1	Title page
2	
3	Title
4	Impact of intensive care-related factors on outcome in stroke patients, results from the
5	population-based Brest Stroke Registry: an observational study.
6	
7	Short title
8	Impact of intensive care-related factors on outcome in stroke patients.
9	
10	Authors names and affiliations
11	Philippe Ariès ^{1,2} , Pierre Bailly ³ , Thibaut Baudic ⁴ , Fanny Le Garrec ⁵ , Maëlys Consigny ⁶ , Erwan
12	L'Her ³ , Serge Timsit ⁷ , Olivier Huet ^{1*} on behalf of the Brest Stroke Registry collaborators [^]
13	
14	1 Department of Anesthesiology and Intensive Care Medicine, Brest University Hospital, Brest
15	Cedex, France.
16	2 Intensive Care Unit, Military Teaching Hospital Clermont Tonnerre, Brest, France.
17	3 Médecine Intensive et Réanimation, CHRU de La Cavale Blanche, Brest, France.
18	4 Centre de traitement des brulés, Hôpital d'Instruction des Armées Percy, Clamart, France.
19	5 Department of Anesthesiology and Intensive Care Medicine, Hôpital Fondation Adolphe de
20	Rothschild. Paris, France.
21	6 Centre d'Investigation Clinique CIC INSERM 1412, CHRU Brest - La Cavale Blanche, Brest,
22	France.
23	7 Brest University Hospital, Inserm, EFS, UMR 1078, GGB, Neurology and Stroke unit
24	Department, CHRU de Brest, Inserm 1078, France.
25	
26	
27	*Corresponding author

- E-mail : <u>Olivier.huet9@orange.fr</u> (OH)

^Membership of the Brest Stroke Registry is provided in the Acknowledgments.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

2

31 Abstract

32 Background

Little is known on the burden of ICU care for stroke patients. The aim of this study was to provide a description of management strategies, resource use, complications and their association with prognosis of stroke patients admitted to ICU.

36 Methods

37 Using a population-based stroke registry, we analyzed consecutive stroke patients admitted

to 3 ICU with at least one organ failure between 2008 and 2017. The study period was divided

39 into two periods corresponding to the arrival of mechanical reperfusion technique.

40 Predictors of ICU mortality were separately assessed in two multivariable logistic regression

41 models, a "clinical model" and an "intervention model". The same analysis was performed for

42 predictors of functional status at hospital discharge.

43 Results

44 215 patients were included. Stroke etiology was ischemia in 109 patients (50.7%) and 45 hemorrhage in 106 patients (49.3%). Median NIHSS score was 20.0 (9.0; 40.0). The most 46 common reason for ICU admission was coma (41.2%) followed by acute circulatory failure 47 (41%) and respiratory failure (27.4%). 112 patients (52%) died in the ICU and 20 patients 48 (11.2%) had a good functional outcome (mRS≤3) at hospital discharge.

In the "clinical model," factors independently associated with ICU mortality were: age (OR = 1.03 [95%CI, 1.0 to 1.06]; p=0.04) and intracranial hypertension (OR = 6.89 [95%CI, 3.55 to 13.38]; p<0.0001). In the "intervention model," the need for invasive mechanical ventilation (OR = 7.39 [95%CI, 1.93 to 28.23]; p=0.004), the need for vasopressor therapy (OR = 3.36 [95%CI, 1.5 to 7.53]; p=0.003) and decision of withholding life support treatments (OR = 19.24 [95%CI, 7.6 to 48.65]; p<0.0001) were associated with bad outcome.

55 **Conclusion**

- 56 Our study showed the very poor prognosis of acute stroke patients admitted to ICU. These
- 57 results also suggest that the clinical evolution of these patients during ICU hospitalization may
- 58 provide important information for prognostication.

4

60 Background

61

Prognosis of stroke patients admitted into the intensive care unit (ICU) remains very poor despite stroke unit's care and recent advances in acute reperfusion treatment for ischemic strokes (1). The reported short-term mortality rate for stroke patients requiring ICU management ranged from 40 to 70% (2–6) and the likelihood of survival without disabilities was very low in a recent study, since only a fifth of patients had a good neurological outcome at 6 months after stroke (2).

68 For these reasons, a time-limited-trial (TLT) of intensive care treatment-i.e., agreement 69 between physicians and family to use certain medical therapies over a defined period (7)- may 70 be proposed (8). Yet, despite TLT, decision of invasive therapy and treatment of complications 71 might be considered as futile by the care-team and could lead to a self-fulfilling prophecy in 72 patients who could have, if treated aggressively, a reasonable outcome (9). Therefore, ICU 73 management plays a key role in the prognosis of critically ill stroke patients but little is known 74 about how intensive care-related factors may impact prognosis contrary to pre-hospital 75 anamnesis (8,10–12).

76

The need for mechanical ventilation is associated with poor outcomes but data concerning other life-supporting interventions such as the need of vasopressor support or renal replacement therapy are scarce (5). Moreover, the impact of stroke-related complications such as intracranial hypertension, status epilepticus and neurosurgery on ICU stroke patients' outcomes remains poorly investigated.

In addition, the negative effect of systemic secondary brain insults (SBIs) : hypoxaemia,
hypercapnia, hypotension, fever, anemia, hyperglycemia and abnormal blood sodium levels,
on cerebral blood flow, as well as oxygen and glucose supply have been less well characterized

5

in critically ill stroke patients contrary to other acute brain injuries such as traumatic braininjury (13,14).

87

Thus, the primary objective of this study was to determine critical care-related factors associated with ICU mortality in patients enrolled in the French Brest Stroke Registry (BSR), a stroke population-based registry set up in 2008 in western France, an area that includes about 336 000 individuals (15–17). We also aimed to determine factors associated with functional outcome at hospital discharge.

6

94 Methods

95 Study population

96 Our study concerned all strokes from the BSR which occurred between January 2008 and 97 December 2017. All cases of stroke in patients aged above 15 years occurring in a defined area 98 known as the "Pays de Brest", in Brittany, western France, were recorded in the BSR. The total 99 population (above 15 years) of this area was 365 564 at the 2009 census. Data collection was 100 performed prospectively and retrospectively ("hot and cold pursuit"). Multiple information 101 sources were used: emergency wards, brain imaging records, neurologists and general 102 practitioners, death certificates and hospital database. The World Health Organization (WHO) 103 criteria (18) were used to make the clinical diagnosis of stroke, confirmed by brain CT or MRI. 104 Stroke was defined as a new focal neurological deficit with symptoms and signs persisting for 105 more than 24 hours (patients who died within the first 24 hours were also included), or a focal 106 neurological deficit lasting at least one hour, or resolving in less than one hour but presenting 107 with brain imaging (CT or MRI) suggestive of stroke.

108 Criteria of inclusion

All patients admitted in the ICU with a diagnosis of ischemic or hemorrhagic stroke and registered in the BSR with at least one organ failure among circulatory failure, respiratory failure and neurological failure were included.

Acute circulatory failure was defined as a persistent hypotension (mean arterial pressure (MAP) below 65 mmHg) requiring vasopressors or inotropes associated or not with hyperlactatemia (> 2mmol/l), respiratory failure as the need for high flow nasal cannula oxygen therapy (HFNC) and/or non-invasive ventilation (NIV) and/or IMV for respiratory reasons, and neurological failure as coma i.e., a Glasgow Coma Scale (GCS) of 7 or less.

7

Patients could be hospitalized in one of the three ICUs (one neurosurgical, two general ICUs)
of the corresponding geographic area of the BSR. We excluded patients without
hospitalization reports or in case of patient's refusal to participate.
Ethics & specific authorizations

121 BSR is accredited by the French National Agency of Health surveillance (Santé Publique France)

122 and complies with the French regulation on patient's consent, ethics, and data confidentiality.

123 Specific authorizations were obtained from the national "Comité consultatif sur le traitement

124 de l'information en matière de recherche" under the reference CCTIRS MG/CP°07.693 and

125 from the "Commission Nationale Informatique et Liberté" (CNIL) under the agreement N°

126 908085. The local ethic committee also approved the registry.

127 The study protocol was submitted to the Institutional Review Board of the Brest University

128 Hospital (B2020CE.17) and was registered on ClinicalTrials.gov public website (NCT04434287).

129 Patients or relatives were individually informed by postal mail and had the opportunity to

130 decline participation, but no written informed consent was required, in line with the directives

131 of the Ethics Committee.

132 Data collection

133 Data prospectively collected in the BSR included risk factors of stroke and the initial clinical 134 examination (modified Rankin score (mRS) before stroke, National Institutes of Health Stroke 135 Scale (NIHSS) and GCS at hospital admission). Specific variables according to the type of stroke 136 were also collected, i.e., for ischemic strokes: the trial of ORG 10172 in acute stroke treatment 137 (TOAST) classification, the Oxfordshire Community Stroke Project (OSCP) classification, 138 radiological findings (stroke localization) and management specificities (thrombolysis, 139 thrombectomy for e.g.); for hemorrhagic strokes: specific etiologies and radiological findings 140 (stroke localization, imaging progression) (19–21).

8

141 We also retrospectively collected specific data related to the ICU hospitalization:

- Data from admission: the Simplified Acute Physiology Score II (SAPS II), the type of
 organ failure and the presence of aspiration pneumonia was also collected;
- 144 Systemic secondary brain insults (SBIs) during the first 24 hours: hypoxemia (oxygen 145 saturation (SatO2) <92% or partial arterial pressure of oxygen (PaO2) <8 kPa without 146 oxygen-therapy or mechanical ventilation with FIO2 > 30% for respiratory reason), 147 hypercaphia (partial pressure of carbon dioxide (PaCO2) > 6 kPa), hypotension (systolic blood pressure (SBP) below 90 mmHg and/or use of vasopressors and/or inotropes to 148 149 maintain SBP above 90 mmHg), hyperglycemia (glucose \geq 8 mmol/l without insulin 150 therapy), hyperthermia (temperature \geq 38° Celsius), anemia (serum hemoglobin < 151 10g/dl before transfusion), hyponatremia (natremia <135 mmol/l), hypernatremia 152 (natremia >155 mmol/l). The physiologic values were measured every 4 hours in the 153 ICU. Blood samples were usually performed every morning. One deviation during the 154 24 hours was sufficient to be recorded;

155 Stroke-related complications during the ICU stay: intracranial hypertension (ICH) -156 defined either by intracranial pressure (ICP) above 20 mmHg during more than 30 157 minutes in case of ICP monitoring, or by an abnormal trans-cranial doppler (TCD) 158 measures i.e., pulsatility index above 1.4 or diastolic flow velocity under 20 cm.s-1 159 without hypocapnia, or clinically by unilateral or bilateral mydriasis requiring medical 160 or surgical intervention (such as sedation, osmotherapy or neurosurgical intervention), 161 status epilepticus and neurosurgery (i.e., craniectomy, hematoma evacuation, 162 external ventricular drain);

Organ support during the ICU stay: need for IMV, and/or for NIV and/or for HFNC
 oxygen; the use of vasopressor support (i.e., noradrenalin, adrenalin or dobutamine)

9

165 or for antihypertensive therapy and/or for renal replacement therapy (RRT). For 166 ventilated patients, the indication for IMV was also assessed;

- 167 Other complications during the ICU stay: Ventilator Acquired Pneumonia (VAP) were
- 168 defined as a pneumonia occurring >48 hours after endotracheal intubation with clinical
- 169 and radiological signs associated with bacterial documentation. Early-onset and late-
- 170 onset VAP were respectively defined as VAP occurring between day 2 and 6 and after
- 171 day 7 of ICU admission (22). Radiological proven deep venous thrombosis or
- 172 pulmonary embolism, duration of invasive ventilation, ICU length of stay, withholding
- 173 and withdrawal of life-sustaining treatments (LST) were also collected;
- Specific monitoring: invasive intracranial pressure (ICP) monitoring, TCD, and cardiac
- 175 output (CO) monitoring (invasive or not monitoring).

176 Outcomes

We assessed the ICU mortality, the primary outcome, and the functional status (mRS) at hospital discharge. According to previous studies, we defined a good hospital discharge functional outcome as a mRS score of 0 to 3 (0, no disability; 1, no significant disability; 2, slight disability; and 3,moderate disability) (4,12) and bad outcome (mRS >3).

In order to analyze temporal trends in these outcomes, we divided the study period into two
 periods: 2008-2013 and 2014-2017 corresponding to the arrival of endovascular mechanical

183 reperfusion technique in Brest University Hospital, which may have an impact on outcomes.

184

185 Statistical Analysis

186

187 Characteristics of patients were described as frequencies and percentages for categorical 188 variables, as means and standard deviations (SD) or medians and interquartile ranges (IQR) 189 for continuous variables. Categorical variables were analyzed by chi-square test or Fisher's

10

190 exact test and continuous variables were compared by Student's t test or by Wilcoxon rank191 test according to their distribution.

192 We built two different models for each outcome, a "clinical model" with demographic, clinical

193 examination, biological and radiological variables and a "intervention model" including organ

194 supports and withholding or withdrawal of LST.

195 Considering the rule that predictive logistic models should be used with a minimum of 10

196 outcome events per predictor variable, we estimated that a number of 200 included patients

197 would be sufficient to propose logistic regression models with 5 variables as mortality for ICU

198 stroke patients was estimated to be 40% (11). The initial neurologic gravity (NIHSS and GCS

199 score) and decision of withholding LST were considered as important factors and were forced

200 respectively in the clinical and the intervention model to be tested.

The set of variables associated with ICU survival and good functional prognosis in univariate analysis (p<0.05) were included in a multivariate regression models and backward stepwise selection was applied. The variance inflation factor (VIF) was applied to detect the presence of collinearity between independent variables of multivariable models. No variable included in models had missing data greater than 10% therefore we did not perform imputation and all

available data have been analyzed.

207 Tests were two-sided and values of *p* less than 0.05 were considered statistically significant.

208 Statistical analysis was performed with SAS 9.4 (SAS Institute Inc., Cary, NC, USA).

209

212 213	Results
214	Patients enrolled
215 216	Out of 8910 patients included in the Brest Stroke Registry during the study period, 338
217	patients were hospitalized in ICU and 215 were finally enrolled (Figure 1).
218 219 220 221	Fig.1 Flowchart ICU: Intensive Care Unit
222	One hundred and twenty-eight patients were enrolled from 2008 to 2013 and 87 from 2014
223	to 2017. Ischemic stroke was diagnosed in 109/215 (50.7 %) patients and ICH occurred in
224	106/215 (49.3 %) patients. Patients were predominantly males (61.4%), median age was 66.0
225	(57.0-76.0) years, median SAPS II score was 55.0 (43.0-67.0) and median NIHSS was 20.0 (9.0-
226	40.0). The most frequent organ failure at admission was coma (41.2%), followed by acute
227	circulatory failure (41%) and respiratory failure (27.4%). One hundred and twelve (52%)
228	patients died in ICU and median mRS at hospital discharge was 4.0 (3.0-6.0).
229	Only 20 patients (11.2%) had a good functional outcome (mRS≤3) (Figure 2) .
230	
231 232 233	Fig.2 Modified Rankin Scale at Hospital discharge mRS: modified Rankin Scale
234	
235	Univariate and multivariable analysis for ICU mortality
236	In univariate analysis, admission factors associated with ICU-mortality were age, SAPS II,
237	NIHSS, GCS score, TOAST and OCSP classifications (Table 1).
238 239 240 241 242	

12

243 Table 1 Admission characteristics and their univariate association with ICU mortality

Variables	ICU mo		
<i>N</i> (%) or median [Q1; Q3]	Alive	Dead	p
Demonstration and a second start start	<i>N</i> =103	<i>N</i> =112	
Demographics and neurological status			0.44
Sex—no.(%)			0.44
Female	37 (35.9%)	46 (41.1%)	
Male	66 (64.1%)	66 (58.9%)	0.02
Age, years	63.0 (55.0;75.0)	68.0 (61.0;76.5)	0.02
Diabetes mellitus	9 (8.7%)	16 (14.3%)	0.20
Hypertension	53 (51.5%)	52 (46.4%)	0.46
SAPS II	48.5 (35.0;62.0)	59.5 (52.0;71.0)	< 0.0001
Period of admission	12 (11 20/)		1.00
2008-2013	12 (11.2%)	95 (88.8%)	
2014-2017	8 (11.3%)	63 (88.7%)	0.05
Stroke type			0.95
Ischemic	52 (50.5%)	57 (50.9%)	
Hemorrhagic	51 (49.5%)	55 (49.1%)	0.00
mRS before stroke	0.0 (0.0;1.0)	0.0(0.0;1.0)	0.98
GCS score at admission	11.0 (6.0;15.0)	8.0 (4.0;14.0)	0.01
NIHSS	15.0 (6.0;39.0)	25.0 (12.0;40.0)	0.02
Ischemic stroke characteristics			0.04
TOAST classification		2 (5 20()	0.04
Large Artery Atherosclerosis ^a	5 (9.6%)	3 (5.3%)	
Cardio embolism ^b	15 (28.8%)	12 (21.1%)	
Stroke Of Other Determined Etiology	9 (17.3%)	5 (8.8%)	
Undetermined Etiology (Negative Assessment)	7 (13.5%)	3 (5.3%)	
Undetermined Etiology (Incomplete Assessment)	16 (30.8%)	34 (59.6%)	0.007
OCSP classification	C (11 00/)	24 (20 20/)	0.007
Total Anterior Circulation Infarction	6 (11.8%)	21 (38.2%)	
Partial Anterior Circulation Infarction	23 (45.1%)	18 (32.7%)	
Lacunar Infarction	2 (3.9%)	0 (0.0%)	
Posterior Circulation Infarction	20 (39.2%)	16 (29.1%)	
Thrombolysis	3 (5.8%)	7 (12.3%)	0.32
Thrombectomy	4 (7.7%)	7 (12.3%)	0.43
Hemorrhagic conversion	10 (19.2%)	16 (28.1%)	0.28
Hemorrhagic stroke characteristics			
Etiology			
Hypertension	26 (51.0%)	20 (36.4%)	0.13
Antiplatelet/anticoagulant	20 (39.2%)	25 (45.5%)	0.51
Vasculitis	5 (9.8%)	2 (3.6%)	0.26
Anticoagulant reversal	3 (5.9%)	6 (10.9%)	0.49
Localization and volume			0.73
Supratentorial	43 (84.3%)	45 (81.8%)	
Infratentorial	8 (15.7%)	10 (18.2%)	
Associated Cerebral venous thrombosis	2 (3.9%)	1 (1.8%)	0.60
Organ failure and complications at admission			
Coma ^c	34 (34.3%)	50 (47.6%)	0.05
Acute Circulatory failure ^d	34 (34.3%)	50 (47.2%)	0.06
Respiratory failure ^e	39 (37.9%)	20 (17.9%)	0.001

13

Aspiration pneumonia	36 (35.3%)	37 (33.3%)	0.76
----------------------	------------	------------	------

GCS: Glasgow Coma Scale; ICH: Intracerebral Hemorrhage; ICU: Intensive Care Unit; mRS: modified Rankin Scale;
NIHSS: National Institutes of Health Stroke Scale; SAPS: Simplified Acute Physiology score; TOAST: Trial of Org
10172 in Acute Stroke Treatment; OCSP: Oxfordshire Community Stroke Project. ^a Embolus/thrombosis; ^b High-Risk/Medium-Risk; ^c Glasgow Coma Scale ≤ 8 ; ^d persistent hypotension requiring vasopressors or inotropes or associated to hyperlactatemia (> 2mmol/l); ^e need of non-invasive, high flow oxygen therapy or invasive mechanical ventilation for respiratory raisons.
Among critical care-related factors, respiratory failure, invasive mechanical ventilation,
vasopressor use and the occurrence of intracranial hypertension were associated with ICU
mortality. During the ICU stay, hyperglycemia and hypernatremia were the only systemic SBIs
associated with mortality. ICU length of stay was significantly longer in the survivor group
compared to those who died in ICU (8 days (4.0;20.0) vs 3 days (2.0;6.0), p<0.001) (Table 2).

261 **Table 2 Critical care-related factors and their univariate association with ICU mortality** Variables ICU mortality

Variables	ICU	ICU mortality		
N (%) or median [Q1; Q3]	Alive	Dead	р	
	<i>N</i> =103	<i>N</i> =112		
Systemic secondary brain insults dur	ring			
the first 24 hours				
Hypoxemiaª	33 (34.4%)	30 (28.8%)	0.40	
Hypercapnia ^b	29 (30.9%)	40 (40.4%)	0.17	
Hypotension ^c	34 (34.3%)	50 (47.2%)	0.06	
Hyperglycemia ^d	19 (20.4%)	35 (35.0%)	0.02	
Hyperthermia ^e	47 (46.1%)	36 (34.3%)	0.08	
Anemia ^f	26 (27.1%)	18 (16.7%)	0.07	
Hyponatremia ^g	34 (34.3%)	23 (21.7%)	0.04	
Hypernatremia ^h	2 (2.0%)	15 (14.2%)	0.0016	
Complications during ICU stay				
Intracranial hypertension	21 (20.4%)	73 (65.8%)	<0.0001	
Status epilepticus	23 (22.3%)	7 (6.4%)	0.0008	
Neurosurgery ⁱ	32 (31.1%)	21 (18.9%)	0.04	
Imaging progression ^j	10 (20.8%)	14 (53.8%)	0.004	
VAP	16 (15.7%)	11 (9.9%)	0.21	
Timing of VAP			0.82	
Early onset pneumonia	8 (50.0%)	6 (54.5%)		
Late onset pneumonia	8 (50.0%)	5 (45.5%)		
Thrombosis ^k	8 (7.8%)	5 (4.5%)	0.32	
Organ support during ICU stay				

14

Invasive mechanical ventilation			<0.0001
Invasive mechanical ventilation	69 (67.0%)	107 (95.5%)	<0.0001
Reasons for mechanical ventilation	/		0.91
Сота	54 (79.4%)	90 (84.1%)	
Respiratory failure	12 (17.6%)	14 (13%)	
Elective procedure	2 (2.9%)	3 (2.8%)	
Oxygen trough NIV or High flow nasal	31 (30.4%)	8 (7.2%)	<0.0001
cannula			
Use of vasopressors	43 (42.6%)	78 (70.9%)	< 0.0001
Use of antihypertensive treatments	54 (52.9%)	27 (25.2%)	< 0.0001
Use of renal replacement therapy	5 (4.9%)	8 (7.3%)	0.46
Specific monitoring			
Cardiac monitoring	23 (22.3%)	30 (26.8%)	0.45
TCD monitoring ^l	32 (31%)	25 (22%)	0.32
Invasive ICP monitoring	6 (5%)	5 (4%)	0.51
Outcomes			
Duration of invasive ventilation, days	4.0 (0.0;11.0)	3.0 (2.0;6.0)	0.99
GCS at discharge	15.0 (13.0;15.0)	3.0 (3.0;3.0)	< 0.0001
mRS at discharge	4.0 (3.0;6.0)	6.0 (6.0;6.0)	< 0.0001
ICU length of stay, days	8.0 (4.0;20.0)	3.0 (2.0;6.0)	< 0.0001
Withholding LST	9 (8.7%)	70 (63.1%)	< 0.0001
Withdrawal LST	3 (2.9%)	56 (50.5%)	<0.0001

262GCS: Glasgow Coma Scale; ICP: Intracranial Pressure; ICU: Intensive Care Unit; LST: Life- Sustaining Treatment;263mRS: modified Rankin Scale; NIV: Non-Invasive Ventilation; TCD: Transcranial doppler; VAP: Ventilation Acquired264Pneumonia. $^{\circ}$ SatO2 <92% or partial arterial pressure of oxygen (PaO2) <8 or FIO2 > 30% kPa; b PaCO2> 6 kPa; c 265vasopressors or inotropes to maintain MAP>60mmHg; d glucose≥8 mmol/l; e temperature ≥ 38° Celsius; f serum266haemoglobin<10g/dl; g Na+<135 mmol/l; h Na+>155 mmol/l, i craniectomy, hematoma evacuation, external267ventricular drain; j increase in hemorrhage volume from baseline CT scan; k proven venous thrombosis or268pulmonary embolism; i At least one TCD measure during the ICU stay

269

270

271 The multivariate analysis for ICU mortality is presented in **Table 3**. The clinical model showed

that age and intracranial hypertension were independent clinical risk factors associated with

273 ICU mortality. The intervention model showed that IMV, use of vasopressors and withholding

of LST were independently associated with ICU mortality. In contrast, hyponatremia, status

275 epilepticus and oxygen trough NIV or HFNC were the only variables associated with survival.

276

15

Table 3 Multivariable Logistic Regression of clinical factors interventions associated with ICU mortality

280 (A) Clinical model 281

Variable	Full model		Final model	
	OR [95%CI]	p	OR [95%CI]	p
Age	1.02 [0.99 ; 1.06]	0.22	1.03 [1.00 ; 1.06]	0.04
NIHSS score at admission	1.02 [0.98 ; 1.07]	0.34		
GCS score at admission	1.04 [0.89 ; 1.20]	0.65		
Hyperglycemiaª	2.08 [0.78 ; 5.55]	0.14		
Hyponatremia ^b	0.45 [0.17 ; 1.18]	0.10	0.48 [0.23 ; 0.98]	0.04
Intracranial hypertension	5.94 [2.48 ; 14.21]	<0.0001	6.89 [3.55 ; 13.38]	<0.0001
Status epilepticus	0.22 [0.04 ; 1.28]	0.09	0.34 [0.13 ; 0.92]	0.03
Respiratory failure ^c	0.25 [0.08 ; 0.81]	0.02		

283 (B) Intervention model

Variable	Full model		Final model	
	OR [95%CI]	р	OR [95%CI]	р
Invasive mechanical ventilation	6.68 [1.79 ; 24.96]	0.005	7.39 [1.93 ; 28.23]	0.004
Use of vasopressors	3.49 [1.52 ; 8.01]	0.003	3.36 [1.50 ; 7.53]	0.003
Use of antihypertensive treatments	0.53 [0.23 ; 1.24]	0.16		
Oxygen trough NIV or High flow nasal cannula	0.25 [0.08 ; 0.82]	0.02	0.20 [0.06 ; 0.60]	0.004
Neurosurgery ^d	0.52 [0.20 ;1.33]	0.17		
Withholding LST	20.01 [7.70 ; 52.03]	<0.0001	19.24 [7.60 ; 48.65]	<0.0001

285 CI: Confidence Interval; LST: Life- Sustaining Treatment; NIV: Non-Invasive Ventilation; OR: Odds Ratio.

286 a glucose $\ge 8 \text{ mmol/l}$; b Na+<135 mmol/l; c SatO2 <92% or partial arterial pressure of oxygen (PaO2) <8 or FIO2 > a

287 30% kPa; , ^d craniectomy, hematoma evacuation, external ventricular drain

16

288

- 289 Variance Inflation Factors were small (below 1.5) suggesting very low correlation between
- 290 regression variables (Table 4).
- 291 Table 4 Multicollinearity analysis using Variance Inflation Factor (VIF)
- 292

Variables	VIF	
ICU mortality		
Clinical model		
Age	1.04	
Hyponatremia	1.01	
Intracranial hypertension	1.03	
Status epilepticus	1.07	
Intervention model		
Invasive mechanical ventilation	1.19	
Use of vasopressors	1.14	
Oxygen trough NIV or High flow nasal cannula	1.05	
Withholding LST	1.08	

²⁹³ ICU: Intensive Care Uni; LST: Life- Sustaining Treatment; NIV: Non-Invasive Ventilation, VIF: Variance Inflation 294 Factor.

295

296 Univariate and multivariable analysis for functional outcome at hospital discharge

297 In univariate analysis, variables associated with a poor functional outcome at hospital

discharge (mRS \geq 4) were age, SAPS II score, ischemic stroke, NIHSS score, coma at admission,

299 the need of IMV and of vasopressors. Occurrence of hyperglycemia and intracranial

300 hypertension were also associated with a poor functional outcome (Table 5).

301

- 302
- 303
- 304
- 305

306

17

308 Table 5 Baseline characteristics, ICU management, outcomes and their univariate

309 association with functional prognosis at hospital discharge

	mRS at hospital discharge		
Variable	≤3	≥ 4	р
	N=20	<i>N</i> =158	
Patient's characteristics			
Sex—no.(%)			0.77
Female	8 (40.0%)	58 (36.7%)	
Male	12 (60.0%)	100 (63.3%)	
Age, years	58.5 (54.0;71.5)	67.0 (58.0;76.0)	0.03
Chronic kidney disease	1 (5.0%)	13 (8.2%)	1.00
Diabetes mellitus	0 (0.0%)	21 (13.3%)	0.14
Chronic respiratory disease	1 (5.0%)	21 (13.3%)	0.48
Hypertension			0.67
Coronaropathy	0 (0.0%)	29 (18.5%)	0.05
Hematological malignancies, active solid tumor	3 (15.0%)	32 (20.3%)	0.77
Active smokers	3 (15.0%)	50 (32.1%)	0.12
SAPS II	32.5 (21.0;52.0)	56.0 (45.0;69.0)	<0.0002
mRS before stroke	0.5 (0.0;1.0)	0.0 (0.0;1.0)	0.53
GCS score at admission	15.0 (10.0;15.0)	9.5 (5.0;15.0)	0.02
Period of admission	10.0 (10.0, 10.0)	0.0 (0.0, 10.0)	1.00
2008-2013	12 (11.2%)	95 (88.8%)	1.00
2014-2017	8 (11.3%)	63 (88.7%)	
Stroke characteristics	0 (11070)		
Stroke type			0.02
Ischemic	4 (20.0%)	76 (48.1%)	
Hemorrhagic	16 (80.0%)	82 (51.9%)	
NIHSS	10.40 +/- 12.91	23.92 +/- 13.75	0.0004
Organ failure and complications at admission	10110 (7 12:01	20102 17 20170	0.000
Comaª	3 (15.0%)	63 (42.0%)	0.02
Acute Circulatory failure ^b	6 (30.0%)	59 (39.6%)	0.02
Respiratory failure ^c	8 (40.0%)	39 (24.7%)	0.41
Aspiration pneumonia	5 (25.0%)	53 (34.0%)	0.14
Systemic secondary brain insults during the first 24			0.12
hours			
Hypoxemia ^d	7 (38.9%)	47 (32.0%)	0.56
Hypercapnia ^e	6 (35.3%)	52 (36.6%)	0.91
Hypotension ^f	6 (30.0%)	59 (39.6%)	0.41
Hyperglycemia ^g	1 (5.6%)	42 (29.6%)	0.04
Hyperthermia ^h	8 (40.0%)	64 (42.4%)	0.84
Anemia ⁱ	4 (22.2%)	34 (22.5%)	1.00
Hyponatremia ^j	4 (21.1%)	45 (29.8%)	0.43
Hypernatremia ^k	0 (0.0%)	17 (11.3%)	0.22

18

Complications during ICU stay			
Intracranial hypertension	2 (10.0%)	85 (54.1%)	0.0002
Status epilepticus	8 (40.0%)	13 (8.3%)	0.0005
Neurosurgery ⁱ	3 (15.0%)	41 (26.1%)	0.41
VAP	4 (20.0%)	17 (10.9%)	0.27
Timing of VAP			
Early onset pneumonia	3 (75.0%)	8 (47.1%)	0.59
Late onset pneumonia	1 (25.0%)	9 (52.9%)	
Thrombosis ^m	0 (0.0%)	10 (6.4%)	0.61
Organ support during ICU stay			
Invasive mechanical ventilation	10 (50.0%)	137 (86.7%)	0.0004
Reasons for intubation			0.72
Сота	7 (77.8%)	109 (79.6%)	
Respiratory	2 (22.2%)	23 (16.7)	
failure			
Elective	0 (0.0%)	5 (3.6%)	
procedure			
Oxygen trough NIV or High flow nasal cannula	6 (31.6%)	26 (16.6%)	0.12
Use of vasopressors	7 (35.0%)	93 (60.4%)	0.03
Use of antihypertensive treatment	10 (50.0%)	60 (39.5%)	0.37
Use of renal replacement therapy	1 (5.0%)	10 (6.4%)	1.00
Outcomes			
Duration of invasive ventilation, days	1.0 (0.0;7.0)	3.0 (1.0;7.0)	0.03
GCS at discharge	15.0 (14.0;15.0)	4.0 (3.0;14.0)	<0.0001
mRS	2.0 (2.0;3.0)	6.0 (6.0;6.0)	<0.0001
ICU length of stay, days	7.0 (4.0;9.5)	5.0 (2.0;10.5)	0.07
Withholding of care	0 (0.0%)	71 (45.2%)	0.0001
Withdrawal of care	0 (0.0%)	53 (33.8%)	0.0019

311 GCS: Glasgow Coma Scale; ICU: Intensive Care Unit; LST: Life- Sustaining Treatment; mRS: modified Rankin Scale;

NIHSS: National Institutes of Health Stroke Scale; NIV: Non-Invasive Ventilation; SAPS: Simplified Acute Physiology
 score; VAP: Ventilation Acquired Pneumonia.

314 ^a Glasgow Coma Scale ≤ 8, ^bpersistent hypotension requiring vasopressors or inotropes or associated to
 315 hyperlactatemia (> 2mmol/l); ^c need of non-invasive, high flow oxygen therapy or invasive mechanical ventilation
 316 for respiratory raisons; ^dSatO2 <92% or partial arterial pressure of oxygen (PaO2) <8 or FIO2 > 30% kPa; ^ePaCO2>
 317 6 kPa; ^fvasopressors or inotropes to maintain MAP>60mmHg; ^gglucose≥8 mmol/l; ^htemperature ≥ 38° Celsius;
 318 ⁱserum haemoglobin<10g/dl; ⁱNa+<135 mmol/l; ^kNa+>155 mmol/l, ^lcraniectomy, hematoma evacuation, external

319 ventricular drain, mproven venous thrombosis or pulmonary. embolism.

- 320
- 321
- 322
- 323

330	Table 6 Multivariate Logistic Regression of clinical factors and intervention associated with
329	
328	associated with poor functional outcome at hospital discharge.
327	outcome. Invasive mechanical ventilation was the only variable of the intervention model
326	contrary to high GCS score and status epilepticus that were associated with a good functional
325	clinical model showed that high NIHSS at admission was associated with poor outcomes
324	Multivariate analysis of functional outcome at hospital discharge is presented in Table 6. The

functional prognosis at hospital discharge.

Variables	OR	95%CI	p
Clinical model			
NIHSS at admission (per point)	1.07	[1.00 ; 1.14]	0.05
GCS at discharge (per point)	0.53	[0.29 ; 0.96]	0.04
Status epilepticus	0.10	[0.01 ; 0.83]	0.03
Intervention model			
Invasive mechanical ventilation	6.52	[2.43 ; 17.55]	0.0002

334 CI: Confidence Interval; GCS: Glasgow Coma Scale; NIHSS: National Institutes of Health Stroke Scale; OR: Odds
 335 Ratio.

20

340 Discussion

Our study showed that the prognosis of the 215 stroke patients admitted to ICU with organ failures was poor with an ICU mortality of 52% and only 11% of the patients surviving had a good functional outcome at hospital discharge. We identified strong associations between critical-care-related factors and outcomes. Indeed, the occurrence of intracranial hypertension and the need for organ support therapy (IMV and vasopressor therapy) were independent predictors of ICU mortality. Among these parameters, only the need for IMV was independently associated with a poor functional outcome at hospital discharge.

348

349 The strongest independent clinical predictor for ICU death was the occurrence of ICH during 350 the ICU stay. Using a standardized definition, we observed that this complication was frequent 351 as it occurred in 43.4% of patients. This finding is in line with previous reports and suggests 352 that critically ill stroke patients died primarily from stroke-related complications occurring 353 during the ICU stay (2,11,23). However, the use of invasive ICP monitoring was very low as 354 only 5% of patients were monitored. Compared to TBI patients, the monitoring of ICP in stroke 355 patients remains poorly investigated and is not routinely recommended in patients with coma 356 after hemorrhagic or ischemic stroke (24,25). There is evidence that ICP can be elevated even 357 following decompressive hemicraniectomy or after hematoma removing (26,27).

In contrast, status epilepticus during the ICU stay, another stroke-related complication, was associated with a better outcome. It has been proposed that this protective effect was related to the reversibility of the initial coma when status epilepticus was the etiology of the neurologic failure (23).

21

363 The strong association between some of the organ support therapies and outcome found in 364 our study provides new insights into the comprehension of the impact of acute phase 365 therapies on prognosis. Our intervention model identified that both IMV and vasopressor 366 support were independent predictors of ICU death contrary to NIV or HFNC oxygen therapy. 367 As the majority of patients required intubation because of coma for airway management 368 (82.3%) and vasopressor therapy is usually used for patients who developed intracranial 369 hypertension in order to maintain the cerebral blood perfusion, we hypothesized that IMV 370 and vasopressors mainly reflected the severity of the stroke. Another main hypothesis to 371 explain this association relies on the burden of care in ICU. Indeed, life-supporting therapies 372 as IMV or vasopressor support are associated with numerous adverse events and iatrogenic 373 consequences that, in turn, may worsen outcomes.(28)

374

375 An interesting finding is the absence of impact of systemic SBIs on outcome. The secondary 376 brain damages refer to delayed functional or structural damages observed after various types 377 of acute cerebral injuries. A large part of these damages is due to systemic SBIs such as 378 hypotension, hypoxemia or fever that increase the neurological damage by preventing the 379 regulation of cerebral blood flow (13,29). As systemic SBIs are physiologic abnormalities which 380 can be easily treated, it represents the cornerstone for severe TBI management (29). 381 Moreover, a large part of these pathomechanisms is supposed to be common between the 382 different acute cerebral injuries (30).

For non-ICU stroke patients, arterial hypotension is rare, but SBP under 100 mmHg or diastolic blood pressure under 70 mmHg has been associated with poor neurological outcomes (31). However, it remains unclear whether systemic SBIs impact outcomes for ICU stroke patients. Our results suggest that contrary to TBI or SHA patients (29,32), systemic SBI may not be

deleterious. Recently, Fontaine et al. found similar results for critically ill patients with

388	convulsive status epilepticus (CSE) (33). The ongoing multicenter study SPICE that aims to
389	identify the effect of major systemic complications will help to precise the impact of SBIs on
390	outcome (12).
391	In contrast, the association between hyponatremia and ICU survival could be explain by the
392	higher probability to develop hyponatremia during the ICU stay for survivors compared to
393	patients who died. Indeed, the ICU length of stay was significantly longer in the survivor group
394	compared to those who died in ICU.
395	
396	Except for age, all independent predictors of the ICU mortality for critically ill stroke
397	patients were related to the ICU stay (i.e., life support therapies and complications), contrary
398	to the neurologic severity scores at admission as NIHSS score or Glasgow coma scale.
399	These results suggest that ICU management strategy (i.e.: resources used) could impact on
400	survival. Despite a global poor prognosis, some patients may benefit of an ICU hospitalization
401	and have a good functional recovery. Therefore, it has been proposed to consider long enough
402	TLT for these patients (34) as a too short TLT may expose to inappropriate limitation of organ
403	supports and to a self-fulfilling prophecy. In contrast, a too long TLT may expose to a potential
404	loss of compassion and decreased quality of care (7). Our study did not evaluate the good
405	duration of TLT, but we consider that it should be long enough to evaluate specific indicators,
406	as it has been proposed for elderly patients admitted to ICU (35). For ICU stroke patients these
407	indicators could be the need or not of IMV and vasopressor support and the occurrence or not
408	of intracranial hypertension.
409	

23

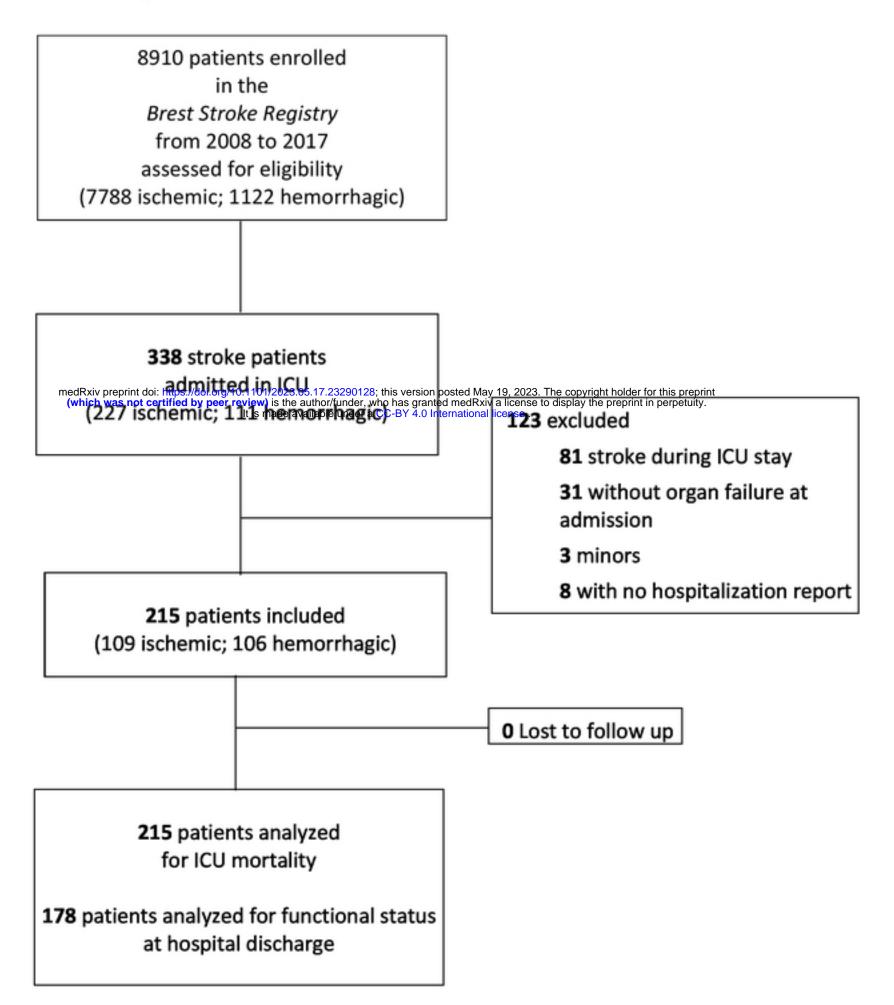
411 Our study has some limitations. First, the BSR registry has not been designed for ICU studies 412 and contrary to stroke specific data, all ICU data have been retrospectively recorded. 413 Second, we used the "ten events per variable (EPV) rule" to determine the number of subjects 414 required although current evidence supporting for binary logistic regression is weak (36). 415 Third, although the BSR could provide long-term mortality, we couldn't study long-term 416 functional status. Fourth, the observational design of the study did not allow us to explore 417 causality. Finally, due to the high rate of withholding LST, we could not avoid the bias of self-418 fulfilling prophecy.

420 421	Conclusion
422	Despite a poor global prognosis, a part of stroke patients with organ failures may benefit from
423	ICU admission and life-sustaining interventions. Therefore, prognostication is key but still
424	remains challenging. We found that occurrence of intracranial hypertension and the need of
425	IMV or vasopressor support were strong predictors of ICU mortality. Our study suggests that
426	critical care-related factors could provide valuable information for prognostication in addition
427	to the initial neurological severity. Our findings warrant further studies to evaluate the impact
428	of ICU care (notably SBI prevention and treatment) on patient's prognostication.
429	
430	
431	
432	
433	
434	
435	
436	

25

439

440 Acknowledgements


- 441 We would like to thank the Brest Stroke Registry collaborators :
- 442 Philippe Goas*, Irina Viakhireva-Dovganyuk*, François Mathias Merrien*, Aurore Jourdain*,
- 443 François Rouhart*, Amélie Leblanc*, Marie Bruguet*, Denis Marechal*, Jordan Coris*
- 444 *CHRU Brest, Department of Neurology & Stroke Unit, CHRU de Brest, Université de Bretagne
- 445 Occidentale, Brest, 29200, France.
- 446
- 447
- 448
- 449

- 450 **References**
- 451
 Widimsky P, Snyder K, Sulzenko J, Hopkins LN, Stetkarova I. Acute ischaemic stroke:
 452 recent advances in reperfusion treatment. European Heart Journal. 2022 Dec 7;ehac684.
- 453 2. Carval T, Garret C, Guillon B, Lascarrou JB, Martin M, Lemarié J, et al. Outcomes of 454 patients admitted to the ICU for acute stroke: a retrospective cohort. BMC 455 Anesthesiology. 2022 Jul 25;22(1):235.
- 456 3. van Valburg MK, Arbous MS, Georgieva M, Brealey DA, Singer M, Geerts BF. Clinical
 457 Predictors of Survival and Functional Outcome of Stroke Patients Admitted to Critical
 458 Care. Crit Care Med. 2018;46(7):1085–92.
- 4594. A A, Ad E, R K, S R, Mg H, M F. Outcome Predictors of Acute Stroke Patients in Need of460Intensive Care Treatment. Cerebrovascular diseases (Basel, Switzerland) [Internet].4612015 [cited 2022 Jan 4];40(1–2). Available from:462https://pubmed.ncbi.nlm.nih.gov/26022716/
- 463 5. de Montmollin E, Terzi N, Dupuis C, Garrouste-Orgeas M, da Silva D, Darmon M, et al.
 464 One-year survival in acute stroke patients requiring mechanical ventilation: a
 465 multicenter cohort study. Ann Intensive Care. 2020 May 7;10(1):53.
- Sonneville R, Gimenez L, Labreuche J, Smonig R, Magalhaes E, Bouadma L, et al. What is
 the prognosis of acute stroke patients requiring ICU admission? Intensive Care Medicine.
 2017 Feb;43(2):271–2.
- Vink EE, Azoulay E, Caplan A, Kompanje EJO, Bakker J. Time-limited trial of intensive care
 treatment: an overview of current literature. Intensive Care Med. 2018 Sep;44(9):1369–
 77.
- 472 8. de Montmollin E, Schwebel C, Dupuis C, Garrouste-Orgeas M, da Silva D, Azoulay E, et
 473 al. Life Support Limitations in Mechanically Ventilated Stroke Patients. Crit Care Explor.
 474 2021 Feb 22;3(2):e0341.
- 475
 9. McCracken DJ, Lovasik BP, McCracken CE, Frerich JM, McDougal ME, Ratcliff JJ, et al. The
 476 Intracerebral Hemorrhage Score: A Self-Fulfilling Prophecy? Neurosurgery. 2019 Mar
 477 1;84(3):741–8.
- 478 10. van Valburg MK, Arbous MS, Georgieva M, Brealey DA, Singer M, Geerts BF. Clinical
 479 Predictors of Survival and Functional Outcome of Stroke Patients Admitted to Critical
 480 Care. Crit Care Med. 2018 Jul;46(7):1085–92.
- 481 11. Alonso A, Ebert AD, Kern R, Rapp S, Hennerici MG, Fatar M. Outcome Predictors of Acute
 482 Stroke Patients in Need of Intensive Care Treatment. Cerebrovascular Diseases.
 483 2015;40(1-2):10-7.
- 484
 485
 485
 486
 486
 487
 487
 488
 489
 480
 480
 480
 481
 481
 482
 483
 484
 484
 485
 485
 486
 486
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487

- 488
 489
 489
 480
 480
 490
 490
 493
 493
 494
 494
 495
 495
 496
 496
 496
 497
 498
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
- 491
 14. Carney N, Totten AM, O'Reilly C, Ullman JS, Hawryluk GWJ, Bell MJ, et al. Guidelines for
 492
 the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery. 2017
 493
 Jan 1;80(1):6–15.
- 494 **15.** Timsit S, Nowak E, Rouhart F, Goas P, Merrien FM, Tirel-Badet A, et al. High 495 completeness of the brest stroke registry evidenced by analysis of sources and capture-496 recapture method. Neuroepidemiology. **2014**;**42**(3):186–95.
- 497 16. Jannou V, Timsit S, Nowak E, Rouhart F, Goas P, Merrien FM, et al. Stroke with atrial
 498 fibrillation or atrial flutter: a descriptive population-based study from the Brest stroke
 499 registry. BMC Geriatr. 2015 Jun 11;15:63.
- 500 17. Timsit S, Bailly P, Nowak E, Merrien FM, Hervé D, Viakhireva-Dovganyuk I, et al.
 501 Cryptogenic mechanism in ischaemic stroke patients is a predictor of 5-year survival: A
 502 population-based study. Eur Stroke J. 2016 Dec;1(4):279–87.
- 503 **18.** Warlow CP. Epidemiology of stroke. Lancet. 1998 Oct;352 Suppl 3:SIII1-4.
- 19. Adams HP, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al. Classification of
 subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial.
 TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993 Jan;24(1):35–41.
- 50720. Hemphill JC, Bonovich DC, Besmertis L, Manley GT, Johnston SC. The ICH Score: A Simple,508Reliable Grading Scale for Intracerebral Hemorrhage. Stroke. 2001 Apr;32(4):891–7.
- 50921. Incidence of stroke in Oxfordshire: first year's experience of a community stroke510register. Br Med J (Clin Res Ed). 1983 Sep 10;287(6394):713–7.
- S11 22. Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, et al.
 Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia:
 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the
 American Thoracic Society. Clinical Infectious Diseases. 2016 Sep 1;63(5):e61–111.
- 515 23. OUTCOMEREA Study Group, de Montmollin E, Terzi N, Dupuis C, Garrouste-Orgeas M, da Silva D, et al. One-year survival in acute stroke patients requiring mechanical 516 517 ventilation: a multicenter cohort study. Annals of Intensive Care [Internet]. 2020 Dec 518 [cited 2020 Oct 27];10(1). Available from: 519 https://annalsofintensivecare.springeropen.com/articles/10.1186/s13613-020-00669-520 5
- 521 24. van der Worp HB, Hofmeijer J, Jüttler E, Lal A, Michel P, Santalucia P, et al. European
 522 Stroke Organisation (ESO) guidelines on the management of space-occupying brain
 523 infarction. Eur Stroke J. 2021 Jun;6(2):XC–CX.

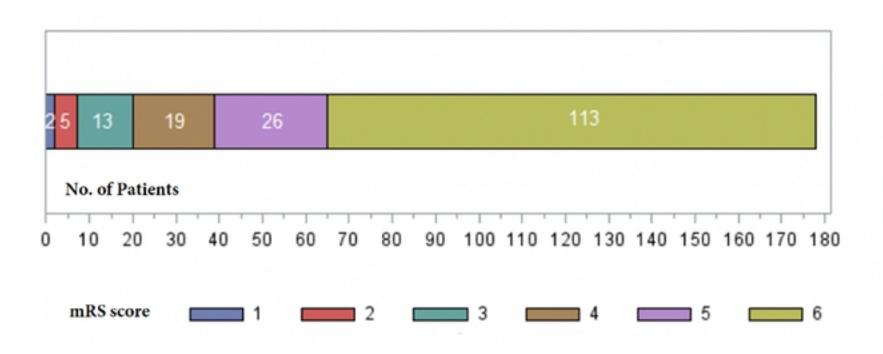

- 524 25. Chen CJ, Ding D, Ironside N, Buell TJ, Southerland AM, Testai FD, et al. Intracranial
 525 pressure monitoring in patients with spontaneous intracerebral hemorrhage. J
 526 Neurosurg. 2019 May 31;132(6):1854–64.
- 527 26. Huh J, Yang SY, Huh HY, Ahn JK, Cho KW, Kim YW, et al. Compare the Intracranial
 528 Pressure Trend after the Decompressive Craniectomy between Massive Intracerebral
 529 Hemorrhagic and Major Ischemic Stroke Patients. J Korean Neurosurg Soc. 2018
 530 Jan;61(1):42–50.
- 27. Paldor I, Rosenthal G, Cohen JE, Leker R, Harnof S, Shoshan Y, et al. Intracranial pressure
 monitoring following decompressive hemicraniectomy for malignant cerebral
 infarction. J Clin Neurosci. 2015 Jan;22(1):79–82.
- 534 28. Forster AJ, Kyeremanteng K, Hooper J, Shojania KG, van Walraven C. The impact of
 adverse events in the intensive care unit on hospital mortality and length of stay. BMC
 536 Health Services Research. 2008 Dec 17;8(1):259.
- 53729. Kinoshita K, Kushi H, Hayashi N. Characteristics of parietal-parasagittal hemorrhage538after mild or moderate traumatic brain injury. Acta Neurochir Suppl. 2003;86:343–6.
- 539**30. Bramlett HM, Dietrich WD. Pathophysiology of cerebral ischemia and brain trauma:**540similarities and differences. J Cereb Blood Flow Metab. 2004 Feb;24(2):133–50.
- S1. Castillo J, Leira R, García MM, Serena J, Blanco M, Dávalos A. Blood pressure decrease
 during the acute phase of ischemic stroke is associated with brain injury and poor stroke
 outcome. Stroke. 2004 Feb;35(2):520–6.
- 32. Doerfler S, Faerber J, McKhann GM, Elliott JP, Winn HR, Kumar M, et al. The Incidence
 and Impact of Secondary Cerebral Insults on Outcome After Aneurysmal Subarachnoid
 Hemorrhage. World Neurosurgery. 2018 Jun 1;114:e483–94.
- 547 33. Fontaine C, Lemiale V, Resche-Rigon M, Schenck M, Chelly J, Geeraerts T, et al.
 548 Association of systemic secondary brain insults and outcome in patients with convulsive
 549 status epilepticus: A post hoc study of a randomized controlled trial. Neurology. 2020
 550 Nov 3;95(18):e2529–41.
- 34. Alkhachroum A, Bustillo AJ, Asdaghi N, Marulanda-Londono E, Gutierrez CM, Samano D,
 et al. Withdrawal of Life-Sustaining Treatment Mediates Mortality in Patients With
 Intracerebral Hemorrhage With Impaired Consciousness. Stroke. 2021 Dec;52(12):3891–
 8.
- 35. Loyrion E, Agier L, Trouve-Buisson T, Gavazzi G, Schwebel C, Bosson JL, et al. Dynamic
 SOFA score assessments to predict outcomes after acute admission of octogenarians to
 the intensive care unit. PLOS ONE. 2021 Aug 2;16(8):e0253077.
- 36. van Smeden M, de Groot JAH, Moons KGM, Collins GS, Altman DG, Eijkemans MJC, et al.
 No rationale for 1 variable per 10 events criterion for binary logistic regression analysis.
 BMC Medical Research Methodology. 2016 Nov 24;16(1):163.

Fig.1 Flowchart

Figure1

Figure2