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ABSTRACT 
 
Background: Many analytical methods used in gut microbiome research focus on either single 
bacterial taxa or the whole microbiome, ignoring multi-bacteria relationships (microbial cliques). 
We present a novel analytical approach to identify multiple bacterial taxa within the gut 
microbiome of children at 9-11 years associated with prenatal Pb exposure.  
  
Methods: Data came from a subset of participants (n=123) in the Programming Research in 
Obesity, Growth, Environment and Social Stressors (PROGRESS) cohort. Pb concentrations 
were measured in maternal whole blood from the second and third trimesters of pregnancy. 
Stool samples collected at 9-11 years old underwent metagenomic sequencing to assess the 
gut microbiome. Using a novel analytical approach, Microbial Co-occurrence Analysis (MiCA), 
we paired a machine-learning algorithm with randomization-based inference to first identify 
microbial cliques that were predictive of prenatal Pb exposure and then estimate the association 
between prenatal Pb exposure and microbial clique abundance.   
  
Results: With second-trimester Pb exposure, we identified a 2-taxa microbial clique that 
included Bifidobacterium adolescentis and Ruminococcus callidus, and a 3-taxa clique that 
added Prevotella clara. Increasing second-trimester Pb exposure was associated with 
significantly increased odds of having the 2-taxa microbial clique below the 50th percentile 
relative abundance (OR=1.03,95%CI[1.01-1.05]).  In an analysis of Pb concentration at or 
above vs. below the United States and Mexico guidelines for child Pb exposure, odds of the 2-
taxa clique in low abundance were 3.36(95%CI[1.32-8.51]) and 6.11(95%CI[1.87-19.93]), 
respectively. Trends were similar with the 3-taxa clique but not statistically significant. 
  
Discussion: Using a novel combination of machine-learning and causal-inference, MiCA 
identified a significant association between second-trimester Pb exposure and reduced 
abundance of a probiotic microbial clique within the gut microbiome in late childhood. Pb 
exposure levels at the guidelines for child Pb poisoning in the United States, and Mexico are not 
sufficient to protect against the potential loss of probiotic benefits.  
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Graphical Abstract: 
 

 
 
 
INTRODUCTION 
 
Human metal exposure has been long recognized as a public health threat, and recent studies 
suggest that one potential mechanism for their adverse health effects is through the gut 
microbiome (Claus et al. 2016; Li et al. 2019a). A growing body of animal and human studies 
have shown that exposure to heavy metals (e.g., As, Cd, and Pb) can alter the gut microbiome 
composition and metabolic function, reduce diversity, and select for antibiotic resistance 
(Brabec et al. 2020; Breton et al. 2013; Chi et al. 2017; Eggers et al. 2021; Gao et al. 2017; Li et 
al. 2019a; Nisanian et al. 2014). Human Pb exposure has been linked to shifts in the 
microbiome throughout the life course (Eggers et al. 2019; Laue et al. 2020). Sitarik, et al, found 
that prenatal Pb exposure measured in baby teeth was associated with decreased abundance 
of several Bacteroides species, and an increased abundance of the proinflammatory genus 
Collinsella, in the gut microbiome at 1 and 6 months old (Sitarik et al. 2020). Likewise, Shen, et 
al, found that prenatal Pb exposure measured in maternal blood was associated with an 
increased abundance of Fusobacteriota in the gut microbiome of children 6-7 years old (Shen et 
al. 2022). A study out of our group also found that Pb exposure in the second and third 
trimesters of pregnancy was associated with decreased abundance of several short-chain-fatty-
acid-producing bacteria in children 9-11 years of age (Eggers et al. 2023). Taken together, 
these studies indicate that the prenatal period may be a particularly critical window of Pb 
exposure on the development of the human gut microbiome in childhood. Moreover, the link 
between prenatal Pb exposure and increased abundance of pro-inflammatory and potentially 
pathogenic bacteria, and decreased abundance of probiotic bacteria, suggest that these 
prenatal Pb exposures may lead to poor health outcomes later in childhood via these alterations 
to the gut microbiome. 
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Each of these highlighted studies, and the vast majority of epidemiologic microbiome studies, 
have used a whole microbiome and/or single taxa approach to investigation. They identified 
single taxa, or the whole microbiome, as measured using diversity as an indicator associated 
with a specific exposure or outcome of interest. However, we know from the field of microbial 
ecology that bacteria (and other microbiome members) biochemically interact with one another 
at levels between 1-on-1 and the whole microbiome, i.e., groups. For instance, many gut 
microbes are unable to be cultured in the lab without other bacteria in co-culture (Stewart 2012). 
In most cases, these bacteria do not need to be co-cultured with everything from the gut 
microbiome, just one or two others. This group of bacteria within the microbiome, or as we call 
it, a microbial clique, is missed by the conventional microbiome epidemiology methods. There 
are studies of the human microbiome that use network analysis to investigate co-occurring 
microbes within the human microbiome (Dugas et al. 2018; Faust et al. 2012); however, they 
are based on correlations and can be difficult to use inside of an epidemiologic framework to 
understand associations and account for confounding variables. Furthermore, the results of 
network analyses are often difficult to interpret. Thus, the ability to assess associations between 
exposures or outcomes of epidemiologic interest and microbial cliques within the human 
microbiome is an important gap in the field. However, finding microbial clique associated with an 
outcome of interest is challenging because of (1) considerable computational complexity as the 
number of taxa increases and (2) limitations of sample size in most human microbiome studies. 
Multiple methods exist where multi-ordered microbial cliques can be pre-specified or hard-coded 
in the models; however, such strategies might ignore many plausible and informative 
combinations and could be underpowered due to restrictions on sample size (Gibson 2021; 
Joubert et al. 2022; Vishal Midya et al. 2023). On the other hand, microbial cliques can be 
potentially discovered using projection-based dimensionality reduction techniques. However, the 
interpretations of the final products can be challenging to interpret and are often qualitative 
(Bellavia). Microbial cliques can be constructed through threshold-based relative abundance, 
which might aid in interpretation. Such threshold-based construction carries considerable 
similarity with toxicological threshold-based interactions (Gennings et al. 1997; Hamm et al. 
2005; Yeatts et al. 2010). Tree-based machine-learning models can provide a natural and 
computationally efficient solution to such construction (Vishal Midya et al. 2023). Even with a 
substantial number of taxa, these models can create multiple threshold-based combinations of 
taxa predictive of the outcome of interest. Still, the challenge remains in interpretability since 
most machine-learning models are generally black-box, creating a tension between prediction 
quality and meaningful interpretability.  Moreover, a highly predictive machine-learning model 
may not be ideal for associations (Shmueli 2010).  
 
In this study, we aim to identify microbial cliques within the gut microbiome of children at 9-11 
years old in association with prenatal Pb exposure. To accomplish this, we used a novel 
statistical approach called Microbial Co-occurrence Analysis (MiCA), which combined 
interpretable machine learning and causal inference frameworks to first identify microbial 
cliques, and then test their associations with prenatal Pb exposure. 
 
METHODS 
 
Study Design 
 
Data come from the PROGRESS cohort, based out of Mexico City, Mexico. The study enrolled 
948 pregnant women who went on to live birth through the Mexican Social Security System. 
Pregnant women completed study visits in the second trimester (2T), third trimester (3T), and at 
birth. The offspring were followed and completed study visits every 6 months during infancy and 
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every two years after that. Surveys, physical exams, and psychological and behavioral 
assessments were conducted at each study visit. Biological specimens, including blood, were 
also collected. In addition, stool samples were collected for microbiome analysis from a subset 
of participants (n=123) at ages 9-11 years old. The study protocol for PROGRESS was 
reviewed and approved by the Institutional Review Board (IRB) at the Icahn School of Medicine 
at Mount Sinai (ISMMS), and all three committees (Research, Ethics in Research, and 
Biosafety) included in the IRB at the National Institute of Public Health in Cuernavaca, Mexico. 
 
Pb Exposure Measurement 
 
Maternal whole blood was drawn during 2T and 3T, and Pb exposure analysis was performed 
as previously described (Heiss et al. 2020). Pb concentration was measured using inductively 
coupled plasma mass spectrometry (ICP-MS), at the trace metals laboratory at ISMMS. 
 
Gut Microbiome Sample Collection and Processing 
 
Microbiome sample collection was conducted as previously described (Eggers et al. 2023). 
Briefly, whole stool samples were collected at home by participants and stored in the refrigerator 
until they were picked up by the PROGRESS field team and delivered to ABC Hospital in 
Mexico City for aliquoting, following the FAST protocol (Romano et al. 2018). Aliquots were 
stored at -70C, and shipped to the Microbiome Translational Center at ISMMS, where they 
underwent DNA extraction and library prep in two separate batches (n=50 and n=73). Shotgun 
metagenomic sequencing was performed for each batch separately using an Illumina HiSeq. 
Sequencing reads were trimmed for quality using Trimmomatic (Bolger et al. 2014), and bowtie2 
(Langmead and Salzberg 2012) was used to remove human reads. MetaPhlAn2 (Truong et al. 
2015) and StrainPhlAn (Truong et al. 2017) were then used to determine microbial taxonomy, 
and HUMAnN2 (Franzosa et al. 2018) was used to profile microbial gene pathways.  
 
Covariates 

Several relevant covariates were considered in this analysis, including child sex, child age at the 
time of stool sample collection, maternal socio-economic status (SES) during pregnancy, 
maternal age at birth, maternal body mass index (BMI) during pregnancy, and microbiome 
analysis batch. Maternal height and weight were measured at 2T and used to calculate BMI. 
Maternal SES during pregnancy was assessed based on the 1994 Mexican Association of 
Intelligence Agencies Market and Opinion (AMAI) rule 13*6, where families were categorized 
into six levels of SES based on 13 questions about household characteristics. Most families in 
PROGRESS were low to middle SES; therefore, the six levels were condensed into three: 
lower, middle, and higher (Sanders et al. 2022). 

Statistical Analysis 

All analyses were conducted in R version 4.0.3; any two-tailed p-value less than 0.05 was 
considered statistically significant.  

Data Processing 

Pb concentrations were log2 transformed to better meet distributional assumptions. Microbiome 
count data were converted to relative abundances for all analyses. The analysis included only 
those taxa with at least 5% relative abundance in both batches to account for analytical batch 
effects. The relative abundance data were not rescaled to reflect the contribution of the original 
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distribution of the whole taxa. Further, all models were controlled for a batch indicator variable. 
Further modeling approaches to correct batch effects are described in the following subsection.  

Microbiome Co-occurrence Analysis (MiCA) 

MiCA was conducted in two stages to identify microbial cliques associated with prenatal Pb 
exposures. The first part of this algorithm used a machine learning-based prediction framework 
to discover microbial cliques predictive of Pb exposure. The next stage restored the 
directionality and dived into estimating the association between Pb exposure and the joint-
relative abundance of the discovered cliques using a causal inference (or simply classical 
association-based) framework.  

The microbial cliques were searched using repeated hold-out signed-iterated Random Forest 
(rh-SiRF), where the outcome was prenatal Pb exposure, and the predictors were relative 
abundances of the selected taxa. The SiRF (Signed Iterative Random Forest) algorithm 
combined a state-of-the-art predictive tool called "Iterative Random Forests" with Random 
Intersection Trees (RIT) to search for combinations of taxa predictive of Pb exposure (Basu et 
al. 2018; Kumbier et al. 2018; Shah and Meinshausen 2014). Instead of searching for all 
possible combinations, SiRF can tease out the most prevalent taxa combinations on the 
decision path. The algorithm begins with a simple random forest (RF) and then sequentially 
reweights the predictive taxa to fit iterative RFs. From the reweighted RF, decision rules are 
extracted and fed into a generalization of the RIT to discover microbial cliques from the decision 
paths. This algorithm introduces a bagging step to assess the "stability" of the discovered 
cliques estimated through many bootstrapped iterations. Therefore, the higher the stability of a 
discovered clique, the better. On top of the SIRF algorithm, we introduced a repeated hold-out 
step that randomly partitions the data in training and testing sets for better generalizability 
(Tanner et al. 2019). The whole rh-SiRF algorithm is repeated many times.  

The rh-SiRF discovers microbial cliques through decision paths, representing a collective form 
associated with the outcome rather than a particular functional form. Thus, the discovered 
cliques include information on directionality and relative abundance thresholds. We fitted the 
SiRF algorithm in three ways, (1) trained the model on one batch and then tested it on another 
batch, (2) trained the model on randomly chosen 60% of the data and then tested it on the 
remaining 40%, and lastly (3) repeated the rh-SiRF algorithm over 300 times with a training and 
test data partitioning of 60%-40% irrespective of the batches. Microbial cliques were chosen 
based on having a stability of more than 75%, a prevalence of more than 10%, being common 
to all data partitioning strategies, and having a higher than random chance of occurrence among 
the 300 repeated hold-outs (i.e., the relative frequency of occurrence was more than 1%). While 
fitting the SiRF algorithm on the first two data partitioning strategies (i.e., training on one batch 
and testing on another and 60%-40% data splitting), we calculated the exposure co-occurrence 
list to find the important cliques based on mutual co-occurrence. The idea of exposure co-
occurrence list follows from the heuristics of distributed word representations (popularly known 
as word embedding) and is widely applied in tasks related to Natural Language Processing (Li 
et al. 2015; Lin 2008). 

For the next stage of association analysis, the discovered microbial cliques were extracted as 
indicator functions with respect to their median relative abundances. For example, a microbial 
clique of A and B, denoted by A-B-, implies that a lower relative abundance of A and B is 
predictive of prenatal Pb exposure, whereas A+B+ means a higher relative abundance of A and 
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B is predictive of prenatal Pb exposure. For ease of interpretation and generalizability, we 
converted A-B- to an indicator function with respect to their median relative abundances, i.e., for 
an individual, the indicator would be non-zero if both the taxa A and B had below median 
relative abundance; else, it would be zero. 

We implemented a randomization-based inference built upon the Rubin causal model to 
estimate the association between prenatal Pb exposure and the odds of microbial clique 
abundance below the median. First, a matched-sampling strategy was utilized to obtain similar 
covariate distributions between the binarized clique – below and above median relative 
abundance. Given the covariates, we assumed that this approach of covariate-balancing 
(Greifer 2023) could create potential "exchangeable" groups so that the clique was 
hypothetically and randomly assigned to each individual, and those covariates did not confound 
the clique assignment. Next, due to the small sample size and to prevent discarding a large 
number of samples, a subclass matching with the propensity score (Stuart et al. 2011) was used 
to construct similar groups of microbial cliques with above and below-median relative 
abundance. Finally, love plots of the differences in standardized means in covariates were used 
to examine the extent of covariate balancing (setting the threshold for the standardized mean 
difference to 0.1) (Love 2004; Zhang et al. 2019). We used logistic regression with matched 
microbial clique as the outcome and prenatal Pb concentration as the exposure after adjusting 
for covariates. Moreover, without relying on asymptotic arguments, we conducted 
randomization-based inference to construct the null randomization distribution of the test 
statistic by considering 105 possible exposure assignments and estimated the randomization-
based p-value. We also estimated 95% Fisher Confidence Intervals (CIs) based on the 
randomized p-value under this framework (Imbens and Rubin 2015).  

In addition to the previously described steps to eliminate batch effects (5% relative abundance 
in both batches and multiple SiRF training and testing approaches), we also included the batch 
indicator in covariate balancing and included batch indicator as a covariate in all models. Any 
missing data in the covariates or exposures were imputed using the predictive mean matching 
implementation of the MICE package in R (Buuren and Groothuis-Oudshoorn 2011). 

Policy relevant Pb Concentration Analysis 

We conducted an exploratory analysis using policy-relevant Pb concentration thresholds to 
estimate the odds of having a below-median relative abundance of the microbial clique at Pb 
concentrations that were easily interpretable. We dichotomized the sample at the United States 
guideline level for child Pb poisoning (3.5 ug/dL) (Blood Lead Reference Value | Lead | CDC 
2022), the Mexican guideline for child Pb poisoning (5 ug/dL) (DOF - Official Gazette of the 
Federation) and the study median of prenatal Pb exposure. Odds were estimated for having a 
below-median relative abundance of each member of the microbial clique with respect to 
dichotomized Pb exposure (above vs. below the policy-relevant thresholds). Like previous 
analyses, odds ratios were estimated using logistic regressions after covariate-balancing and 
subclass-based matching. Since this is an exploratory analysis, we estimated the 95%CIs 
based on distributional asymptotic arguments. All models were further adjusted by covariates. 

Gene Pathway Analysis 

To interpret the functionality of the cliques, we studied the gene pathways associated (1) with 
each individual clique member and (2) shared by all clique members, using Venn diagrams. We 
extracted the gene pathways to understand their joint functionality.  
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Sensitivity Analyses 

We conducted multiple sensitivity analyses. First, we repeated the association analyses (1) 
without the randomization-based causal inference framework (i.e., without any covariate 
balancing or matching) and (2) without imputing any missing covariate data. Second, the 
randomization-based causal inference framework was repeated using separate thresholds (25th 
and 40th percentile) for microbial clique abundance rather than the 50th percentile for each clique 
member. Third, the models were further adjusted for postnatal child Pb exposure at 12 and 24 
months. Fourth, we estimated the Pearson correlations for the taxa within cliques to understand 
whether relative abundances of the taxa were associated with clique formation. Fifth, similar to 
the policy-relevant Pb Concentration analysis, we conducted an exploratory study using Pb 
concentration thresholds to identify the quantile with the highest odds with respect to the 
indicator of microbial clique abundance. Finally, we dichotomized the sample with gradually 
increasing percentile thresholds of prenatal Pb exposure, considering all exposures at or above 
the threshold vs. below the threshold, and sequentially estimated the associations with microbial 
clique relative abundance all below the median. 

RESULTS 
 
Study Population 
 
The study population comprised 49 females and 74 males, with an average age of 9.7 years. 
The 5th and 95th percentiles of observed Pb concentration for 2T and 3T were 10.86 ug/L to 
89.18 ug/L and 11.78 ug/L to 77.06 ug/L, respectively. The mean Pb concentration at 2T was 
33.6 ug/L and 34.9 ug/L at 3T. Mothers with lower SES during pregnancy were more likely to 
have higher blood Pb concentrations in both trimesters. 
 

Table 1. Descriptive statistics of Pb exposure and covariates from the study 
population.  
 Total  

Exposure  N = 123  
Second Trimester Pb (ug/L) mean(SE) 33.6  (2.1)  

Third Trimester Pb (ug/L) mean(SE) 34.9  (2.1)  

Covariates    
Child Sex  N = 123  

     Male n(%) 74 (60.2)  

     Female n(%) 49 (39.8)  

Maternal SES in pregnancy   

     Lower n(%) 66 (53.6)  

     Medium n(%) 45 (36.6)  

     Higher n(%) 12 (9.8)  

Maternal age at birth (years) mean(SE) 28.5 (0.5)  
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Maternal BMI in pregnancy (kg/m2) mean(SE) 27.2 (0.4)  

Child age at gut microbial sample collection (years) mean (SE) 9.7 (0.7) 

 
MiCA 
 
In the first stage of MiCA, the rh-SiRF identified three separate 2-taxa cliques predictive of Pb
concentration in 2T, which included (1) Bifidobacterium adolescentis and Ruminococcus
callidus, (2) B. adolescentis and Paraprevotella clara, and (3) R. callidus and P. clara. All three
cliques had a stability of more than 75%, a prevalence of more than 10%, and were common to
all three data partitioning techniques. Among these three cliques, the clique of B. adolescentis
and R. callidus had the highest score (6/4 and 6/5) in the exposure co-occurrence list, and,
therefore, we denoted it as the primary clique (Supplementary Tables 1). Further, based on the
commutativity of three cliques, we hypothesized a 3-taxa clique comprising B. adolescentis, P.
clara, and R. callidus (Figure 1). However, for 3T, no clique was common to all three data
partitioning (Supplementary Tables 2). In the sections below, we studied the primary 2-taxa
clique of B. adolescentis and R. callidus, and the 3-taxa clique of B. adolescentis, P. clara, and
R. callidus. Lower relative abundance of all taxa in both the cliques was predictive of 2T Pb
concentrations, implying that having both or all three of the bacteria co-occur at low or no
abundance is predictive of higher 2T Pb concentration. No microbial cliques were identified as
predictive of 3T Pb concentration. The detailed tables from the data partitioning for 2T Pb and
3T Pb are presented in Supplementary Tables 1 and 2.  
 

 
Figure 1. Visual representation of the bacterial taxa in the microbial cliques identified using
Microbiome Co-occurrence Analysis (MiCA). The width of the arrows represents the relative
frequency of occurrence of the corresponding 2-taxa clique.  
 
In the second stage of MiCA, using a causal inference framework, we found significantly
increased odds (OR=1.03, 95% Fisher Confidence Interval (FCIs):[1.01,1.05]), and
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randomization-based p-value = 0.02] of having both R. callidus and B. adolescentis below 
median relative abundance, with increasing Pb concentration in 2T (Figure 2). We also found 
increased odds (OR=1.02, 95% FCIs:[0.99, 1.04], and randomization-based p-value = 0.16) of 
all bacteria in the 3-taxa clique (P. clara, R. callidus and B. adolescentis) having below median 
relative abundance with increasing 2T Pb concentration, although not statistically significant. 
Note that covariates were balanced and as well as adjusted in both models. The distribution of 
propensity scores and the love plot of covariate balancing after subclass matching are 
presented in Supplementary Figures 1 and 2. 

 
Figure 2. Adjusted odds ratios for below-median abundance (reduced probiotic protection) of all 
members in 2-taxa (red) and 3-taxa (teal) microbial cliques, with increasing second-trimester 
prenatal Pb concentration.  
 
Pb Concentration Thresholds 
 
In an exploratory analysis (Figure 3), we found that those with higher 2T Pb concentration (>= 
2.6 ug/dL, i.e., the study median) had higher odds (OR=2.61, 95%CIs:[1.06, 6.45]) of having a 
below-median relative abundance of the 2-taxa clique (B. adolescentis and R. callidus). 
Similarly, those with 2T Pb concentration at or above the United States guideline for child Pb 
poisoning (>= 3.5 ug/dL) and the Mexican guideline (>= 5 ug/dL) had higher odds (OR=3.36, 
95%CIs:[1.32, 8.51] and OR=6.11, 95%CIs:[1.87, 19.93] respectively) of having a below-median 
relative abundance of the same 2-taxa clique. There is an increasing trend in the odds of below-
median relative abundance of the two taxa clique, as the 2T Pb concentration cutoff threshold 
increases. In other words, children whose mothers had increased 2T Pb concentration, 
including levels below the US and Mexico guidelines for child Pb poisoning, have increased 
odds of having a low abundance of the 2-taxa clique late in childhood.  
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Figure 3. Odds (95% CI) of having below-median relative abundance (reduced probiotic 
protection) of both members of the 2-taxa clique with respect to 2T Pb concentration above vs. 
below the cutoff. Pb concentration cutoffs shown are at the study median (2.6 ug/dL), the 
current United States guideline for child Pb poisoning (3.5 ug/dL), and the current Mexico 
guideline for child Pb poisoning (5ug/dL).  The 5th and 95th percentile of observed Pb 
concentration was 1.09 ug/dL to 8.92 ug/dL.   
 
Gene Pathways  
 
In an analysis of the gene pathways belonging to the members of the 2-taxa and 3-taxa 
microbial cliques identified by MiCA, we examined the gene pathways from each bacterium 
(Figure 4). The pathways highly abundant in both B. adolescentis and R. callidus were related to 
nucleic acid biosynthesis and coenzyme A biosynthesis, essential functions of cellular life. On 
the other hand, the pathways that were not common between B. adolescentis and R. callidus in 
the 2-taxa clique were related more to amino acid biosynthesis and energy metabolism. Similar 
trends were present when considering P. clara as part of the 3-taxa clique. A table of the gene 
pathways from each taxon can be found in Supplementary Table 3.  
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s 
Figure 4. Venn diagrams depicting gene pathways from each taxon within the 2- and 3-taxa
microbial cliques. The gene pathways were noted in rectangular boxes. For the 3-taxa microbial
clique, numbers in circles denote the number of pathways in that particular subset. 
 
Exploratory & Sensitivity Analyses 
 
We repeated the association analysis without the causal inference framework and any
imputations. The effect sizes did not alter more than 5%, and the model-based asymptotic p-
values remained reasonably similar to the randomization-based p-values (Supplementary Table
4). Further, estimates remained practically unchanged (< 5%) after repeating the analysis
without imputing any missing covariate (Supplementary Table 5). Under the causal inference
framework, the directionality of the associations (ORs) for having both 2-taxa and 3-taxa cliques
below 25th or 40th percentile relative abundance remained positively associated with increasing
Pb concentration in 2T, although not statistically significant (Supplementary Table 6). After
adjusting for child Pb exposure at 12 and 24 months, the associations did not change by more
than 5% (Supplementary Table 7). The estimated Pearson’s correlation coefficients between the
taxa were very small (-0.02 to 0.04), implying relative abundance of the taxa may not be a factor
in forming the cliques. Lastly, in an exploratory analysis of 2T Pb concentration, we found that
the odds of the 2-taxa clique with below-median relative abundance were highest for those with
Pb concentrations in the 50th-75th percentile or above (overall aggregated OR=2.76, 95%CI:
[1.13, 6.75]). Likewise, the same Pb concentrations were associated with the highest odds of
below-median relative abundance for the 3-taxa clique, although the aggregated odds were not
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statistically significant (mean OR=1.95, 95%CI: [0.73, 5.21]). For two and three taxa cliques, 
there is an increasing trend in the odds of below-median relative abundance as the cutoff 
threshold of 2T Pb concentration increases (Supplementary Figure 3).  
 
 
DISCUSSION 
 
This study presents a novel approach in microbiome analysis that detects microbial clique(s) 
predictive of an outcome of interest and estimates the association between that outcome and 
the clique(s). We used MiCA to identify 2-taxa and 3-taxa microbial cliques in the gut 
microbiome of children 9-11 years of age, which were negatively causally associated with 
prenatal Pb exposure. We further explored policy-relevant thresholds for 2T Pb exposure and 
found significantly increased odds of having below-median relative abundance (reduced 
probiotic protection) of the 2-taxa microbial clique at and below the current child Pb poisoning 
guidelines for the United States and Mexico. We also investigated the gene function pathways 
within the cliques to shed light on their potentially interactive functions. 
 
The microbial clique members, B. adolescentis, R. callidus, and P. clara, play various beneficial 
roles within the human gut microbiome. P. clara is the most recently identified, with 
comparatively little known about its health benefits (Morotomi et al. 2009); however, a recent 
study in dialysis patients found that increased abundance of P. clara was associated with 
reduced constipation (Peng et al. 2023). R. callidus is a short-chain-fatty-acid-producing 
bacteria with anti-inflammatory function (Sánchez-Tapia et al. 2020; Satokari et al. 2014; Sheng 
et al. 2021). Low abundance of R. callidus has been associated with Parkinson’s disease 
(Petrov et al. 2017), colitis and Crohn’s disease (Al-Amrah et al. 2023; Kang et al. 2010; 
Satokari et al. 2014), liver disease, (Sheng et al. 2021) and obesity (Dugas et al. 2018). B. 
adolescentis is a crucial human gut microbe that acts as a starch degrader, Gamma-
aminobutyric acid (GABA) producer and helps enhance the intestinal barrier (Altaib et al. 2022; 
Duranti et al. 2020; Li et al. 2019b; Qian et al. 2022; Wang et al. 2021).  B. adolescentis is 
commonly used as a probiotic supplement and has been linked to the prevention and alleviation 
of many detrimental health conditions, including liver disease (Li et al. 2019b; Long et al. 2021), 
colitis (Fan et al. 2021; Jang et al. 2019), viral infection (Kim et al. 2014; Li et al. 2016), arthritis 
(Fan et al. 2020), type 2 diabetes (Qian et al. 2022), anxiety, depression, and other mental 
health disorders (Jang et al. 2019; Lee et al. 2021). Perhaps its most relevant feature for this 
analysis, B. adolescentis is known to modify the overall composition of the gut microbiome, 
increasing the abundance of other probiotic or beneficial bacteria within the microbiome, 
amplifying its beneficial effects (Li et al. 2019b; Qian et al. 2022; Wang et al. 2021). Thus, our 
finding of B. adolescentis as a member of both the 2-taxa and 3-taxa microbial clique, in 
combination with other potentially beneficial bacterial taxa, is highly consistent with previous 
literature (Li et al. 2019b; Qian et al. 2022; Wang et al. 2021). When considering the findings of 
our analysis in the context of this previous evidence, it is clear that prenatal Pb exposure, 
particularly in the second trimester of pregnancy, has the potential to lead to several detrimental 
health outcomes, via alterations in the gut microbiome, specifically by reducing the abundance 
of these 2-taxa and 3-taxa microbial cliques.  
 
The reduced abundance of these probiotic microbial cliques happens not only above the 
guideline blood Pb concentrations for child Pb poisoning in both Mexico and the United States 
but even below that at the study median of 2.6ug/dL. Occupational Pb exposure guidelines in 
the United States only require medical monitoring of employees with blood Pb concentrations 
above 40ug/dL (Personnel et al. 2012), more than 10x the concentrations observed in this 
study. Children of mothers with blood Pb levels below the child Pb poisoning guidelines during 
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the second trimester of pregnancy are less likely to have these beneficial gut bacteria in late 
childhood, and mothers with occupational Pb exposure are likely at even greater risk. Because 
a reduced abundance of B. adolescentis and R. callidus have been associated with IBD, liver 
disease, and reductions in mental health (Al-Amrah et al. 2023; Fan et al. 2021; Lee et al. 2021; 
Li et al. 2019b; Sheng et al. 2021) the current United States and Mexico guidelines for Pb 
exposure, while better than past guidelines and procedures, are insufficient to protect against 
these detrimental health outcomes.  

 
To better understand the potential roles of each taxon within the microbial cliques, we examined 
the top 20 most abundant gene pathways from each taxon within the cliques. Approximately half 
of the gene pathways for each taxon were shared with the other clique members, and the other 
half were unique to that specific taxon. In general, the redundant genes within the clique were 
key pathways needed for all cellular life, and the unique gene pathways included functions that 
were more specific to each taxa’s metabolism. This indicates that each member of the microbial 
clique provides unique and potentially complementary functions. Moreover, these taxa are 
included in the clique not because they are redundant in function and potentially fill the same 
niche with regard to their association with prenatal Pb exposure but because they are different.  
 
MiCA provides several statistical advantages over other, more traditional microbiome analysis 
methods (results previously shown using the same data (Eggers et al. 2023)). The 
amalgamation of interpretable machine-learning algorithm with causal inference tools serves 
both as predictive as well as associative model. Searching for cliques is difficult when the 
number of taxa is high (which is the usual scenario), therefore, the usage of machine learning 
algorithms significantly reduces the computational complexity, and the associative regression 
models provide interpretability. MiCA does not rely heavily on highly abundant or prevalent taxa 
within the study samples. As demonstrated in this analysis, MiCA can identify associations with 
bacteria in low abundance together. MiCA also does not rely on correlations between clique 
members; thus, cliques can be discovered in association with exposure or outcome of interest 
even when the taxa within the cliques are not highly correlated within the study sample as a 
whole. MiCA can also detect cliques in multiple directions with respect to the threshold in a 
single rh-SiRF analysis. The rh-SiRF step also serves as a major tool for higher prediction 
accuracy and therefore selects only a few key cliques. Hence, the association tests are highly 
focused on only a few relationships, reducing the need to correct multiple comparisons. 
However, the most significant advantage of MiCA is that it analyzes the gut microbiome using a 
different biological framework than any other epidemiologic analytical tool we know of, i.e., 
cliques instead of single taxa or the whole microbiome.  
 
While this study presents a novel analytic approach and adds new information about the 
relationship between Pb exposure and the human gut microbiome, there are some limitations to 
consider. Limitations of this analysis include using relatively small sample size, with samples 
processed in multiple batches. However, we took various precautions to reduce batch effects in 
our estimates and still found statistical significance with small sample size and conservative 
estimates. Another limitation of this analysis is that we used maternal blood concentration to 
estimate prenatal Pb exposure in children, which is not a direct exposure estimate. Thus, it is 
possible that the mechanism of this association may work through maternal exposure rather 
than prenatal child exposure. For instance, it may be that the maternal Pb exposures alter the 
maternal gut microbiome during pregnancy, which is then vertically transferred to the offspring 
at birth, rather than prenatal child Pb exposure priming the child microbiome composition later in 
childhood.  Ultimately, this study is limited in understanding the underlying biochemical 
mechanism between Pb exposure and the co-occurring bacteria. Further investigation is needed 
in vitro and animal models to better elucidate these mechanisms.  
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Future analyses could include other biological matrices to estimate Pb exposure, for instance, 
baby teeth, which can measure direct prenatal exposures starting in the second trimester of 
pregnancy. We also hope to develop MiCA further to include multiple metal exposures and other 
potential predictors which may influence the microbiome, including diet and other biological and 
microbial ecological factors. Future reverse translational studies should be conducted using 
animal and in vitro models to clarify the biochemical mechanisms driving the causal 
associations identified in this study.  
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