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Disentangling visual exploration differences in
cognitive impairment

Zifan Jiang, Salman Seyedi, Kayci L. Vickers, Cecelia M. Manzanares, James J. Lah, Allan I. Levey,
Gari D. Clifford

Abstract— Objective: Compared to individuals without cog-
nitive impairment (CI), those with CI exhibit differences in
both basic oculomotor functions and complex viewing behaviors.
However, the characteristics of the differences and how those
differences relate to various cognitive functions have not been
widely explored. In this work we aimed to quantify those
differences and assess general cognitive impairment and specific
cognitive functions.

Methods: A validated passive viewing memory test with eye-
tracking was administered to 348 healthy controls and CI individ-
uals. Spatial, temporal, semantic, and other composite features
were extracted from the estimated eye-gaze locations on the
corresponding pictures displayed during the test. These features
were then used to characterize viewing patterns, classify cognitive
impairment, and estimate scores in various neuropsychological
tests using machine learning.

Results: Statistically significant differences in spatial, spa-
tiotemporal, and semantic features were found between healthy
controls and individuals with CI. CI group spent more time
gazing at the center of the image, looked at more regions of
interest (ROI), transitioned less often between ROI yet in a more
unpredictable manner, and had different semantic preferences.
A combination of these features achieved an area under the
receiver-operator curve of 0.78 in differentiating CI individuals
from controls. Statistically significant correlations were identified
between actual and estimated MoCA scores and other neuropsy-
chological tests.

Conclusion: Evaluating visual exploration behaviors provided
quantitative and systematic evidence of differences in CI indi-
viduals, leading to an improved approach for passive cognitive
impairment screening.

Significance: The proposed passive, accessible, and scalable
approach could help with earlier detection and a better under-
standing of cognitive impairment.

Index Terms—Mild Cognitive Impairment, Alzheimer’s Dis-
eases, Visual Exploration, Machine Learning

I. INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease
that typically presents with memory loss and difficulty in
in performing cognitive functions, including learning and
memory [1]. Mild Cognitive Impairment (MCI) due to AD
is a prodromal stage in the AD continuum, when cognitive
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problems are detected clinically in the absence of any func-
tional decline.

Assessing objective cognitive impairment with neuropsy-
chological measures is an important clinical criterion for diag-
nosing MCI and dementia [1]. A widely used general cognitive
screening tool is the Montreal Cognitive Assessment (MoCA)
[2], which briefly assesses several cognitive domains, includ-
ing executive functioning, immediate and delayed memory,
visuospatial abilities, attention, working memory, language,
and orientation to time and place. Other neuropsychological
tests that are more sensitive to specific cognitive functions
have also been widely used, such as the Benson Complex
Figure Copy [3] for visual memory and digit span test [4] for
attention and working memory. Although effective in assessing
cognitive functions, neuropsychological measures can be time-
intensive, must be administered, scored, and interpreted by
trained personnel, and require active participation from the
person being assessed, resulting in reduced access and scal-
able.

Digital transformation of neuropsychological tests, such as
digital trail-making test [5] and digital clock drawing test [6],
has been proposed as a way to address these limitations in
administration and data recording.

Another approach to address the scalability issues is to de-
sign new digital-native neuropsychological tests. These digital
tasks also enable assessment of many features that reflect a
variety of cognitive and temporal processes that go far beyond
a single score, often with the help of signal processing and
machine learning approaches. One heavily explored direction
is the assessment of cognitive functions and oculomotor abnor-
malities by examining the visual exploration behaviors during
cognitive tests. Both alterations of basic oculomotor function
and complex viewing behavior have been observed in people
with cognitive impairment (CI) [7].

Over the last two decades, various tasks have been pro-
posed to assess fundamental oculomotor changes in saccades,
smooth pursuit, and pupillary responses in people with CI [7].
Both prosaccade (also known as visually guided saccade) and
voluntary antisaccade tasks have differentiated CI individuals
from healthy controls, where CI individuals showed higher
latency and error rates in performing both types of saccade-
related tasks [8]. Saccadic intrusions were found to be more
frequent in CI individuals [9]. Smooth pursuit deficits have
also been identified [10], in the form of lower initial acceler-
ation, decreased velocity, and erroneous anticipatory saccades
in the direction of target motion. Studies have also shown
that CI individuals have reduced amplitude [11], increased la-
tency [12] of light-induced pupillary changes, and diminished
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memory-related pupillary responses [13]. CI-related deficits
also include disengaging and reorienting spatial attention [14],
[15], inhibitory dysfunction due to dorsolateral prefrontal
cortex degeneration [16], cognitive decline in attention, and
working memory [17].

Other eye-tracking tasks that aim to assess more com-
plex, top-down viewing abilities directly related to cognitive
processing have been less explored than tasks that assess
fundamental ocular functions. The most widely adopted task
of this type is visual search, where CI individuals were found
to spend more time and more numerous, dispersed fixations
to detect the target objects [18], [19], especially in repeated
scenes [13], compared to healthy controls, which may indi-
cate deficits in attention and visual processing. Another task
exploits scene exploration, primarily focusing on measuring
the viewing behavior in the presence of incongruent scenes.
However, the results from this task were mixed, where both
lower interest [20] and higher interest [21] in the incongruent
scenes were found.

Eye-tracking tasks provide automatic and time-efficient as-
sessments for oculomotor and cognitive functions. However,
there remain some challenges. First, most tasks require active
participation, which could elicit negative experiences similar
to traditional neuropsychological tests due to anxiety and/or
perceived poor performance. Second, task administration often
requires standalone eye-tracking devices, which increases the
cost and reduces accessibility. Lastly, most tasks do not assess
the multiple oculomotor and cognitive functions involved in
the visual exploration process, hence costing additional time
to administer and missing the opportunity to assess visual
exploration.

To address the these challenges, in recent work, we devel-
oped a 4-min fully-passive mobile-based eye-tracking task to
assess visuospatial memory [22], [23], where participants went
through free-viewing sessions with camera-based eye-tracking.
We have also expanded the analyses to the expressions of
emotions during this task and provide an additional assessment
of emotional state [24], which is closely connected to cognitive
functions. With these features, we screened general cognitive
impairment (defined by a score of less than or equal to 24 in
MoCA) with good accuracy (with an area under the receiver-
operator curve of 0.77) and assessed multiple functions in a
single test.

The aim of the current study is to develop a framework
that provides an improved automated cognitive impairment
screening method and additional quantitative assessments of
multiple oculomotor and cognitive functions, without changing
the administered VisMET task. More specifically, we aimed
to extract largely mutually-independent features from the
estimated eye-gaze locations on the corresponding pictures
displayed and hypothesized that each feature could provide
independent information for the characterization of various
cognitive domains. Oculomotor features such as fixation,
saccade, and pursuit properties would also be extracted to
benchmark the proposed novel features.

The first aspect we were interested in is the spatial distri-
bution of the eye-gaze locations. We hypothesized that differ-
ences in spatial distribution could be found in CI individuals,

such as more numerous and dispersed distributions, because
of their deficits in spatial attention [14], [15].

The second aspect we targeted was the spatiotemporal
dynamics of eye-gaze movement. We hypothesized that the
declined spatial attention [14], [15] and working memory [13],
[17], inhibitory dysfunction [16] in CI may lead to differences
in temporal dynamics, such as more or less frequent jumps
between regions of interests (ROIs).

The third aspect we aimed to study was whether the intrinsic
meaning of the images, i.e., their semantic value, influenced
viewing performance. Various semantic categories of images
may be processed differently as a result of CI. .For this
purpose, we analyzed how different categories of images (e.g.,
people, animals, objects, and background), influence image
viewing patterns, including the quality and preferences of an
individual’s semantic organization as well as image contents.
Stable individual differences in salience along a set of funda-
mental semantic dimensions were found in a previous study,
which indicates that the semantic preferences may reflect the
features of the observer [25]. Hence we hypothesized that CI
might alter semantic preferences due to deficits in semantic
memory [26].

We evaluated the proposed framework in participants, in-
cluding healthy controls and patients with MCI or AD, and use
the resulting assessments to provide additional overview of the
visual exploration deficits manifested in cognitive impairment.

II. DATASET

A. Participants

We recruited 348 participants from the Emory Healthy Brain
Study (EHBS, n=169) and the Goizueta Alzheimer’s Disease
Research Center-affiliated clinics (ADRC, n=179) at Emory
University. The ADRC participants consisted of participants
with varying levels of cognitive impairment due to AD or
related disorders.

Table I shows the demographics of the participants. All pro-
cedures followed were in accordance with the ethical standards
of the responsible committee on human experimentation.

Capacity to provide consent. Special considerations are
necessary for adults with Alzheimer’s disease and related
disorders that affect cognitive abilities and thus have the
potential to impair an individual’s capacity to understand and
provide consent. To address this concern, we ensured that
the individual(s) signing the assent/consent form, whether
the participant or the participant’s representative, had a full
understanding of the study. Those providing consent were
asked to reiterate what they understood to be the primary
goal of this study, the risks, benefits, and requirements of
participation. Although many participants with Alzheimer’s
disease could provide consent independently, dual consent was
obtained from all participants unable to independently provide
consent by consenting both the individual with a diagnosis as
well as their legally authorized representative prior to enroll-
ment in the study. The consent procedure and this study have
been formally approved by the Emory University Institutional
Review Board (IRB00078273).
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TABLE I: Demographics of the 348 Participants Grouped
by Study ± indicates the standard deviation of the measured
variable. The year of education indicates the number of aca-
demic years a person completed in a formal program provided
by elementary and secondary schools, universities, colleges, or
other formal post-secondary institutions. High school comple-
tion usually corresponds to 12 years of education, whereas
completion of college usually corresponds to 16 years of
education. Participants with a total MOCA score greater than
24 were considered cognitively unimpaired, and a MoCA score
less than or equal to 24 indicated cognitive impairment.

EHBS ADRC
Number of Subjects 169 179

Age (Years) 69.7 ± 9.3 72.3 ± 9.0
Years of Education 16.6 ± 2.0 16.0 ± 2.7

MoCA Score 25.4 ± 4.0 17.8 ± 6.9
Cognitively Unimpaired/ Impaired 116 / 53 33 / 146

B. Measurements

All participants received neuropsychological evaluations
comprised of many cognitive measures intended to compre-
hensively measure global cognition as well as specific domains
of cognitive function. The MoCA (version 8.1) [2] was used
as a standard screening measure to evaluate global cognitive
performance in both the EHBS and ADRC cohorts. The
MoCA score ranges from one to 30, where only integer scores
can be obtained. Participants with a total MOCA score greater
than 24 were considered cognitively unimpaired (CU), and
a MoCA score less than or equal to 24 was indicative of
CI. Neuropsychological tests including Benson complex figure
copy (immediate and delayed) [3], forward and backward
digit span (DS) [4], F-A-S fluency [27], animal category
fluency [27], Trail making tests (part A and B) [28] and
Consortium to Establish a Registry for Alzheimer’s Disease
(CERAD) word list recall (delayed) [29] were administrated
to most participants. Due to administrator error, patient fatigue,
or other unforeseen problems, some of the tests could not
always be administrated. The number of participants who were
administered each test can be found in Table III.

C. Data collection

The Visuospatial Memory Eyetracking Test (VisMET) is a
passive viewing test, with participants simply asked to view
and enjoy the images displayed on the screen. The participants
were not asked to remember the images and did not get
scores or feedback during the test. The details of the test were
described in [22], [23]. In short, the task first shows ten images
of scenes consisting of two to five objects for five seconds,
then displays a modified set of images with either one object
added or removed from each image. Then the task repeats
the process described above by showing another ten different
images and ten modified images. The same protocol described
in [23] was followed for memory test administration.

A mounted iPad Air 9.7” tablet with maximum screen
brightness was used to present the test in portrait orientation.
Each iPad was running at least iOS 10. The videos were cap-
tured from the tablet’s forward-facing camera at a resolution

of 720p and a sampling rate of 30Hz. The clinical testing
rooms where the data were captured had natural lighting from
windows and overhead fluorescent or LED bulbs. During the
calibration procedure, the participants were instructed to move
their position to fit the silhouette of a face that appeared on
the screen, resulting in an approximate distance of 350 mm
between the iPad and the participant’s eyes. The facial video
from each participant during the memory test was collected,
resulting in a dataset of 348 videos.

D. Computer-vision-based eye tracking

A deep learning-based eye-tracking method was used to
estimate the eye-gaze location of the participant at each frame.
After that, the estimated eye-gaze locations were combined
into the scanpath (the eye-gaze locations over time during the
test) for each participant.

The details of this framework can be found in “Method 4”
proposed in [23]. In short, the processing pipeline consists of:
1) a regression tree-based face and eye detection and cropping;
2) a convolutional neural network (CNN) for eye-gaze location
estimation trained on MIT’s GazeCapture dataset [30] and on
all the videos collected from our previous Emory study [31]; 3)
a support vector regression (SVR) layer for eye-gaze estimate
calibration trained for each video; and 4) a recalibration of the
SVR eye-gaze estimation using a fixation cue between each
image. The average test error between the eye-gaze location
estimate and the target in the test set was 1.98 cm on a 9.7”
(24cm x 16.95cm) display.

III. METHODS

Distinct types of features were extracted from the estimated
eye-gaze locations on the corresponding pictures displayed
during the test. Then, these features were evaluated in two
analyses: 1) the classification of cognitive impairment and 2)
the regression on neuropsychological tests. Additional statis-
tical analyses were used to investigate the potential deficits
found in CI individuals. The illustration of the processing
pipeline can be found in Fig. 1, while the details are described
in the following sections.

A. Feature generation

1) Spatial distribution of the scanpath: For each five-
second image viewing session of each participant, a 180x240
heatmap (scaled 25x smaller than the original 900x1200 res-
olution used in the display) was generated from the estimated
scanpath. At each frame (or time point), a filled circle with a
center at the estimated eye-gaze location and a radius of the
estimation error was added to the heat map. Then the map was
normalized so that the sum of all values in the map is one.

2) Spatiotemporal modeling of the scanpath: Since tem-
poral dynamics cannot be modeled directly without the use
of spatial information, a hidden Markov model (HMM) was
used to model the spatiotemporal dynamics of the scanpath.
We hypothesized that there are hidden ROIs that the participant
transitioned back and forth to during the free viewing session.
Based on the images’ complexity, we set the number of states
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Fig. 1: Overview of the processing pipeline. Features with different information were extracted from the scanpath of
each image viewed by each participant and then used for cognitive impairment classification and neuropsychological score
estimation. Spatial distribution of eye-gaze locations was used to train a convolutional neural network (CNN) for single-image
cognitive impairment classification. Then, the single-image predictions of all images were used as features for the final subject
classification. Hidden Markov Models (HMM) were trained in an unsupervised manner with the scanpath, and the properties
of the HMMs were used for both classification and score estimation. The viewing time of different semantic categories (coded
in different colors only for visualization) and the modified region (showed in area within the red bounding box) were used to
approximate the semantic preferences and the visual memory capability, which were then used as features for classification
and score estimation. Eye movement event were also detected from the estimated gaze and oculomotor features were extracted
and used as a benchmark to the novel features proposed in the study. Extreme gradient boosting (XGBoost) [32] was used as
the classifier for all features, while support vector regression was used to estimate scores.

(ROIs) to be the number that maximized the log-likelihood
and the maximum number of states to be three.

For each image viewed by each participant, we learned one
HMM. We extracted parameters of the HMM as features,
including the prior of the states, transition matrix between
different ROIs, ROI center locations, and covariance matrix
using the “Scanpath Modeling and Classification with Hidden
Markov Models Toolbox” [33]. Unlike the rest, the transition
matrix was considered a temporal feature since it represents
how participants alternate between ROIs. Additionally, we cal-
culated the multiscale entropy of the inferred states time series
of each image viewed by each participant to characterize the
complexity of their viewing dynamics, using the “PhysioNet
Cardiovascular Signal Toolbox” [34]. Time series of inferred
states were scaled into coarse-grain time series by taking the
mode of multiple states.

3) Viewing time of different semantic contents: Objects and
backgrounds in all 40 images shown during the test were
manually annotated with semantic category and boundaries.
That is, a semantic category was assigned to each pixel of the
images. The semantic category include “background”, “text”,

“objects” (such as bicycles, cars, computers), “animal” (such
as birds, dogs, rabbits), and “people”. Since the gaze veer
away from the screen, we additionally define this scenario as
a semantic type of “off-screen”.

The percentage of time a participant spent in a semantic
type during a five-second image session was calculated as the
average ratio of the overlapping area between the semantic
region and the estimated gaze circle (a filled circle with a
center at the estimated eye-gaze location and a radius of
the estimation error) to the area of the gaze circle at each
frame. The average percentages of time the participant spent
on different semantic types during the entire test (during all
40 images) were used as the semantic preference features.

4) Viewing time of the modified region: We followed the
definition proposed in [23] and defined ”modification viewing
time” as the percentage of frames (excluding the ones without
face/eyes detected) where the estimated gaze is in a fixed
expert-defined elliptical region (for each object/picture). More
details can be found in our previous studies [23], [24].

5) Oculomotor features: Traditional eye movement events
were also extracted from the scanpath of each image viewed by

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.17.23290054doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.17.23290054


5

Fig. 2: Average spatial distribution of eye-gaze locations in CI individuals, healthy controls, and their differences in
the first five original images. The first column of figures shows the average eye-gaze location distribution in participants
with cognitive impairment, while the second column shows that in healthy participants. The first two heatmaps on each row
were plotted with the same range of color, with the value ranging from zero to the maximum in all participants. The third
column showed the average differences between the first two columns (healthy controls - CI individuals). Figures in the first
two columns were plotted with a color map different from the one used to plot the heatmap in the third column, but brighter
colors in both color maps indicate large values, i.e., more viewing time.
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Fig. 3: Inferred hidden Markov model characteristics when viewing original images. Red stars (“*”) indicate statistically
significant (Mann-Whitney test, p < 0.05) differences between healthy controls (cognitively unimpaired or CU, in yellow)
and cognitively impaired participants (CI, in blue). (Left) Histogram of average transitioning probability in all participants,
showing the distributions of the average probability of going from one state to another different state learned by hidden Markov
models from all original images. (Right) Multiscale entropy of inferred states in all participants. Sample entropy of hidden
states time series inferred by the hidden Markov model was calculated at the scale of one (i.e., without scaling) to ten. The
average entropy and the one standard deviation range are shown.

each participant with the “REMoDNaV: robust eye-movement
classification for dynamic stimulation toolbox‘’ [35]. Various
event-related features were generated from those detected
events and were evaluated with the rest of the features in
the later classification or regression analyses as benchmarks.
Those event-related features include (1) the number of dif-
ferent eye movement events: fixation, pursuit, saccade, post
saccadic oscillations (PSO); (2) duration of the fixation; (3)
the amplitude, velocity, angle, and duration of the saccade.

B. Classification of cognitive impairment

We evaluated features generated from the above-described
processes in a task of the classification of CI vs. CU. Classifi-
cation performances were measured by the average area under
the receiver operating characteristic (AUROC) and the average
F1 score (the harmonic mean of the precision and recall) in
20 repeated five-fold cross-validations, where subjects were
randomly stratified into five approximately equally sized folds
in each repetition.

A two-stage classification approach was used for spatial
features (distribution of the scanpath). The spatial distribution
maps were first trained at the image level, where distribution
maps from participants in the training split were used to
train a CNN (EfficientNet [36]) for CI vs. CU classification.
On the test fold, the CNN-predicted labels of all images
were first combined at the subject level and then used as
features for the subject-level classification. For all other types
of features, single-stage classification with extreme gradient
boosting (XGBoost) [32] was used as the classifier.

To disentangle the potential memory deficits from the rest of
the viewing differences, we further evaluated the classification

performance only in sessions where the original images were
shown (i.e., when the participants explored those images for
the first time).

C. Regression on neuropsychological tests

Different sets of features were evaluated in a task of the
regression on scores from different neuropsychological tests,
including MoCA, Benson complex figure copy (immediate and
delayed), forward and backward DS, F-A-S fluency, animal
category fluency, Trail making tests (part A and B) and delayed
CERAD. Support vector regression (SVR) was used as the
regressor for all the features. Similar to the classification task,
20 repeated five-fold cross-validations were used. The average
R-squared value between the neuropsychological test scores
and the estimated scores in the 20 testing folds was used as
the regression performance metric. Three types of features
were evaluated, including spatiotemporal features generated
using HMM modeling, semantic features that summarized
the viewing time of different semantic contents, and memory
features that summarized the viewing time of the modified
region.

D. Statistical Analyses

We used statistical tests to assess the differences in the
probability distributions of features between CI individuals and
healthy controls and the differences in performance resulting
from different features. The Shapiro-Wilk test was used to
confirm whether the distributions were normally distributed
or not. If not, a two-sided Mann-Whitney rank test was
applied between semantic viewing times derived from subjects
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Fig. 4: Semantic categories with significant viewing time differences between CI individuals and healthy controls in
modified and original images. (Top Left) Average proportion of viewing time spent in categories with significant differences
between CI individuals and healthy controls in original images. (Top right) Average proportion of viewing time spent in ”off-
screen” and in ”background” in modified images. (Middle) Percentage of viewing time spent in ”off-screen” and (Bottom) in
”background” in each of the modified images. A red star indicates significant differences between CI individuals and healthy
controls in that image.
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assessed as CI or CU to determine whether a significant differ-
ence exists between these two averages. McNemar’s test was
used to evaluate the classification disagreement between pairs
of classification settings. Wald Test was used to determine if a
significant correlation was found between the estimated values
and the actual test scores. Significance was assumed at a level
of p < 0.05 for all tests.

IV. RESULTS

A. Spatially centered gaze in CI individuals

Fig. 2 illustrates the average spatial distribution of eye-gaze
locations in CI individuals and healthy controls when viewing
the first five original images, along with spatial differences be-
tween the two groups. While gaze from both groups primarily
focused on the center and salient objects of the images when
viewing for the first time, people with cognitive impairment
spent more time in the center area of the image, characterized
by the dark circular regions found in the figures. Significantly
higher (Mann-Whitney test, p < 0.01) average pixel values
in the central area (a circle with a radius of the eye-tracking
estimation error) were found in CI individuals.

B. HMM statistics

Statistics of the learned HMMs in the 20 original images
revealed significant differences between CI individuals and
healthy controls when they explored those images for the
first time. On average, people with cognitive impairment
tend to view a greater number of ROIs (Mann-Whitney test,
p < 0.01) compared to healthy controls. In 69% of images, CI
individuals viewed three ROIs, 22% viewed two ROIs, and 9%
viewed one ROI. In comparison, in 66% of images, healthy
controls viewed three ROIs or more, 23% viewed two ROIs,
and 11% viewed one ROI.

The Fig. 3 (left panel) visualizes the average transition-
ing probability modeled by the HMMs, where people with
cognitive impairment showed a significantly lower probability
(Mann-Whitney test, p < 0.01) switching between different
ROIs.

While CI individuals switched between ROIs less often,
their alternating pattern showed higher complexity when they
did. The right panel in Fig. 3 shows the average and one
standard deviation of sample entropy measured at different
scales. In almost all scales (except for seven), CI individuals
showed a significantly higher level of entropy (Mann-Whitney
test, p < 0.05).

C. Semantic class preference alternation during first and
second exploration

Fig. 4 shows the distribution of viewing time of semantic
categories with significant viewing time differences between
CI individuals and healthy controls in modified and original
images.

Significant differences were found in the exploration of
the seven semantic categories of images during the first
presentation (the original images), shown in the Fig. 4 (top
left panel). CI individuals consistently spent less time viewing

animals, and less time viewing text, and had a mixed effect for
time spent on objects, indicating semantic preferences might
be associated with cognitive impairment, potentially due to
semantic memory-related deficits.

During the second presentation with the modified images,
shown in the top right sub-figure of Fig. 4, there were
significant differences in the exploration of many categories
of images. However, it is worth noting that on average,
CI individuals spent significantly more time off-screen and
significantly less time in the background, suggesting decreased
attention to non-salient image components. The middle and
bottom panels of Fig. 4 further show that the pattern we
identified in different categories still holds in almost all the
individual images.

D. Performance of cognitive impairment classification

Table. II shows the classification performance of cognitive
impairment using different types of features. All features pro-
posed in this work outperformed the benchmark oculomotor
features in CI vs. CU classification statistically significantly
(P < 0.01), which suggests additional information in those
features beyond eye movement characteristics. This result
aligns with the significant differences we found between
groups in the above sections. Semantic viewing time features
resulted in the best performance of an AUROC of 0.73 with a
single type of feature while combining it with spatiotemporal
and memory features improved the performance statistically
significantly (P < 0.01) to an AUROC of 0.78.

E. Performance of neuropsychological test score estimation

While good performance in cognitive impairment classifica-
tion and significant correlations were found with MoCA, sug-
gesting all features are cognitively relevant, the proposed fea-
tures cannot fully account for all cognitive functions measured
in the neuropsychological battery. That said, spatiotemporal
features and memory features were significantly correlated
with specific measures, as shown in Table. III.

The ability to use spatiotemporal features to estimate back-
ward digit span scores suggests that those features are tapping
into aspects of working memory and complex attention by
measuring where the participants were looking and how they
alternate between the ROIs. Spatiotemporal features were also
associated with animal fluency, which is a semantic verbal
generation task that relies both on semantic knowledge and
executive functioning performance. This association may sug-
gest that image switching is associated with more semantically
relevant aspects of executive function, since it is not associated
with other more concrete executive functioning tasks (such as
Trail Making Test B, a measure of set shifting).

Memory features correlated with multiple measures, which
span executive function, verbal generation, and delayed mem-
ory recall. Specifically, memory scores were significantly
associated with F-A-S fluency and animal fluency, both of
which rely heavily on frontal executive circuits for task per-
formance. In line with this, Trails Making Test B performance
was associated with this feature, again suggesting executive
function is related to these features. These features were also,
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TABLE II: Classification performance of cognitive impairment. The term all represents performance using all images
(including those that were modified), and og indicates the use of only the original unmodified images.

Feature type AUROC-all F1-all AUROC-og F1-og
1. Oculomotor features 0.64 0.60 0.58 0.54

2. Spatial distribution (spatial) 0.68 0.63 0.62 0.57
3. HMM transition matrix (temporal) 0.64 0.69 0.59 0.65
4. All HMM features (spatiotemporal) 0.69 0.70 0.64 0.65
5. Semantic viewing time (semantics) 0.73 0.74 0.65 0.61

6. Modification viewing time (memory) [23] 0.73 0.72 NA NA
7. Combined (all: 2+4+5) 0.78 0.76 NA NA

TABLE III: R squared scores of different features on
neuropsychological tests Values in the second column (“n”)
show the number participants with the test administered.
Values in other columns are the R-squared values between the
ground truth scores and the predicted scores in testing folds
for each neuropsychological test. A † over the R squared value
indicates a significant correlation (P < 0.05) between them,
where a ‡ indicates that p < 0.01. R-squared values were
omitted in pairs where no significant correlation was found.

n Spatio-temporal Semantic Memory

MoCA 348 0.30‡ 0.30‡ 0.36‡

Immediate Benson copy 132
Delayed Benson copy 121

Forward DS 219
Backward DS 219 0.15†

F-A-S fluency 124 0.33‡

Animal fluency 213 0.18† 0.33‡

Trail making A 214
Trail making B 212 0.24‡

Delayed CERAD recall 140 0.29‡

as expected, associated with Delayed Recall on the CERAD,
a measure of memory function. Although these features are
meant to capture memory function, these findings suggest that
both memory and executive function are heavily related to
the Memory features. This may be because we are including
both added and removed images in task performance. As
image components are removed, the ability to recognize that
something is missing from a previously studied image should
be heavily reliant on memory function; however, as image
components are added, it may not be the case that attention to
these image components relies on memory performance and
instead may associate more highly with executive functioning
(since recognition of differences is not required for engaging
with the critical region).

V. DISCUSSION AND CONCLUSION

We utilized a combination of visual exploration features
from participants passively viewing a series of original and
modified images to capture cognitive impairment. Using the
same passive VisMET viewing task [23] that we developed
to tap into memory function, the current methods captures
additional features that tap into other cognitive processes. The
revised analytical method resulted in improved performance
in CI screening and neuropsychological score estimation, as
shown in Table. II and Table. III. We also identified differences
in the spatial and spatiotemporal processing of participants
with cognitive changes, as well as in the viewing pattern of

objects based on their semantic types. These features were
identified when participants viewed the original images for the
first time, which showcased how they explored novel scenes
proactively.

People with cognitive impairment are known to have deficits
in spatial attention [14], [15]. The results of our study further
confirmed and depicted a more fine-grained landscape of the
attention deficit in cognitive impairment. Spatially centered
attention was observed in CI individuals (shown in Fig. 2).
Additionally, CI individuals had more ROIs than controls yet
did not spend more time wandering in the background or
off the screen. Those findings indicate that CI individuals
might have a spatially misdirected attention rather than just
a generally reduced attention. Similar to the difficulty in
disengaging and reorienting spatial attention [14], [15] and
inhibitory dysfunction [16] shown during active tasks found in
previous literature, CI individuals in our study had a slightly
lower average probability of switching ROIs (shown in Fig. 3)
when they were passively exploring without instruction. They
also showed more chaotic ROI transitions (characterized by
higher entropy, shown in Fig. 3). Unlike active tasks, it is safe
to say that those behaviors observed in our passive test were
not a result of the difficulty in following instructions but a
fundamental deficit in spatial attention.

The altered preferences for various semantic categories
of objects shown in Fig .4 suggest higher-level changes in
conceptualization and understanding of objects or scenes in in-
dividuals with CI. When they viewed the similar but modified
scenes for the second time, they showed a pattern of spending
more time in the background and wandering their gaze off
the screen. The increased time spent off the screen might
result decreased persistence in attention, while the decreased
time spent in the background may reflect decreased attentional
resources and in general is consistent with the aforementioned
lack of persistence in attention wherein participants spent
more time engaged in ”off screen” viewing across the task.
Surprisingly, this difference was not seen when individuals
viewed the original set of images, and suggests that possibly
individuals with CI had fatigued and/or generally lost attention
during the latter two minutes of the task.

Although we found that scene memorability is a property
of pre-existing semantic associative in long-term memory in
healthy controls [37], we did not observe semantic-specific
memory deficit at the group level in this study. This finding
may indicate that short-term semantic memory change might
also be individualized, in contrast to the observed group-level
semantic preference differences manifested when viewing the
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original images in this study. These group-level differences
in semantic valence might suggest that semantic knowledge
related systems weaken in people with CI, hence they may be
less efficient in grouping or less coherent in how they approach
images.

We further confirmed that the spatial, spatiotemporal, se-
mantic, and memory features could be used separately or in
combination, to classify cognitive impairment with improved
performance. By carefully evaluating each aspect of the view-
ing behavior, we achieved far better results than using only
the benchmark oculomotor features, as well as our previous
methods using only the memory features [23] and the facial
expression features [24].

While an AUROC of 0.78 is promising for a four-minute
passive test, there are several additional factors that could
potentially be optimized to improve performance of the task..
For example, the selection of images and the correspond-
ing objects included was not optimized on the ability to
differentiate CI individuals from healthy controls. We have
found that the CI vs. CU group differences were drastically
different in different images, which could be leveraged for
image optimization. Some images showed clear separation in
multiscale entropy level between two groups, while others had
two groups almost overlapping. Group differences in semantic
viewing time also varied in different images, like the viewing
time spent in the background and offscreen shown in Fig. 4.
Clearly, we cannot simply optimize based on how well each
image performs in this dataset and implicitly overfit the model
to this dataset. However, extrapolation can be made, on top
of our interpretation of the mechanism, to help decide which
images, objects should be included in the tests and how they
should be presented to maximize the power of the test.

Based on the significant group differences and the ability
to classify cognitive impairment, spatiotemporal, semantic,
and memory features clearly measured certain aspects of
general cognitive ability. Unfortunately, their relations with
existing neuropsychological tests are less clear. For instance,
spatiotemporal features correlated with semantic and verbal
functions, yet surprisingly semantic features did not correlate
with these functions as shown in Table. III. Similarly, none
of those three feature types could effectively estimate the
scores of Benson copy, which measures visuoconstructional
and visual memory functions, which is expected to correlate
with spatiotemporal and memory features intuitively. Those
results suggest that further investigation is needed to validate
which cognitive functions are measured by either the visual
exploration features proposed in this work or the traditional
neuropsychological tests. It could be the case that those pro-
posed features are measuring functions that the traditional tests
were not measuring, yet we currently do not have the data to
prove it. It is also worth noting that we have significantly fewer
subjects with specific neuropsychological tests administered
compared to MoCA, which is one of the reasons why the
estimation of the scores was more difficult than estimating
MoCA: it is more difficult to learn an effective estimator with
fewer data points.
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