the same as the results of the latest national epidemiological survey in
212	Japan (the percentage of men with allergy symptoms: 49.7% in 2019). ⁹ Since this survey was
213	conducted in March, which generally corresponds to the time when allergic rhinitis
214	symptoms caused by Sugi (Cryptomeria japonica) and Hinoki (Chamaecyparis obtusa) are
215	most likely to appear, the percentage of complaints of allergic symptoms obtained in this
216	survey was also considered to be influenced by those pollens.
217	It is known that there is a positive association between smoking and allergy onset. ¹⁰
218	Fourteen of the twenty participants (four were smokers and ten had smoked in the past) had a
219	history of smoking, which may have also influenced the proportion of participants reporting
220	allergic symptoms.
221	As noted previously, most particles with a particle size of 10 μ m or greater remain in

the nasal cavity and throat and are swallowed or spat in the form of phlegm.¹¹ We found that

223	most dust particles collected during woodturning were of this size (i.e., larger than inhalable
224	dust). Such particles remain in the nasal cavity leading to allergic symptoms such as rhinitis.
225	Wood Dust Exposure Limits are specified by the respective agencies as follows: ⁸
226	\sim O = 10 = 10 = 10 = 10 = 10 = 10 = 10 =
226	a) Occupational Safety and Health Administration (OSHA): total dust =15 mg/m ³ ,
227	respirable fraction = 5 mg/m^3 or less;
228	b) National Institute for Occupational Safety and Health (NIOSH): total dust = 1 mg/m^3
229	or less;
230	c) American Group of Governmental Industrial Hygienist (AGGIH): Inhalable
231	particulate matter = 0.5 mg/m^3 for western red cedar and inhalable particulate matter
232	$= 1 \text{ mg/m}^3$ or less for other than western red cedar;
233	d) Health and Safety Executive Control of Substances Hazardous to Health (HSE
234	COSHH) essentials (2020) stipulates: inhalable fraction = 3 mg/m^3 or less.
235	We in the present study found that the level of exposure to wood dust was low, that is,
236	inhalable dust was 0.03 mg/m ³ , and total dust 0.22 mg/m ³ . The measured values were very
237	low compared to OSHA, NIOSH, ACGIH, and HSE COSHH standards.
238	Some participants indicated that they experienced coughs and other symptoms when
239	they inhaled large amounts of wood dust while making numerous large wooden items (e.g.,
240	Japanese round tea box) in the 1970s. In those times, ventilation equipment was yet to be
241	installed; therefore, large amounts of wood dust were suspended in the air. This finding is
242	likely because constant ventilation during woodwork reduces exposure to wood dust.
243	As noted, none of the participants indicated the presence of SNC, which is a rare
244	disease with morbidity of 1-2 in 100,000. In recent years, the number of patients with SNC
245	has begun declining even further in Japan. ¹² Data disclosed by the Cancer Information Center
246	of the National Cancer Center do not include information on malignant neoplasms of the
247	nasal cavity or the paranasal sinuses. The latest morbidity rate of these diseases is unknown.

248	Researchers considered that no participants in this study had SNC because it is an extremely
249	rare disease. Hardwoods are considered to have a high risk of SNC. ¹³ Although there are no
250	reports on the carcinogenicity of keyaki (Zelkova serrata), it is considered necessary to be
251	careful about the occurrence of SNC considering that keyaki (Zelkova serrata) is a hardwood.
252	Surveying a larger sample of kijishi could reveal cases of SNC.
253	
254	Limitations
255	This study relied on a questionnaire survey with a small sample size; therefore, the
256	carcinogenicity of wood dust cannot be discussed on the basis of the present findings.
257	Kijishi with advanced woodturning skills only require small amounts of coated abrasives
258	during rokurobiki. Therefore, experienced kijishi are unlikely to be exposed to large amounts
259	of wood dust.
260	Dust should be measured at the position of the nose of the kijishi. However, the
261	measurement device could not be placed at the nose position as doing so would have
262	interfered with tasks.
263	Further, it should be noted that this study has a selection bias because some kijishi do
264	not belong to the Yamanaka Woodturning Technique Preservation Association.
265	
266	CONCLUSION
267	The real status of kijishi exposed to wood dust in the Yamanaka Woodturning Technique
268	Preservation Association was revealed. Since the amount of wood dust exposure in the
269	kijishi-workshops was very small due to the use of ventilation equipment, the potential health
270	effects of wood dust were considered to be small.

- 271 Due to the small sample size of this survey, we believe that this study can be used as a
- starting point for a more detailed study through a large-scale survey of kijishi involved in
- 273 lacquerware production in Japan.

275 DATA SHARING AND DATA ACCESSIBILITY

- 276 The datasets used and/or analyzed during the current study are available from the
- 277 corresponding author on reasonable request.

278 ACKNOWLEDGMENTS

- 279 We would like to thank all the kijishi of the Yamanaka Woodturning Technique Preservation
- 280 Association who participated in the survey.
- 281 We thank Shoichi Mukaide, Hirohiko Kawakita and Ryozo Kawagita for their guidance and
- 282 work.
- 283 Moreover, the authors extend their sincere gratitude to all of those who spent their valuable
- time participating in this study. This study received financial support from the Public Interest
- 285 Incorporated Foundation Japan Foundation for Promoting Welfare of Small and Medium-
- sized Enterprises (FY2020 Nihon Full Happ Research Grant).

287 **DISCLOSURE**

- 288 Approval of the Research Protocol: The study was approved by the ethics review
- 289 committee of the Kaga Medical Center as well as the Yamanaka Woodturning Technique
- 290 Preservation Association (approval number R1-8).
- 291 **Informed Consent**: Written consent was obtained from all participants.
- 292 Registry and the Registration No. of the study/trial: N/A.
- 293 Animal Studies: N/A.
- 294 **Conflict of Interest**: All the authors declare no conflicts of interest associated with the
- 295 manuscript.

296 **REFERENCES**

297	1.	Mertz M. Wood and Traditional Woodworking in Japan. Siga: Kaiseisha Press; 2016.
298	2.	Ministry of Labour Occupational Health Unit. Workplace Health and Safety
299		Terminology. Japan Industrial Safety & Health Association. Tokyo: Japan Industrial
300		Safety and Health Association; 1993.
301	3.	Douwes J, McLean D, Slater T, Travier N, Cheng S, Pearce N. Pine dust, atopy and
302		lung function: A cross-sectional study in sawmill workers. Eur Respir J
303		2006;28(4):791-798.
304	4.	International Agency for Research on Cancer (IARC). Agents Classified by the IARC
305		Monographs
306		http://monographs.iarc.fr/ENG/Classification/index.php. Accessed April 25, 2023.
307	5.	Kawamura T. Elementary Colors: A Dictionary of Wood Species and Timber Surface
308		Texture. Tokyo: SEIBUNDO SHINKOSHA Publishing Co., LTD; 2014.
309	6.	Fujimoto K. Measuring dust generated from wood processing. Wood Industry
310		2016;71.2:82–85.
311	7.	Japan Society for Occupational Health. Recommendations for permissible
312		concentrations, etc (FY2019). 2019:61:177-202.
313	8.	Ministry of Health, Labour and Welfare. Cancer from Wood Dust.
314		https://www.mhlw.go.jp/stf/shingi/2r9852000002b3ek-att/2r9852000002b3gs.pdf.
315		Accessed April 25, 2023.
316	9.	Ministry of Health, Labour and Welfare. Summary Report of Comprehensive Survey
317		of Living Conditions 2019. https://www.mhlw.go.jp/english/database/db-
318		hss/dl/report_gaikyo_2019.pdf. Accessed April 25, 2023.
310		

320	10. Strzelak A, Ratajczak A, Adamiec A, Feleszko W. Tobacco Smoke Induces and
321	Alters Immune Responses in the Lung Triggering Inflammation, Allergy, Asthma and
322	Other Lung Diseases: A Mechanistic Review. Int J Environ Res Public Health
323	2018;15(5):1033.
324	11. The Knowledge of Occupational Health for Work Environment Measurement. Japan
325	Association for Working Environment Measurement. Tokyo: Public interest
326	incorporated association Japan Association for Working Environment Measurement;
327	2019.
328	12. Kaga K. New clinical otorhinolaryngology. Volume 3. Tokyo: Chugai-Igakusha;
329	2002.
330	13. World Health Organization (WHO). IARC Monographs 100c, 2018. Wood Dust.
331	https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono100C-15.pdf.
332	Accessed April 25, 2023.
333	

334 TABLES

335 **Table 1**. Questionnaire items

Participants' background	Gender, age, number of years of experience as kijishi, number
information	of hours of work per day, history of occupation other than
	kijishi
Presence or absence of	Presence or absence of allergic diseases such as rhinitis and
disease	cough (symptoms including shortness of breath, nasal
	congestion, rhinorrhea, and headache); presence of absence of
	sinonasal cancer/ diabetes/hypertension/dyslipidemia/lower
	back pain/hearing impairment, as well as related past history,
	medication history, and family history
Lifestyle habits of	Presence or absence of alcohol consumption, smoking, and
participants	exercise habit
Information on the work	Use of a face mask during woodturning, availability and use of
environment	ventilation equipment during woodturning

337 **Table 2**. Types and definitions of dust

Dust	Solid particulates that are generated when a solid material is processed by machine. These solid particulates are part of
	particulate matter floating in the air.
Inhalable dust	Dust that penetrates a sampler with the following size
	separation properties: a collection efficiency of 50% for
	dust with a size of up to $4.0 \ \mu m$; and a collection efficiency
	of 0% for dust with a size of 10 μ m or greater
Total dust	Dust that is collected at a velocity of 50-80 cm/sec at the
	inlet of the collecting device

Subject characteristic		Overall
		n=20
Age, n (%)	30s	1 (5%)
	40s	3 (15%)
	50s	8 (40%)
	60s	3 (15%)
	70s	3 (15%)
	80s	2 (10%)
Sex, n (%)	Male	19 (95%)
	Female	1 (5%)
Age at which participants started their career as kijishi (years)		18 (17.5, 20)
Number of years of experience as Kijishi (years)		40 (27.5, 53.5)
Mean number of hours spent on woodturning per day(hours)		7.8
Allergy symptoms, n (%)		9 (45%)
Lower back pain, n (%)		9 (45%)
Hearing impairment, n (%)		6 (30%)
Diabetes, n (%)		4 (20%)
Hypertension, n (%)		2 (10%)
Oral medication, n (%)		9 (45%)
		14 (70%)
Alcohol consumption history, n (%)		
,		14 (70%)
Alcohol consumption history, n (%)		14 (70%) 12(60%)
Alcohol consumption history, n (%) Smoking history, n (%)		
Alcohol consumption history, n (%) Smoking history, n (%) Family history, n (%)		12(60%)
Alcohol consumption history, n (%) Smoking history, n (%) Family history, n (%) Exercise habit, n (%)		12(60%) 10 (50%)

339 Table 3. Questionnaire results: Subject characteristics

341 FIGURE LEGENDS

- 342 **Figure 1**. Work scene, etc.
- 343 1-a: Working on Rokurobiki and dust measurement in the workshop
- 344 1-b: Schematic diagram of the workshop
- 345 1-c: Work with the door slightly open.
- 346 1-d: Generation of wood dust through the use of coated abrasives
- 347

348 Supporting Information

349 **Figure S1**. A histogram of participants age groups (years)