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Abstract 33 

Background 34 

Pulmonary hypertension (PH) poses a significant health threat with high morbidity and 35 

mortality, necessitating improved diagnostic tools for enhanced management. Current biomarkers for 36 

PH lack functionality and comprehensive diagnostic and prognostic capabilities. Therefore, there is a 37 

critical need to develop biomarkers that address these gaps in PH diagnostics and prognosis. 38 

Methods 39 

To address this need, we employed a comprehensive metabolomics analysis in 233 blood based 40 

samples coupled with machine learning analysis. For functional insights, human pulmonary arteries 41 

(PA) of idiopathic pulmonary arterial hypertension (PAH) lungs were investigated and the effect of 42 

extrinsic FFAs on human PA endothelial and smooth muscle cells was tested in vitro. 43 

Results 44 

PA of idiopathic PAH lungs showed lipid accumulation and altered expression of lipid 45 

homeostasis-related genes. In PA smooth muscle cells, extrinsic FFAs caused excessive proliferation 46 

and endothelial barrier dysfunction in PA endothelial cells, both hallmarks of PAH. 47 

In the training cohort of 74 PH patients, 30 disease controls without PH, and 65 healthy controls, 48 

diagnostic and prognostic markers were identified and subsequently validated in an independent cohort. 49 

Exploratory analysis showed a highly impacted metabolome in PH patients and machine learning 50 

confirmed a high diagnostic potential. Fully explainable specific free fatty acid (FFA)/lipid-ratios were 51 

derived, providing exceptional diagnostic accuracy with an area under the curve (AUC) of 0.89 in the 52 

training and 0.90 in the validation cohort, outperforming machine learning results. These ratios were 53 

also prognostic and complemented established clinical prognostic PAH scores (FPHR4p and 54 

COMPERA2.0), significantly increasing their hazard ratios (HR) from 2.5 and 3.4 to 4.2 and 6.1, 55 

respectively. 56 

Conclusion 57 

In conclusion, our research confirms the significance of lipidomic alterations in PH, introducing 58 

innovative diagnostic and prognostic biomarkers. These findings may have the potential to reshape PH 59 

management strategies. 60 
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Abbreviations 64 

6MWD, six minute walking distance; ACh, acetylcholine; ADMA, asymmetric 65 

dimethylarginine; AUC, area under the curve; BH, Benjamini–Hochberg; BMI, body mass index; BNP 66 

or NT-proBNP, natriuretic peptide levels; CO, cardiac output; COPD, chronic obstructive pulmonary 67 

disease; CI, cardiac index; CTEPH, chronic thromboembolic pulmonary hypertension; DC, diseased 68 

control (non-PH); DLCOcVA, diffusing capacity for carbon monoxide per alveolar volume, 69 

hemoglobin corrected; ECAR, extracellular acidification rate; ECIS, electrical cell-substrate impedance 70 

sensor; EDTA, ethylenediaminetetraacetic acid; FEV1, forced expiratory volume/ 1 s; FVC, forced vital 71 

capacity; FFA, free fatty acids; H&E, hematoxylin-eosin; HC, healthy control; HILIC, hydrophilic 72 

interaction liquid chromatography; hPAEC, human pulmonary artery endothelial cells; hPASMC, 73 

human pulmonary artery smooth muscle cells; HR, hazard ratio; HRMS, high resolution mass 74 

spectrometry; ILD, interstitial lung disease; IPAH, idiopathic pulmonary arterial hypertension; iPCA, 75 

independent principal component analysis; IVD, in vitro diagnostics; LPC, lysophosphatidylcholine; 76 

LPE, lysophosphatidylethanolamine; LV, left ventricle; MAD, median absolute deviation; mPAP, mean 77 

pulmonary arterial pressure; MS, mass spectrometry; OCR; oxygen consumption rate; OPLS-DA, 78 

orthogonal projections to latent structures discriminant analysis; PA, pulmonary arteries; PAH; 79 

pulmonary arterial hypertension; PAP, pulmonary arterial pressure; PAWP, pulmonary arterial wedge 80 

pressure; PBS, phosphate-buffered saline; PC, phosphatidylcholine; PDGF, platelet-derived growth 81 

factor; PH, pulmonary hypertension; PPP, pentose phosphate pathway; PVR, pulmonary vascular 82 

resistance; QC, pooled from samples for quality control; RAP, right atrial pressure; RDW, red cell 83 

distribution width; RF, random forest; RHC, right heart catheterization; ROC, receiver operator curve; 84 

RT, room temperature (20 – 25 °C); SEM, standard error of mean; SM, sphingomyelin; SMA, smooth 85 

muscle actin; SvO2, mixed venous oxygen saturation; TAG, triacylglyceride; TEER, transendothelial 86 

electrical resistance; TLC, total lung capacity; VWF, von-Willebrand Factor; WHO FC, World Health 87 

Organization functional class; WU, Wood unit; XGBoost, eXtreme Gradient Boosting;  88 
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Introduction 89 

Pulmonary hypertension (PH) affects 1% of the world’s population1,2 and thus represents a 90 

significant global health problem. Even mild PH is a strong negative prognosticator in patients with left 91 

heart disease3, lung disease4, and pulmonary arterial hypertension (PAH)5,6.  92 

In recent decades, global research efforts have led to targeted therapies for the rare pulmonary 93 

vascular diseases PAH and chronic thromboembolic PH (CTEPH). Despite this, the estimated five-year 94 

survival rate for newly diagnosed PAH patients has remained at only 61%7,8. 95 

Diagnosis of PH is challenging because measurement of pulmonary arterial pressure (PAP) 96 

requires right heart catheterization (RHC), whereas non-invasive methods provide only reliable 97 

estimates of PAP1 or are not widely available9. Natriuretic peptide levels (BNP or NT-proBNP) are the 98 

only recommended biomarkers for PH, but they are not specific for pulmonary hypertension. Therefore, 99 

the development of new diagnostic tools for the detection of PH, risk stratification, and epidemiological 100 

studies remains an important issue2. 101 

Fibroproliferative remodelling of distal pulmonary arterioles drives elevation in pulmonary 102 

vascular resistance and pulmonary arterial pressure. This is associated with unique metabolic changes 103 

as detected from the circulation10–15 as a reflection of the profound changes in the cells and matrix of 104 

the right ventricle and pulmonary vessel walls16. Our hypothesis was that PH patients may present with 105 

a characteristic metabolic profile that allows for detection of PH and risk stratification1. We identified 106 

lipidomic changes in the small pulmonary arteries (PA) of IPAH patients and a unique lipidomic profile 107 

in a diverse PH cohort, allowing identification of PH among healthy and diseased controls, which was 108 

confirmed in an independent validation cohort. In addition, we show that simple markers of this 109 

lipidomic profile are significantly associated with survival and improve the accuracy of two established 110 

prognostic PAH scores.   111 
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Results 112 

Clinical and cardiopulmonary hemodynamic characteristics for the study cohorts 113 

Our study included three classes of subjects: PH patients, healthy control subjects (HC) and 114 

lung disease controls (DC) without PH, all of whom underwent blood-based high resolution mass 115 

spectrometry (HRMS)-based metabolomics (see Fig. 1). PH patients had a mean PAP 116 

(mPAP) ≥ 25 mmHg and were either 1) PAH, 2) PH due to left heart disease (LV), 3) PH due to lung 117 

disease, or 4) CTEPH. All DC had mPAP < 25 mmHg with either metabolic syndrome, chronic 118 

obstructive pulmonary disease (COPD) or interstitial lung disease (ILD). The distributions in sex and 119 

body mass index (BMI) between PH and HC/DC were similar (see Fig. 1C). Age was in the same range, 120 

although controls tended to be younger. Metabolites were not significantly correlated with age (see Fig. 121 

S3).  122 

 

Fig. 1. Study overview for all cohorts. (A) Schematic workflow of metabolomics measurement and computational 
analysis. Created with BioRender.com. (B) Schematic overview of group distribution of all included patients 
(n = 233) in training and validation cohorts. (C) Scatter plot of BMI vs. age (shape of symbols by sex) in the training 
cohort with distribution histograms per PH and per HC/DC showing comparable distributions of sex and BMI in 
PH and HC/DC, avoiding potential confounders by design.  

 

The training cohort consisted of PH patients, DC and HC, all sampled in Graz, Austria. The 123 

external validation cohort contained PH patients and HC from Zürich, Switzerland and Regensburg, 124 

Germany. Patient characteristics are summarized in Table 1.  125 

  126 
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Table 1: Patients’ characteristics (medians ± 95% confidence interval) 127 

  
Training (n=169)   Validation (n=64) 

HC (n=65) DC (n=30) PH (n=74)   HC (n=7) PH (n=57) 

Age, years 58.0±2.8 59.5±4.7 66.5±3.0   42.0±13.8 57.0±3.7 

Female:male (ratio) 44:21 (2.1:1) 20:10 (2.0:1) 50:24 (2.1:1)   5:2 (2.5:1) 43:14 (3.1:1) 

BMI (kg/m²) 24.1±0.9 26.2±3.0 25.9±1.1   21.0±1.7 26.3±1.4 

Diagnosis (since years) - 8±1.8 1.0±1.2   - 5.5±1.7 

Pulmonary hemodynamics from RHC 

mPAP (mmHg) 
mean pulmonary arterial pressure 

- - 42.0±2.5   - 50.0±3.9 

PAWP (mmHg) 
pulmonary arterial wedge pressure - - 10.0±1.3   - 9.0±0.9 

CO (L/min) 
cardiac output - - 4.3±0.4   - 4.2±0.4 

CI (L/min/m²) 
cardiac index 

- - 2.6±0.2   - 2.4±0.2 

PVR (WU) 
pulmonary vascular resistance - - 7.1±1.0   - 9.1±1.7 

RAP (mmHg) 
right atrial pressure - - 6.0±1.2   - 7.5±1.1 

Clinical data 

6MWD (m) 
6-min walk distance - 454±41 330±34   - 390±31 

WHO FC 
world health organisation functional 

class 
- 2.0±0.2 3.0±0.2   - 2.0±0.2 

FEV1 (% predicted) 
forced expiratory volume 1 s - 51.5±9.9 75.0±5.6   - 82.2±3.0 

FVC (% predicted)  
forced vital capacity 

- 63.8±6.7 82.8±5.5   - 91.4±4.0 

FEV1/FVC (% predicted) - 56.3±8.5 74.4±3.0   - 75.7±2.1 

TLC (% predicted) 
total lung capacity - 103.0±10.8 94.0±3.9   - 96.5±3.5 

DLCO cSB (% predicted) 
single-breath CO diffusing capacity, 

haemoglobin corrected 
- 49.6±7.8 63.8±6.0   - 53.8±3.9 

DLCO cVA (% predicted) 
diffusing capacity for CO alveolar 

volume, haemoglobin corrected 
- 70.0±7.9 69.6±6.1   - 62.0±3.7 

RDW (%) 
red cell distribution width - 14.0±0.7 15.4±0.7   - 14.7±0.6 

NT-proBNP (pg/mL) - 98±39 869±806   - 751±475 

Uric acid (mg/dL) - 5.0±0.5 6.0±0.6   - 6.6±0.7 

Creatinine (mg/dL) - 0.80±0.09 1.02±0.12   - 1.00±0.23 

Bilirubin total (mg/dL) - 0.40±0.13 0.64±0.13   - 0.65±0.16 
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Identification of a characteristic lipidomics profile in pulmonary hypertension 128 

The metabolome of patients was assessed with untargeted hydrophilic interaction liquid 129 

chromatography (HILIC)-HRMS from serum, EDTA, and heparin plasma samples in four measurement 130 

runs. As is typical with mass spectrometry (MS) based metabolomics methods, notable batch effects 131 

occurred between runs as well as drift within the longer runs (see Fig. S2). Drift correction was 132 

successfully performed (see Fig. S2) using quality control (QC) injections, which are a mix of equal 133 

sample volumes repeatedly measured to monitor instrument stability.  134 

In total, 164 known metabolites were of consistent analytical quality suitable for multivariate 135 

and univariate exploratory analysis. Global metabolic changes were first examined using the 136 

unsupervised multivariate independent principal component analysis (iPCA). The metabolomes of the 137 

PH patients differed from the control groups (HC and DC), which was visible as a clear group separation 138 

in the iPCA scores plot along the first component (x-axis, Fig. 2A). The observed metabolic difference 139 

was strongly driven by an increase in specific free fatty acids (FFA) in PH patients (Fig. 2B). The 140 

machine learning method orthogonal projections to latent structures discriminant analysis (OPLS-DA) 141 

confirmed that the observed global metabolic differences between PH and HC/DC were significant 142 

(p < 0.001, cross-validation and 1000 random permutations, Fig. 2C). 143 

 

Fig. 2. PH is associated with a strong metabolic shift in the training cohort. (A) iPCA scores plot representing the 
metabolic profile of each subject as a dot. The proximity of the dots indicates the similarity of the subjects’ 
metabolomes. Clear group separation by PH is visible along the first component. (B) Loadings plot corresponding 
to scores plot in (A). Each dot represents the contribution of the metabolite to the group separation observed in the 
scores plot. FFAs (yellow circles) strongly drive the group separation and are increased in PH patients. (C) OPLS-
DA maximizes the group difference from PH to HC/DC and the resulting scores plot represents, as in A, the 
metabolome of each subject. Similarly, proximity indicates similarity and ellipses mark the 95% confidence interval 
of the groups. The difference between the metabolome of PH and HC/DC was significant (Q2 > 50%, p< 0.001 
from 1000 random permutation). (D) Volcano plot of univariate analysis showing significant (pBH < 0.05, grey 
horizontal line) and strong (absolute contrast ratio > 0.25, grey vertical lines) increase in FFAs (yellow triangles). 
For all methods A-D, 164 known metabolites from the training cohort samples (n = 169) were used (drift corrected, 
log10-transformed data). Colors as in B. 

 

The univariate statistical analysis confirmed that FFAs were strongly and significantly 144 

increased in PH as compared with HC/DC (Fig. 2D). The metabolites from routine clinical chemistry, 145 

e.g. uric acid, were strongly correlated with their respective HILIC-HRMS metabolites (Fig. S3). Single 146 
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FFAs and lipids were not strongly correlated with any clinical parameter, suggesting that the detected 147 

FFA changes may be independent from conventional clinical assessment. 148 

FFA/lipid-ratios diagnose pulmonary hypertension 149 

The potential of using our metabolites to predict PH was first investigated with the machine 150 

learning method random forest (RF)17,18 and extreme gradient boosting (XGBoost)19. From the 164 151 

metabolites, 11 were excluded from biomarker analysis because of low signal intensities and high noise 152 

(see Supplementary Data 1). RF and XGBoost both achieved an area under the curve (AUC) of 0.82 in 153 

the receiver operator curve (ROC) analysis in the validation set (Fig. 3A). The drift correction used here 154 

allowed a joint exploratory statistical analysis, but drift correction is impossible in future routine clinical 155 

diagnostics. Therefore, the diagnostic and prognostic performance was also tested without drift 156 

correction. RF and XGBoost performance were almost identical without drift correction, indicating that 157 

their nonlinear algorithms exhibit intrinsic drift-handling capabilities (Fig. 3A).  158 

 Other important model performance parameters such as specificity, sensitivity, and balanced 159 

accuracy were comparable for RF and XGBoost irrespective of drift correction. For RF and XGBoost, 160 

the average balanced accuracy was 72.2% and 72.7%, respectively, the specificity was 88.6% and 161 

91.2%, respectively, and the sensitivity was 55.8% and 54.1%, respectively (Fig. 3C). The validation 162 

cohort had only seven HC and no DC with a slightly different age and BMI distribution than the training 163 

cohorts. To overcome this limitation, we tested an artificial data split into 70% training and 30% 164 

validation sets with balanced distributions in age, BMI, sex and disease class (PH/DC/HC). The 165 

performance of RF and XGBoost remained similar to the original split by center (Fig. S4). 166 
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Fig. 3. Diagnostic accuracy for PH in training and validation cohorts. (A) ROC plots of RF (green) and XGBoost (blue) 
trained with data from training cohort predicting class in validation cohort with either drift corrected, log10-
transformed data (left, middle) or non-drift corrected log10-transformed data (right) based on 153 metabolites. (B) 
The ROC plots of the three best FFA/lipid-ratios for training and validation cohort with either drift corrected, log10-
transformed data or log10-transformed data with no drift correction (insets). (A-B) Training cohort n = 169 (solid 
line), validation cohort n = 64 (dashed line), ribbons mark 95% confidence intervals. (C) Plot of model performance 
metrics sensitivity, specificity and balanced accuracy for RF, XGBoost, and the three best FFA/lipid-ratios when 
based on either training (circles) or validation (diamonds) cohorts only or all available data (squares). The 
performance of RF and XGBoost was comparable for all three metabolite subsets with and without drift correction. 
The performance of the three best FFA/lipid-ratios was consistently more stable and balanced than of RF or 
XGBoost. 
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Despite their diagnostic potential, both machine learning approaches are not suitable for routine 167 

clinical diagnostics because they are labour intensive and not fully explainable. In addition, both 168 

approaches showed notable decreases in AUC, sensitivity, specificity and balanced accuracy from the 169 

training to the validation cohort. Therefore, we tested whether ratios formed from lipophilic metabolites 170 

with strong effects of PH versus HC/DC, normalized to metabolites with no effects of PH vs. HC/DC, 171 

could replace machine learning approaches to create an explainable, easy-to-measure marker. In PH, 172 

many FFAs were strongly increased while many complex lipids were unchanged (Fig. 2D), offering the 173 

option to achieve markers of PH that are easy to measure. Thus, characteristic FFAs were selected into 174 

the numerator, based on their analytical performance in PH versus HC/DC and lipids with good 175 

analytical performance and non-significance in PH vs. HC/DC were chosen for the denominator.  176 

For the nominator, 11 FFA were considered: FFA C15:0 (pentadecylic acid), FFA C16:2 177 

(palmitolinoleic acid), FFA C16:1 (palmitoleic acid), FFA C17:1 (heptadecenoic acid), FFA C17:0 178 

(margaric acid), FFA C18:3 (α-linolenic acid, ALA, or γ-linolenic acid, GLA), FFA C18:2 (linoleic 179 

acid, LA), FFA C18:1 (oleic acid), FFA C19:1 (nonadecenoic acid), FFA C20:5 (eicosapentanoic acid, 180 

EPA) and FFA C20:1 (eicosenoic acid). Eight lipids, the best two from four common classes, were 181 

considered for the denominator: lysophosphatidylcholine (LPC) 18:2, LPC 18:1, phosphatidylcholine 182 

(PC 36:4, PC 38:6), sphingomyelin (SM 34:2, SM 36:2), lysophosphatidylethanolamine (LPE) 16:0, 183 

and LPE 18:1. To stabilize the ratios, we also tested sums of up to six FFAs in the numerator and up to 184 

four lipids in the denominator, limiting the maximum number of individual metabolites in a given ratio 185 

to ten. 186 

In total, about a quarter of a million FFA/lipid-ratios were evaluated for their diagnostic 187 

performance in ROC analysis. Most FFA/lipid-ratios achieved moderate to high performance with 188 

AUCs above 0.8 (Fig. S5A-I,K,L) irrespective of drift correction or split. There may be a concern that 189 

combining multiple metabolites in a ratio increases technical error and impairs reproducibility. 190 

However, in our cohort, the calculated technical variability according to the laws of error propagation 191 

was <5% for most FFA/lipid-ratios and <10% for all others (Fig. S5J).  192 

For simplicity, the top three ratios were selected, based on their AUC, sensitivity, and 193 

specificity, and named RATIO1, RATIO2, and RATIO3 (Fig. S5M). These ratios had six metabolites 194 

in common: numerator (FFA C20:1 + FFA C16:1 + FFA C15:0); denominator (PC 38:4 + PC 36:4 + 195 

LPC 18:1). Compared to RATIO 1, the only difference of RATIO 2 and 3 was the addition of two more 196 

FFA to the numerator sum (FFA 18:3 + FFA 17:0 and FFA 18:2 + FFA 17:0, Fig. 3B). The ROC curves 197 

of RATIO1-3 overlapped well between training and validation cohort, irrespective of drift correction 198 

(Fig. 3B). All other important performance parameters were also very similar between RATIO1-3 199 

(Fig. 3C). As a general result, top ratios outperformed the machine learning models, irrespective of drift 200 

correction or data split, especially in terms of sensitivity. The top three ratios’ average balanced 201 

accuracy was 85.5%, with 89.7% specificity and 81.4% sensitivity (Fig. 3C).  202 
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FFA/lipid-ratios massively reduced technical complexity compared to broad metabolomics runs 203 

while achieving better diagnostic performance than machine learning approaches. The diagnostic 204 

performance of the FFA/lipid-ratios was independent of drift correction, making them suitable for 205 

stand-alone measurements. Accordingly, we assume that FFA/lipid-ratios are suitable for future routine 206 

applications. 207 

Specific FFA/lipid-ratios predict survival  208 

The prognostic value of RATIO1 was compared with well-established prognostic PAH scores, 209 

FPHR4P20 (based on WHO FC, 6MWD, RAP, and CI) and COMPERA2.01,21 (based on WHO FC, 210 

6MWD, and NT-pro-BNP). Survival and hazard ratios (HR) were investigated for all our patients with 211 

heart or lung disease and PH. For direct comparability of Kaplan-Meier survival curves and HRs, all 212 

numeric values were categorized into low or high risk according to their optimal cut-off points (e.g. 57 213 

years for age).  214 

We analysed survival times since enrolment (= baseline) which were available for 129 PH and 215 

21 DC (13 COPD, 8 ILD) patients. The COMPERA2.0 score was available for 122 PH and 11 DC 216 

patients, and FPHR4p for 97 patients (93 PH and 4 DC). Survival times and both scores were available 217 

for 91 PH patients. As expected, FPHR4p and COMPERA2.0 scores were significantly associated with 218 

survival time (Fig. 4). RATIO1 was also significantly associated with survival (Fig. 4) with a similar 219 

HR as COMPERA2.0 scores. When RATIO1 was combined with each of the scores (RATIO1 and 220 

score equally weighted), the prognostic value of the respective score improved notably (Fig. 4). This 221 

indicates that our simple metabolomic marker provided independent prognostic information and would 222 

complement established prognostic scores.  223 

As expected, established prognostic risk factors from the literature, higher WHO FC, lower 224 

6MWD, and higher NT-proBNP were associated with poorer survival (Fig. S7). Next, we examined the 225 

major potentially confounding factors age, sex and BMI. Age > 57 yr constituted a considerable risk 226 

factor, while BMI>26.8 kg/m2 and male sex were not significant (Fig. S6). Results were similar in the 227 

joint model for all three factors, suggesting that only age was a relevant confounder. Therefore, we 228 

included only age as covariate to our HR analysis (Fig. 4A).  229 
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Fig. 4. RATIO1 predicts survival and improves prediction of established clinical scores. (A) Cox HR analysis for 
survival from baseline without age as confounder (left side) and with age (right side, age HR shown in grey). 
Whiskers marks the 95% confidence intervals and statistical significance is coded as: * p < 0.05; ** p < 0.01; *** 
p < 0.001. Combining RATIO1 with FPHR4P or COMPERA2.0 increased HR compared with either alone. (B, C, 
D) Kaplan–Meier curves of survival from baseline by (B) RATIO1, (C) FPHR4p, and (D) COMPERA2.0 alone 
and combined with RATIO1. All cut-offs defining high or low were optimized with maxstat. RATIO1 was based 
on log10-transformed data without drift correction. RATIO1 was combined scaled 0 to 1 with equal weighing with 
either each score. FPHR4p was inverted so that higher scores represent higher risk as in COMPERA2.0. 

 

Overall, the HR results with age as covariate were similar to those without (Fig. 4A) and 230 

although age correction caused a decrease of all HR values, their respective prognostic impact remained 231 

significant.  232 

Changes in lipid metabolism in pulmonary arteries of idiopathic PAH (IPAH) patients 233 

We investigated small PA from IPAH patients, the prototype of PAH and healthy donor lungs 234 

from explanted lungs. Oil red O staining and co-staining with markers of endothelial and smooth muscle 235 

cells showed accumulation of lipids in several IPAH PA (Fig. 5A). The observed lipid deposition could 236 

be the result of increased fatty acid uptake, metabolic dysregulation, or increased lipid synthesis. 237 

Therefore, we performed laser-capture microdissection of small PA (< 500 µm) from IPAH patients 238 

and healthy donors and examined gene expression of transporters and enzymes related to lipid 239 

metabolism. Gene expression showed significant upregulation of several key genes involved in lipid 240 

uptake and metabolism in IPAH (Fig. 5B). Most striking was the significant upregulation of SLC27A5, 241 

GAPT1, AGAPT1, Lipin2 and DGAT1. DGAT1 plays a critical role in lipid droplet formation. Up-242 
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regulation of the FFA transport protein SLC27A5 indicates increased uptake of FFAs from the 243 

circulation. GPAT, AGPAT, and lipin family enzymes promote triglyceride biosynthesis, incorporation 244 

of exogenous fatty acids into triacylglycerides (TAG) and phospholipids, as well as β-oxidation. The 245 

upregulation of these genes in the small PAs of IPAH patients might be caused by the increased 246 

circulating FFA levels or might be a manifestation of an underlying disease mechanism.  247 

 

Fig. 5. Presence of lipids and expression of lipid-metabolism genes in IPAH pulmonary arteries. (A) Visualization of 
endothelium (von-Willebrand factor, VWF) and smooth muscle cell layer (smooth muscle actin, SMA) together 
with oil red staining in human IPAH lung serial sections (scale bar: 50 µm). (B) Gene expression of lipid 
homeostasis-related enzymes in laser-capture microdissected human PA (n = 8-10 patients, respectively). Vertical 
lines represent means with standard error of mean (SEM). Asterisks mark Mann Whitney test p < 0.05. Cell 
organelles are adapted from Servier Medical Art (CC BY 2.0 DEED). 

 

Next, we mimicked elevated circulating FFA levels by treating primary human pulmonary 248 

artery smooth muscle cells (hPASMC) and human pulmonary artery endothelial cells (hPAEC) from 249 
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healthy donors with a FFA cocktail. Bodypi fluorescence staining showed accumulation of fat in 250 

hPASMCs and hPAECs (Fig. 6A). To better understand the functional effects of this, we performed in-251 

vitro studies with primary hPAEC and hPASMCs. In hPASMCs, the treatment with the FFA mixture 252 

significantly promoted cell proliferation (Fig. 6B), and in hPAECs it significantly decreased 253 

acetylcholine (ACh)-induced NO secretion, suggesting endothelial dysfunction (Fig. 6C).  254 

We investigated the effect of the FFA mixture on endothelial barrier function by determining 255 

the magnitude of thrombin-induced endothelial barrier dysfunction. Fig. 6D shows the typical response 256 

of control endothelium to thrombin. When endothelial monolayers were pre-treated with FFA, they 257 

exhibited a significantly pronounced decrease in transendothelial electrical resistance (TEER) and 258 

delayed recovery of barrier function compared to control media (Fig. 6D). This suggests that FFA 259 

treatment causes profound endothelial dysfunction. Finally, we examined FFA-induced metabolic 260 

responses in hPASMCs and hPAECs by means of the Seahorse method and found significantly 261 

decreased coupling efficiency in both cell types in response to FFA treatment (Fig. 6E, F). Moreover, 262 

FFA exposure decreased non-mitochondrial respiration and ATP production in hPAEC and increased 263 

proton leak in hPASMC. This suggests that FFA treatment changes the phenotype of hPASMCs and 264 

hPAECs from healthy donors into an IPAH phenotype and that high levels of circulating FFAs may 265 

cause pulmonary vascular dysfunction, representing either a primary cause or a novel vicious circle in 266 

PH. 267 

 268 
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Fig. 6. Effects of FFA treatment on hPASMC and hPAEC. (A) Representative Bodipy fluorescence staining of hPASMC 
and hPAEC in the absence (Ctrl) or presence of extrinsic FFA (scale bar: 50 µm). (B) Platelet-derived growth factor 
(PDGF)-BB induced proliferation of primary hPASMC measured with thymidine incorporation, in the absence 
(Ctrl) or presence of extrinsic FFA (n = 4). Changes are expressed as percentages compared with untreated controls 
(Ctrl). (C) ACh-induced NO production in primary hPAEC (n = 4). Changes are expressed as percentage compared 
with untreated controls (Ctrl). (D) TEER, as determined by electrical cell-substrate impedance sensor (ECIS), 
showed a significant decrease in hPAEC treated with FFA, suggesting endothelial leakage. Representative original 
curve (left panel) and changes expressed as percent change compared with controls (Ctrl) (n = 4). (E, F) 
Summarized data from hPASMC and hPAEC using the Seahorse XFe24 Extracellular Flux Analyzer. All 
measurements were performed on n = 25,000–50,000 cells/well and five wells per cell type. Each experimental 
group consisted of cell lines from two to three patients. All data were normalized to total protein per well before 
analysis (n = 9). Mann Whitney test * < 0.05, **< 0.01, ***< 0.001. The boxes extend from the 25th to 75th 
percentile, the middle line denotes the median and the whiskers mark the minimum and maximum.  
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Discussion 269 

The uptake and metabolism of long-chain fatty acids is critical for many physiological and 270 

cellular processes, and cellular accumulation may cause numerous pathological and functional changes. 271 

Previous investigations in PAH have shown severe metabolic changes of the right ventricle and elevated 272 

in vivo myocardial triglyceride content10,22,23. Our investigations add important information by showing 273 

that small PA of IPAH patients are affected by lipid accumulation. Interestingly, we found increased 274 

gene expression of enzymes causing fatty acid uptake and triglyceride biosynthesis in smooth muscle 275 

cells of IPAH patients (Fig. 5C). This could be caused by the high FFA levels in the circulation, 276 

however, it could also represent a change in the cell physiology that strongly contributes to the 277 

development of PH.  278 

For the first time, we have explored the effects of FFA exposure in primary human hPAECs 279 

and hPASMCs. FFA exposure decreased NO secretion and impaired barrier function in hPAECs, and 280 

caused increased proliferation in hPASMC. In addition, FFA exposure induced changes in non-281 

mitochondrial respiration and coupling efficiency in both cell types. This suggests that impaired lipid 282 

handling in IPAH PAs might trigger the remodelling in PAH. This is in line with numerous studies 283 

indicating that the expression of GAPT1 / AGPAT1 / lipin-1 has important metabolic consequences24–284 
27. Our data, taken in context with data from the literature, may suggest that in PH, the failing right 285 

ventricle is no longer able to cope with FFA metabolism, leading to an increase in circulating FFA 286 

levels, which negatively affects the pulmonary vessels. However, it is also possible that there are 287 

primary changes in the lipid metabolism of the small PAs, leading to vascular dysfunction, subsequently 288 

increasing right ventricular afterload, initiating a vicious circle that finally causes PH and right heart 289 

failure.  290 

Spanning over two decades, extensive basic, translational, and clinical analyses have supported 291 

a causative link between metabolic reprogramming and PAH28,29. Similar to the Warburg effect in 292 

cancer, a shift from mitochondrial oxidation to glycolysis appears to occur in the right ventricle of PAH 293 

patients22,23. In this study, we show that the small PAs are affected by significant metabolic changes. 294 

Taking cues from cancer, recent data demonstrate significant alterations in metabolic programs other 295 

than glycolysis and glucose oxidation, including the pentose phosphate pathway (PPP), glutaminolysis, 296 

lipolysis, fatty acid synthesis and oxidation and changes in the plasma proteome 10–16,30–32. However, it 297 

remains unclear whether these changes originate in the overloaded right ventricle, in the primarily 298 

affected pulmonary vessels, or elsewhere.  299 

Although there has been tremendous progress in the understanding of PAH in recent decades, 300 

there is still an unmet need for diagnostics and therapy. According to a recent literature review, the five-301 

year survival rate for newly diagnosed patients has not significantly improved despite a multitude of 302 

new PAH medications8. This may be due to the fact that the metabolic mechanisms of the disease have 303 
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not been addressed in detail. To our knowledge, this study is the first to apply unsupervised, broad 304 

metabolome analysis of PH patients of group 1 to 4. The generated specific FFA/lipid-ratios identified 305 

patients with PH, independent of comorbidities. The same ratios provided prognostic information, 306 

complementing existing clinical prognostic scores. The diagnostic and prognostic results were validated 307 

in an independent international cohort and this was confirmed by a balanced split group approach. Of 308 

note, our in vitro mechanistic studies suggest that disturbed lipid metabolism may significantly 309 

contribute to the pathologic mechanisms in IPAH patients. Our simple FFA/lipid-ratios might be useful 310 

in the diagnosis and clinical management of PH patients and might even serve as surrogate endpoints 311 

in future clinical trials. 312 

Classical machine learning using RF and XGboost showed that metabolic differences hold a 313 

high potential for diagnostic biomarkers. Both approaches were able to overcome typical technical MS-314 

specific problems such as batch effects and intensity jumps between measurements, which usually 315 

require drift correction, suggesting that such labour-intensive procedures are not necessary if PH is to 316 

be detected. The same is true for our easily applicable FFA/lipid-ratios that performed comparably well 317 

with drift-corrected and non-corrected metabolomics data, suggesting that forming such a ratio corrects 318 

for batch effects and drifts in the metabolomics dataset as well as for inter-individual variability of 319 

patients’ lipid metabolism and lifestyle.  320 

Our FFA/lipid-ratios performed very well in both PH diagnosis and survival prediction. Their 321 

diagnostic performance even outperformed RF and XGBoost models, especially in terms of sensitivity. 322 

In addition, the results were stable despite the use of different sample types such as serum, heparin and 323 

EDTA plasma from three different centers, a very important prerequisite for broad applicability in 324 

routine diagnostics. The performance was also stable when training and validation cohort were not split 325 

by center but 70% to 30% balanced by age, BMI, sex and class. The FFA/lipid-ratios are easy to measure 326 

and fully explainable compared to machine learning models, which is advantageous for future studies 327 

and regulatory approval processes for in vitro diagnostics (IVD).  328 

Survival prediction is an important tool in the management of PAH patients. Several clinical 329 

scores have been established, with FPHR4P and COMPERA2.0 representing most recent developments 330 

derived from large databases20,21. The FPHR4P20 score estimates prognosis based on WHO FC, 6MWD, 331 

CI, and RAP, while COMPERA2.021 is based on non-invasive parameters, only (WHO FC, 6MWD, 332 

NT-pro-BNP). RATIO1 showed an age-dependency that was comparable to both clinical scores. Most 333 

importantly, both clinical scores gained notably in predictive power when combined with RATIO1. 334 

This suggests that FFA/lipid-ratios represent an independent, non-invasive prognostic factor that 335 

combines favourably with established prognostic PH scores.  336 
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Strengths and limitations 337 

Strengths of this study include exploration of primary IPAH small PA vessels, with mechanistic 338 

insight in the effects of FFA on PASMC and PAEC, a broad metabolomics approach, sampling and 339 

processing conditions suitable for routine clinical practice, inclusion of a disease control group, 340 

comprehensive clinical assessment, use of machine learning, and development of diagnostic and 341 

predictive FFA/lipid-ratios. As a limitation, we had access to a small number of patients and controls. 342 

This may have been compensated by a profound clinical characterization of the patients, including 343 

RHC, coupled with long follow-up times for survival analysis and the 70% to 30% balanced split test, 344 

confirming the results. Another limitation is that FPHR4p and COMPERA2.0 have been derived from 345 

PAH patients while we used them for all available patients including PH associated with left heart and 346 

lung diseases. This may have introduced a bias into the prognostic performance of these scores, 347 

however, this bias relates to the scores and our new markers in the same way. It may be seen as a 348 

limitation, that blood samples were collected along with clinical routine blood draws, without 349 

standardized fasting or other control measures, however, this may also represent a strength of our study 350 

as it suggests robustness of the results. All metabolic measurements were based on high-resolution mass 351 

spectrometry, a very sensitive and exact method, yet slow, expensive and work-intensive. However, our 352 

FFA/lipid-ratios allow for a simplified approach that is easily available.  353 

Outlook 354 

Future studies including larger numbers of patients with a balanced group distribution and more 355 

patients with early pulmonary hypertension and less impaired right ventricular function and longitudinal 356 

studies are warranted to investigate the value of metabolic markers for patient management.  357 

Conclusions 358 

Based on our mechanistic insights into the metabolic changes in small PA, and our machine 359 

learning approaches, our FFA/lipid-ratios identified PH patients with a high accuracy and were 360 

significantly associated with prognosis. This may point to novel diagnostic tools and possibly also to 361 

new therapeutic targets. If implemented into the management strategy for PAH patients, this might 362 

inform therapy decisions to improve outcomes of PAH therapy.    363 
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Supplemental Information can be found attached to this publication. 365 
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immediately after publication with no end for those who wish to access the data for any purpose. The 372 

provided Sample_Name in the online supplementary data 1 links to the file names in the online 373 

repository and are unsuitable to identify single patients. The primary key is only known to part of the 374 

study team. Machine learning code is available immediately with no end for those who wish to access 375 

for any purpose on Github: https://github.com/HelgaLudwig/PHMetab.  376 
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Online Methods 1 

Cohort Data Sources 2 

Results from the Graz Pulmonary Hypertension Registry (GRAPH) have been reported 3 

previously1,2. Briefly, the program uses a software application linked to the electronic health record for 4 

documentation of all patients of the Division of Pulmonology at the Department of Internal Medicine 5 

of the Medical University of Graz who gave written informed consent. Demographic, clinical, 6 

echocardiographic, procedural, and hemodynamic data and blood samples are collected and tracked for 7 

longitudinal outcomes. All hemodynamics were measured in a standardized fashion by the same 8 

experienced team1. Regularly scheduled quality checks of the registry are performed to ensure 9 

completeness and accuracy. Written informed consent was obtained from all patients and the study was 10 

conducted in line with the Helsinki declaration. The study was approved by the institutional ethics board 11 

(identifier: 23-408ex10/11), and the study has been registered at ClinicalTrials.gov (NCT01607502).  12 

The BioPersMed (Biomarkers of Personalised Medicine) project is designed as a single-centre, 13 

prospective, observational cardiovascular risk study. Between 2010 and 2016, 1022 community 14 

dwelling and asymptomatic individuals were regionally recruited and assessed biannually including a 15 

standardized biospecimen acquisition3. Written informed consent was obtained from all patients and 16 

the study was conducted in line with the Helsinki declaration. 17 

Cohort Study Population 18 

We retrospectively enrolled two consecutive cohorts of patients identified through our single-19 

center GRAPH registry and labelled them as GRAPH-Metabolomics (GRAPH-M). 20 

The inclusion criteria for the first cohort were diagnosis of idiopathic pulmonary arterial 21 

hypertension (IPAH) and absence of severe co-morbidities. Healthy sex- and age-matched subjects 22 

served as a healthy controls (HC).  23 

Inclusion criteria for the second cohort consisted of the following PH groups 1 – 4: 1) PAH, or 24 

2) PH associated with heart disease, 3) PH associated with lung diseases (COPD, ILD), or 4) CTEPH. 25 

The cohort of disease controls (DC) consisted of patients with airway or parenchymal lung disease or 26 

patients with metabolic syndrome (hypertension, hypercholesterinemia and type 2 diabetes mellitus) 27 

but no signs of elevated PAP. Healthy sex- and age-matched subjects served as a control group (HC). 28 

The patients with the metabolic syndrome were selected from the BioPersMed cohort Graz.  29 

All cohorts with the exception of patients with metabolic syndrome or HC underwent RHC. In 30 

patients who underwent multiple RHCs, the first RHC was considered the index procedure and was the 31 

only one included in the analysis. Patients were included in the analyses if data from a complete RHC 32 

were available, including a resting value for mPAP, PAWP, CO, heart rate, systolic and diastolic PA 33 
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pressure, PVR and mixed venous oxygen saturation (SvO2). We used the standard equation to calculate 34 

the pulmonary vascular resistance with PVR = (mPAP - PAWP)/CO expressed in WU.  35 

Validation Cohort  36 

This cohort comprised an international multicentric patient cohort. The inclusion criteria for the 37 

validation cohort were the confirmed diagnosis of PAH and informed written consent at the home 38 

institution. All participating centers were experienced centers of excellence for PH and all patients 39 

underwent RHC in a standardized manner. Demographic, clinical, echocardiographic, procedural, and 40 

hemodynamic data and blood samples were available as anonymized data. The sample collection was 41 

approved by the local Ethics Committee in each local center (Regensburg University, ethics committee 42 

No. 08/090 and cantonal ethical review board Zürich KEK 2010-0129; 2014-0214; 2017-0476).  43 

Cohort Outcomes 44 

The primary outcome was the confirmation of PH, defined as mPAP ≥ 25 mmHg according to 45 

the ERS/ESC guidelines from 20154. The secondary endpoints included time to all-cause mortality with 46 

data provided by Statistic Austria (single-centre registry Graz) and by the respective centers who 47 

contributed to the validation cohort. A complete list of covariates analyzed in this study is provided in 48 

the Supplementary Material (Fig. S3). 49 

Human lung tissue samples  50 

Human lung tissue samples were obtained from patients with IPAH who underwent lung 51 

transplantation at the Department of Surgery, Division of Thoracic Surgery, Medical University of 52 

Vienna, Vienna, Austria. The protocol and tissue usage were approved by the institutional ethics 53 

committee (976/2010) and written patient consent was obtained before lung transplantation. The patient 54 

characteristics included: age at the time of the transplantation, weight, height, sex, mPAP measured by 55 

RHC, pulmonary function tests, as well as the medical therapy. The chest computed tomography scans 56 

and RHC data were reviewed by experienced pathologists and pulmonologists to verify the diagnosis. 57 

Healthy donor lung tissue was obtained from the same source. Donor/IPAH patient characteristics are 58 

given in Supplementary Material (Table S2)Fehler! Verweisquelle konnte nicht gefunden werden..  59 

Lung histological Oil Red O staining  60 

The lipid accumulation of lung tissues was visualized by Oil Red O staining (Merck KGaA, 61 

Darmstadt, Germany). Lung tissue was embedded in tissue freezing medium, were snap frozen at 62 

−80 °C and sliced using a Leica CM 1900 cryostat (Leica Biosystems GmbH, Wetzlar, Germany) at a 63 

thickness of 5 μm per section. The slices were stained with Oil Red O working solution for 10 min, 64 

differentiated in isopropanol for 5 min, and then washed with water at room temperature (20 – 25 °C) 65 

(RT). The experiments were finished according to the manufacturer's instructions. The morphological 66 
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features of the tissues were assessed by hematoxylin-eosin (H&E) staining. The lipid in the tissue 67 

observed by microscope. 68 

Laser capture microdissection of PA and RNA extraction 69 

Laser capture microdissection (LCM) of 10 donor lungs and 10 lungs from IPAH patients, as 70 

well as mRNA isolation and cDNA synthesis were performed as previously described5. The intima and 71 

media layers of PAs of 100 – 500 μm diameter were selected, marked and isolated with the Arcturus® 72 

LCM System. Captured vessels were immediately transferred into RNA lysis buffer and were snap 73 

frozen. RNeasy Micro Kit was utilized to isolate RNA (RNeasy Micro Kit, Qiagen, Hilden, Germany)6. 74 

qRT-PCR - laser capture microdissected human PA 75 

The expression of enzymes and transporters was analyzed with real-time quantitative (qRT)-76 

PCR using the QuantiFast SYBR PCR reagent (Qiagen, Hilden, Germany) according to Papp et al. 77 

20197. Primer pairs (Eurofins, Graz, Austria), summarized in Supplementary Material (Table S3), were 78 

designed to span at least one exon-exon boundary to avoid the amplification of genomic DNA. The 79 

specificity of all primers, as well as the length of the amplicon, were confirmed by melting curve 80 

analysis and by running the products on 2% agarose gels, respectively. 81 

Cell Isolation and culture  82 

hPAECs 83 

hPAECs were either purchased from Lonza or isolated from donor lungs. For the isolation of 84 

donor hPAECs, PA (< 2 mm in diameter) were isolated and the endothelium incubated with an 85 

enzymatic mixture of collagenase, DNAse and dispaze in HBSS at RT8. Cell suspension was collected, 86 

resuspended in VascuLife Complete SMC Medium and cultured in gelatin-coated T25 flasks at 37°C 87 

and 5% CO2. After reaching 70 – 80% confluency, cells were trypsinized, enriched by 3 consecutive 88 

steps of CD31-selective magnetic-activated cell sorting technology and verified via morphological and 89 

marker confirmation (smooth muscle actin SMA, fibronectin, vimentin, von-Willebrand Factor VWF, 90 

smooth muscle myosin heavy chain and CD31). Surplus hPAECs were frozen (endothelial cell complete 91 

medium containing 12% FCS and 10% DMSO) and stored in liquid nitrogen until further use. Passages 92 

2–6 were used for the experiments. Detailed patient characteristics of isolated hPAECs can be found in 93 

Supplementary Material (Table S4).  94 

hPASMCs 95 

The isolation and culture of human hPASMCs was performed as previously reported9. After the 96 

removal of the endothelial cell layer, the media was peeled away from the underlying adventitial layer 97 

and cut into approximately 1–2 mm2 sections, centrifuged and resuspended in VascuLife Complete 98 
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SMC Medium supplemented with 20% FCS and 0.2% antibiotics, then transferred to T75 flasks and 99 

cultured at 37°C and 5% CO2. After  confluency of hPASMC was  formed, the cells were trypsinized 100 

and either cultured in VascuLife Complete SMC medium supplemented with 10% FCS and 0.2% 101 

antibiotics, or frozen (VascuLife Complete SMC Medium containing 15% FCS and 10% DMSO) and 102 

stored in liquid nitrogen until further use. Passages 4–8 were used for the experiments. SMCs were 103 

verified via morphological and marker confirmation (smooth muscle actin SMA, fibronectin, vimentin, 104 

von-Willebrand Factor VWF, smooth muscle myosin heavy chain and CD31). Detailed patient 105 

characteristics of isolated hPASMCs can be found in Supplementary Material (Table S4). 106 

Lipid visualized by bodipy staining  107 

BODIPY (D3922, Invitrogen, Carlsbad, Calif, USA) (excitation wavelength 493 nm, emission 108 

maximum 503 nm), was diluted in phosphate-buffered saline (PBS, 137 mM NaCl, 2.7 mM KCl, 12 109 

mM HPO4
2−/H2PO4

−, pH 7.4) or DMSO at a concentration of 1 mg/mL and applied to the hPASMCs 110 

and hPAECs for 20 mins at RT. Fixed cells (4% paraformaldehyde at 37°C for 5 mins) were used. 111 

Following fixation, samples were washed 3 times in PBS for 10 min. Sections were counterstained with 112 

4′,6-diamidino-2-phenylindole dihydrochloride (DAPI; Sigma-Aldrich) to visualize nuclei and covered 113 

with glass cover slips. Images were taken using a laser scanning confocal microscope (Zeiss LMS 510 114 

META; Zeiss, Jena, Germany) with Plan-Neofluar (×40 /1.3 Oil DIC) objective. 115 

Measuring cell metabolic state  116 

Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were determined 117 

by the Seahorse XFp analyzer (Agilent, USA)10. hPASMCs or hPAECs were plated onto cell culture 118 

microplates on the day before the experiments and treated with 0.25mM FFA (a mix of oleate, FFA 119 

16:0 and FFA C18 (2:1:1)) in VascuLife® complete Medium and incubated for 24 h. Cells were then 120 

incubated in XF assay medium (Agilent), supplemented with 25 mmol/L glucose and 1 mmol/L 121 

pyruvate (hPASMCs) or 10 mmol/L glucose, 1 mmol/L pyruvate, and 2 mmol/L L-glutamine (hPAECs) 122 

for 1 h at RT before the measurement. After the recording of the basal rates of OCR and ECAR, final 123 

concentrations of 1 μmol/L oligomycin, 1 μmol/L carbonyl cyanide-4 (trifluoromethoxy) 124 

phenylhydrazone, and 0.5 μmol/L rotenone and antimycin A for human hPASMCs; 1 μmol/L 125 

oligomycin, 1 μmol/L carbonyl cyanide-4 (trifluoromethoxy) phenylhydrazone, and 1 μmol/L rotenone 126 

and antimycin A for human hPAECs were added (XF Cell Mito Stress Test Kit, Agilent) through the 127 

instrument’s injection ports to obtain proton leak, maximal respiratory capacity, and nonmitochondrial 128 

respiration, respectively. Glycolytic capacity was measured using an XF Glycolysis Stress Test Kit 129 

(Seahorse Bioscience). ECAR was determined after serial injection with 10 mmol/L D-glucose, 1 130 

μmol/L oligomycin, and 100 mmol/L 2-deoxyglucose. All the assays were performed in triplicate and 131 

normalized to protein content. 132 
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Endothelial Barrier Function 133 

TEER served as an indicator of barrier function of endothelial cell monolayers. TEER was 134 

determined using an electrical cell-substrate impedance sensor (ECIS) (Applied Biophysics, Troy, NY, 135 

USA). Briefly, the endothelial cells are seeded in complete medium into (8W10E -PET arrays Applied 136 

Biophysics, NY, USA) each well and allowed them to grow until they reached confluence. The FFA 137 

(0.25 mM, a combination of FFA 18:1, FFA 16:0 and FFA 18:0 (2:1:1)) was applied for 24 hours before 138 

the barrier disruption was initiated by addition of recombinant human thrombin. 139 

Proliferation 140 

To investigate the proliferative effect of FFA treatment on hPASMCs, the following protocol 141 

was applied11: 10 000 hPASMCs were seeded in 96-well plates; the following day the cells were starved 142 

(VascuLife® Basal Medium, 0% FCS, 0.2% antibiotic/antimycotic) or kept under control conditions 143 

(VascuLife® Basal Medium with 5% FCS; LifeLine Technology, Walkersville) for 12 h. Afterwards, 144 

platelet-derived growth factor (PDGF)-BB was added and the proliferation of hPASMCs was 145 

determined by [3H] thymidine (BIOTREND Chemikalien GmbH) incorporation, after 24 h of 146 

incubation, as an index of DNA synthesis and measured as radioactivity by scintillation counting 147 

(Wallac 1450 MicroBeta TriLux Liquid Scintillation Counter and Luminometer). To investigate the 148 

effect of FFA (0.25 mM, a combination of oleate, FFA 16:0 and FFA 18:0 (2:1:1)) on hPASMCs, the 149 

same number of cells was seeded and after 12 h of starvation, FFA and vehicle were added and the 150 

proliferation of hPASMCs was determined as aforementioned. All experiments were performed in 151 

quadruplicate. 152 

DAF-DM-mediated nitric oxide measurement 153 

Measurements were performed as previously described8. hPAECs were seeded in gelatin-154 

coated dark 96-well plates, starved for 2 h with Ringer’s solution and loaded with 10 µm 4-Amino-5-155 

Methylamino-2′,7′-Difluorofluorescein Diacetate (DAF-FM) for 30 min at 37°C. The cells were 156 

stimulated with 5 µM acetylcholine (ACh) for the induction of nitric oxide measurement on 157 

CLARIOstar Plus (BMG Labtech, Ortenberg, Germany) at Ex/Em = 495/515 nm. All the assays were 158 

performed in quadruplicate and normalized to protein content. 159 

Plasma liquid chromatography–mass spectrometry metabolomics 160 

Metabolites were analysed by targeted hydrophilic interaction liquid chromatography–high 161 

resolution mass spectrometry (HILIC-HRMS) metabolomics according to Bajad et al.12 and samples 162 

were processed according to Yuan et al.13 as described previously14,15.  163 

Samples from Graz were aliquoted and stored at the Biobank Graz. On the day of the processing 164 

they were thawed in water ice bath on a slow rotary shaker (300 rpm) in < 10 min and vortexed shortly. 165 
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Aliquots of 100 µl were precipitated in LoBind Eppendorf tubes with 400 µl cold methanol (-80°C for 166 

at least 4 h, kept on dry ice) and vortexed shortly. After the overnight precipitation at –80 °C the samples 167 

were centrifuged for 10 min at 14.000 g at 4°C and supernatants transferred to fresh LoBind Eppendorf 168 

tubes. Supernatants were dried under nitrogen flow and stored at –80°C until all batches of the cohort 169 

were finished. Extracts were reconstituted in 100 µl 30% methanol/H2O, vortexed for 45 s and 170 

centrifuged for 5 min at 14.000 g at 4°C. The supernatant was transferred into autosampler vials, and 171 

equal aliquots from all samples were pooled for quality control (QC). All ready-to-measure extracts 172 

were refrozen at –80°C prior to measurement. Every 24 h samples were freshly thawed at RT, vortexed, 173 

spun down and added to the autosampler at 4°C. 174 

Measurements were made in independent runs per cohort with samples in randomized order, 175 

interspaced by according blanks, pooled QC samples and UltimateMix (UM, described previously16). 176 

Pooled QC samples were generated independently for cohort 1 and 2, while QC was mixed for cohort 177 

3 and 4. Cohorts 1 and 2 were extracted and measured in 1 batch, while cohorts 3 and 4 were randomly 178 

divided into 6 batches for sample extraction and measured with daily thawed extracts to reduce 179 

metabolite degradation.  180 

Extracts were measured with a Dionex Ultimate 3000 high-performance liquid chromatography 181 

(HPLC) setup (Thermo Fisher Scientific, USA) equipped with a NH2-Luna HILIC analytical column 182 

and crudcatcher with an injection volume of 10 µl and a 37 min gradient from aqueous acetonitrile 183 

solution [(5% acetonitrile v/v), 20 mM ammonium acetate, 20 mM ammonium hydroxide, pH 9.45] as 184 

eluent A (LMA) to acetonitrile as eluent B (LMB). Mass spectrometric detection was carried out with 185 

a Q-ExactiveTM system (Thermo Fisher Scientific). Electrospray ionization (ESI) was used for negative 186 

and positive ionization and masses between 70 and 1050 m/z were detected. 187 

Raw data were converted to mzXML using msConvert (ProteoWizard Toolkit v3.0.5), and 188 

target metabolites were extracted using the in-house developed tool PeakScout. Spectrum slices were 189 

presented around the exact target mass (± 50 ppm) and retention time (± 3 min) in accordance with the 190 

standards described by Sumner et al.17. For each target metabolite all peak area integrations were 191 

manually confirmed in each sample. Molecular masses of target metabolites were taken from literature 192 

and available online databases (HMDB, KEGG, Metlin)18–20. In addition, pure substances of all 193 

hydrophilic metabolites and selected lipophilic metabolites were run on the same system to obtain 194 

accurate reference retention times and fragmentation spectra.  195 

The analytical quality of all targeted metabolites was strictly graded to be suitable for 196 

multivariate analysis and univariate analysis using the following parameters: deviation from target mass 197 

< 5 ppm, mass difference range < 10 ppm, retention time standard deviation < 0.75 min, percentage of 198 

missing values < 30%, relative standard deviation in QC after drift correction <30%, and blank load in 199 

QC < 30%. Of 164 included metabolites, 11 metabolites were considered unsuitable for ROC analysis 200 
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due to lower signal intensity and lower consistency in repeated sample measurements (controls in 201 

cohorts 3 and 4). 202 

Analytical quality of samples, blanks, QC, and UM was graded by sample median, peak shapes, 203 

retention time shifts, percentage of missing values < 30%, and position in the PCA scores plot. From 204 

cohort 2, the first two UM and from cohort 4 the last four QC did not meet the quality criteria and were 205 

therefore excluded. 206 

Statistical analysis 207 

Data visualisation and statistical analysis were performed with R v4.0.2 (R Core Team, 2020) 208 

(using the packages readxl, openxlsx, stringr, dplyr, tidyr, doParallel, statTarget, car, colorspace, 209 

RColorBrewer, ggplot2, ggforce, ggpmisc, ggpubr, scales, grid, ellipse, correlation, dendsort, 210 

pheatmap, nlme, emmeans, missMDA, FactoMineR, mixOmics, MetaboAnalystR 3.0.3, survival, 211 

survminer, pROC, caret, patchwork) and TIBCO Spotfire v12.5.0 (TIBCO, Palo Alto, CA). Graphpad 212 

Prism v9 has been used to assess differences in the in vitro experiments. 213 

Typically, MS results are relative and only comparable within the same run. However, recent 214 

advances in drift correction allow to merge data for joint analysis. Peak areas without drift correction 215 

were log10-transformed prior to all further analysis. The drift correction was based on the RF driven 216 

algorithm that used QC measurements to model batch effects and drift for each metabolite with 217 

statTarget::shiftCor(., Frule = 0.7, ntree = 500, impute = “KNN”, coCV = 100, QCspan = 0, degree 218 

= 2)21. The imputed, drift-corrected data were multiplied by 103 to make the numbers more readable 219 

after log10-transformation. In the drift corrected, log10-transformed data all imputed values were 220 

removed and data was trimmed by median absolute deviation (MAD) score22, assuming a normal 221 

distribution (multiplication with 1.4826). Strong single outliers were removed with a very conservative 222 

threshold of having an absolute MAD score > 4 (165 single values in 65 metabolites). Data for all 223 

metabolites and samples is provided in Supplementary Data 1 with and without drift correction. 224 

In order to ensure validity of drift correction and subsequent results, each measurement run was 225 

first analysed independently with unsupervised multivariate (iPCA), supervised multivariate (OPLS-226 

DA) and univariate on log10-transformed data without drift correction (see Fig. S1). Next, drift 227 

corrected, log10-transformed data from all runs was jointly analysed with the same methods. The drift 228 

correction successfully removed the significant difference between measurement runs and notably 229 

reduced the technical variability in all metabolites (Fig. S2). Additionally, no difference was observed 230 

based on center or sample material type (Fig. S2). Replicate measurements of samples in different runs 231 

were average on drift corrected data to yield one metabolome per patient for subsequent analysis one 232 

metabolome per patient.  233 
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All reported p-values were adjusted for multiple testing according to Benjamini–Hochberg 234 

(BH) denoted as pBH (stats::p.adjust())23. Distribution and scedasticity were investigated with 235 

Kolmogorov–Smirnov test (stats::ks.test()) and Brown–Forsythe Levene-type test 236 

(car::leveneTest())24, respectively. After log10-transformation data was mostly normally distributed 237 

with 91% of all metabolites without drift correction and 99% of all metabolites with drift correction 238 

testing not significant (pBH > 0.05). Analog, data was mostly homoscedastic with 79% without drift 239 

correction and 80% with drift correction of all metabolites testing not significant (pBH > 0.05). 240 

For iPCA missing values were imputed with missMDA::imputePCA(., ncp = 10)25 and analysis 241 

was performed scaled and centred to unit variance (z-scaled) with mixOmics::ipca(., scale = TRUE, 242 

ncomp = 2, mode = “deflation”)26.  243 

For OPLS-DA missing values were imputed with MetaboAnalystR::ImputeMissingVar(., 244 

method = "knn_var")27, data was scaled and centred to unit variance (z-scaled) with 245 

MetaboAnalystR::Normalization(…, “AutoNorm”) and models were calculated with 246 

MetaboAnalystR::OPLSR.Anal(., reg = TRUE) with a standard 7-fold cross-validation for the factor 247 

disease. Model stability was additionally verified with 1000 random label permutations by 248 

MetaboAnalystR::OPLSDA.Permut(., num = 1000). 249 

Pearson correlation were calculated for each metabolite (drift corrected, log10-transformed data) 250 

against each numeric clinical parameter (untransformed) with correlation::correlation()28. Results were 251 

filtered to retain only metabolites and clinical parameters with at least one significant correlation 252 

(pBH < 0.05). Retained correlations were clustered by Lance-Williams dissimilarity update with 253 

complete linkage using stats::dist() and stats::hclust(). Dendogram were sorted with 254 

dendsort::dendsort()29 at every merging point according to the average distance of subtrees and plotted 255 

at the corresponding heat maps of Pearson R with pheatmap::pheatmap()30. 256 

For univariate analysis of significant changes within each metabolite for the factor disease (i.e. 257 

PH vs. HC/DC) generalized least squares models were fitted with nlme::gls()31,32 without confounders 258 

and with potential confounders (age, sex, BMI) by maximum likelihood. For analysis within each cohort 259 

log10-transformed data was used, for joint analysis over all cohorts drift corrected, log10-transformed 260 

data was used, thus constituting a nonlinear approach. The three most common potential confounders 261 

(age, sex, BMI) were added stepwise in all possible combinations and model performances were 262 

compared within each metabolite by lower AIC (Akaike information criterion; relative estimate of 263 

information loss), higher log-likelihood (goodness of fit), significance in log-likelihood ratio test 264 

comparing two models, quality of Q-Q plots, randomness in residual and direct comparison of t-ratios. 265 

All models with any confounder combination showed significant influence (p < 0.01) on selected few 266 

metabolites (13–39). The model with age + sex impacted most metabolites. However, a direct 267 
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comparison of t-ratio revealed a very small impact of age or sex correction on results, and according to 268 

model parsimony models without confounders were reported throughout.  269 

FFA/lipid-ratios were calculated with FFAs in the numerator and lipids in the denominator. The 270 

numerators were all possible, summed (not weighed) combinations of up to six FFA from 11 FFAs 271 

(most significant in univariate analysis PH versus HC/DC and best analytical quality): FFA C15:0, 272 

FFA C16:2, FFA C16:1, FFA C17:1, FFA C17:0, FFA C18:3, FFA C18:2, FFA C18:1, FFA C19:1, 273 

FFA C20:5 and FFA C20:1. The denominators were all possible, summed (not weighed) combinations 274 

of up to four lipids from eight lipids (no significant change in univariate analysis and best analytical 275 

quality): LPC 18:2, LPC 18:1, PC 36:4, PC 38:6, SM 34:2, SM 36:2, LPE 16:0, and LPE 18:1. The 276 

combination of all possible summed FFA numerator and summed lipid denominator yielded a total of 277 

240 570 different FFA/lipid-ratios. All used FFA and lipids had no missing values. The technical 278 

variability RSD in QC was calculated for each FFA/lipid-ratio following the rules of error propagation 279 

from the single metabolites RSD of QC in drift corrected, log10-transformed data. All FFA/lipid-ratios 280 

were calculated once without and once with drift correction (both log10-transformed). Diagnostic 281 

performance was tested by ROC analysis with pROC::roc(…, algorithm = 2)33 based on our training 282 

cohort. Test data like in machine learning approaches was not needed here because ratios are directly 283 

calculated without any model training. Therefore logistic regression was performed fitting training data 284 

with stats::glm(…, family = “binomial”). The performance was evaluated on the validation cohort 285 

using pROC::roc(). The optimal threshold was determined with pROC::coords(…, ,best.method = 286 

"closest.topleft") to determine sensitivity and specificity.  287 

Survival analysis used either times since sampling or times since diagnosis defining confirmed 288 

death as endpoint while censoring all others at time of last known follow-up. Impact of all relevant 289 

clinical parameters (untransformed), all single metabolites (drift corrected, log10-transformed data) and 290 

best performing FFA/lipid-ratios (log10-transformed data without drift correction) was analysed. 291 

FPHR4p scores were inverted so that higher values represent higher mortality risk. Numerical 292 

parameters were split into high and low with maxstat as optimal cut-off for survival prediction as 293 

determined by survminer::surv_cutpoint(…, minprop = 0.3)34. Kaplan–Meier curves were fitted for 294 

each category with survival::survfit()35, differences were tested with survminer::ggsurvplot() and plots 295 

with time since diagnosis were truncated at 15 years for better comparability with times since baseline 296 

(i.e. time since sampling). The Cox HR analysis36 was calculated with survminer::coxph() for the 297 

confounders (age, sex, BMI), the COMPERA 2.0 score, FPHR4p, and RATIO1 alone or in 298 

combinations. Numeric factors were categorized into high and low same as for Kaplan-Meier curves. 299 

The combination of RATIO1 with the FPHR4p or COMPERA 2.0 score was done additively with the 300 

same weighting on scaled values from 0 to 1, rescaling after addition. 301 
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Data visualisation and calculation of the machine learning and Cox  302 

HR analysis was performed with Python 3.9 (using the packages pandas, numpy, seaborn, sklearn, 303 

matplotlib, xgboost)37–40.  304 

For machine learning, the package sklearn41 was used for the random forest (RF) and package 305 

xgboost for the XGBoost42 implementation, for better reproducibility a fixed random seed was set. Data 306 

was normalized with mean 0 and variance 1. A hyperparameter search for number of trees {101, 301, 307 

1001, 2001, 3001} and depth {5, 10, 100, 200, 300} for RF and eta {0.1, 0.01, 0.001}, depth {5, 10, 100, 308 

200, 300} and n_estimators {101, 301, 1001, 2001, 3001} for XGBoost was conducted with finally used 309 

hyperparameters highlighted in bold. Models were trained on training cohort data, which was randomly 310 

further divided five times into 80% for training and 20% for testing (stratified by class, age, sex, with 311 

non-overlapping test data). Trained models were validated with the external validation cohort, which 312 

had no data overlap with the training cohort.  313 

Additionally to the original split by center (i.e. city of sample origin), all samples were 314 

artificially split into 70% training and 30% validation sets with balanced distributions in age, BMI, sex 315 

and class (PH/DC/HC) to overcome the potential bias from the unequal distribution of age, BMI, sex 316 

and class in the original training and validation cohorts by center. The distribution of age and BMI was 317 

equal according to a t-test as well as for sex and class (PH/HC/DC) according to a χ2 test (p > 0.2). All 318 

machine learning and FFA/lipid-ratio ROC analysis were repeated for these 70:30 training and 319 

validation sets.  320 

Language editing was aided by the artificial intelligence tool https://instatext.io/ (last accessed 321 

November 2023). 322 

  323 

 324 
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Supplementary Figures 437 

 
Fig. S1. PH is associated with a strong metabolic shift in every measurement run. (A) iPCA scores plot representing the 

metabolic profile of each sample as a dot. The proximity of the dots indicates the similarity of the subjects’ 
metabolomes. Clear group separation by PH is visible along the first and or second component for each run and 
when all runs are jointly analyzed. (B) To A corresponding loadings plot in which each dot represents the 
contribution of the metabolite to the group separation observed in the scores plot. Free fatty acids (FFA, yellow 
circles) strongly drive the group separation and are increased in PH patients. (C) OPLS-DA maximizes the group 
difference from PH to HC/DC and the resulting scores plot represents, as in A, with dots the metabolome of each 
subjects. Similarly, proximity indicates similarity and ellipses mark the 95% confidence interval of the groups. The 
difference between the metabolome of PH and HC/DC was significant (Q2 > 50%, p< 0.001). (D) Volcano plot of 
univariate analysis highlighting significant (pBH < 0.05, grey horizontal line) and strong (absolute contrast 
ratio > 0.25, grey vertical lines) increase in FFAs. For all methods 164 known metabolites and all samples from the 
measurement run per cohort (n1 = 16, n2 = 33, n3 = 118, n4 = 109) on log10-transformed was used. In run 4 
measurement all HC samples from run 3 were repeated to evaluate reproducibility of samples across measurement 
runs. 
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Fig. S2. Drift correction improves data quality enabling a unified analysis of all 4 measurement runs. (A, B) Plot of 

the sample’s median signal intensity of all metabolites versus the sequence of measurement with measurements 
runs being separated by vertical black lines. (A) The QC samples (grey x) fluctuate within each measurement 
(= drift), while the batch effect is well visible as signal intensity jumps between the measurements. (B) Drift 
correction with an RF-based algorithm on QC samples removed drift and batch effects from the median sample 
intensity. (C, E, G, H, I, J) iPCA scores plots plot representing the metabolic profile of each sample as a dot. The 
proximity of the dots indicates the similarity of the metabolomes. Lines connect replicate measurements from same 
samples. Note (C, G, H) are the same iPCA model highlighting different biological factors. Analog (E, I, J) are the 
same iPCA model. (C) A clear group separation by measurement run is well visible between all 4 runs, with runs 3 
and 4 being more similar due to the back to back measurement and shared HC and QC samples. (D) Drift correction 
removes the separation by measurement run. (D, F) OPLS-DA maximizes the differences between runs 1 to 4 and 
the resulting scores plot represents, as in C, with dots the metabolome of each sample. Similarly, proximity indicates 
similarity and ellipses mark the 95% confidence interval of the groups. (D) All 4 measurement runs were highly 
significantly (Q2 > 50%, p < 0.001) different before drift correction and (F) become non-significant after drift 
correction. (G, I) The observed group separation by sample origin (study center) before drift correction was 
significantly reduced after drift correction. (H, J) The observed group separation by sample material type before 
drift correction was significantly reduced after drift correction. (K) The strong reduction of the technical variability 
over all 4 runs after drift corrections shows how well the RF-based algorithm reduced technical noise. All plots are 
based on 164 known metabolites and all samples from the measurement run per cohort (n1 = 16, n2 = 33, n3 = 118, 
n4 = 109). A, C, D, G, H used log10-transformed. B, E, F, I, J used log10-transformed, drift corrected data. 
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Fig. S3. Correlation of selected metabolites with clinical parameters in the training cohort. (A) Volcano plot of all 

pairwise Pearson correlations of all 164 metabolites (drift corrected, log10-transformed data) versus 43 clinical 
parameters highlighting strong (absolute R > 0.5, grey vertical lines) and significant (pBH < 0.05, grey horizontal 
line) correlations. Based on training cohort (n = 169). (B) Heatmaps with hierarchical clustering of the respective 
metabolite vs. clinical parameter. Pearson correlations were filtered to keep only rows and columns with at least 
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one sig. correlation. All pairwise Pearson correlation results can be found in Supplementary Data 1. Uric acid and 
creatinine were measured as metabolite and were part of routine hematology. Accordingly, these parameters show 
the strongest, most significant correlations. (C) Overview of all investigated numeric clinical parameters correlated 
in (A, B) with all metabolites, listing their short names, explanations and units. 

 438 

 

Fig. S4. Data split has little impact on performance of RF, XGBoost or Ratios in predicting PH. The data was split 
70:30 into trainings (n = 163, solid line) and validation set (n = 70, dashed line) balanced by age, BMI, sex and 
class, data was log10-transformed. (A) ROC plots of RF (green) and XGBoost (blue) trained with data from training 
cohort predicting class in validation cohort based on 153 metabolites and 95% confidence intervals marked by 
ribbons. (B) The ROC plots of the three best FFA/lipid-ratios and 95% confidence intervals marked by ribbons. (C) 
Plot of model performance metrics specificity, sensitivity and balanced accuracy for RF, XGBoost, and the three 
best FFA/lipid-ratios when based on either training (circles) or validation (diamonds) cohorts only or all available 
data (squares).  
 439 
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Fig. S5. A quarter million of FFA/lipids-ratios could diagnose PH. (A-F) The histograms summarize the AUCs of the 

ROC analysis for all 240 570 FFA/lipid-ratios in each data type and split. The histogram of ROC analysis 
performance AUC for all possible FFA/lipid-ratios exhibits a tight distribution showing that all ratios performed 
similarly good. (G-I) Direct comparison of AUCs between the trainings and validation cohorts. (A, B, G, H) ROC 
analysis within the training cohort (cohort 1, 2, 3 n = 169) of the original split by centers benchmarked against the 
(D, E, G, H) validation cohort (cohort 4 n = 64). (C, I) ROC analysis within the trainings set (n = 163) of the 70:30 
split (balanced by age, BMI, sex and class PH/DC/HC) and the (F, I) validation set (n = 70). (A, D, G) are based 
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on drift  log10-transformed, drift corrected data while (B, C, E, F, H, I) are based on log10-transformed data. (J) The 
histogram of the calculated technical error ratio for each ratio exhibits a tight distribution around 5% total technical 
relative variability showing. The grey vertical line marks the maximally acceptable technical variability cut-off for 
measurement methods in clinical routine laboratories. (K) The AUC from (A) and (B) are very similar to each other, 
confirming that the drift correction only slightly influences ROC analysis. (L) The AUC from (B) and (C) are very 
similar to each other, confirming that the split by center delivers very similar results to the 70:30 balanced split. 
Axes were scaled to exclude empty regions in (A-I, K, L), especially for AUC < 0.6 which have no to very little 
predictive value. (M) Overview of top performing ratios for the original split by center with and without drift 
correction. The equations for the in both datasets top 3 ratios are given. 
 440 

 

Fig. S6. Survival analysis of covariates age, sex and BMI and linear correlation of top three RATIOs with clinical 
parameters. (A) Cox HR analysis for survival since baseline and the 95% confidence interval with statistical 
significance coded as not significant (ns); * p < 0.05; ** p < 0.01; *** p < 0.001. Higher age alone and in the tri-
factor model was a significant risk factor while BMI and sex were slightly elevated but never significant. (B) 
Kaplan–Meier curves of survival times since baseline by age, sex or BMI. Age and BMI cut-offs were optimized 
with maxstat. (C) Heatmaps with hierarchical clustering of pairwise Pearson correlations of the top three RATIOs 
(log10-transformed data) versus 43 clinical parameters. All PH patients with survival times and both clinical scores 
were included (n = 91). All pairwise Pearson correlation results can be found in Supplementary Data 1.  
 441 
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Fig. S7. Survival analysis of established clinical risk factors and top metabolites. Kaplan–Meier curves analyzing survival 
times since baseline either for all PH patients or PH patients with both clinical scores available (n = 91). The stated 
cut-off for survival prediction was optimized with maxstat. (A) Survival of PH patients significantly decreases with 
known clinical risk factors such as higher WHO FC classes, lower 6MWD, higher NT-pro-BNP levels, and higher 
uric acid levels.  
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Supplementary Tables 443 

Table S1: Subject characteristics with medians ± 95% confidence intervals within measurement runs of the training 444 
cohort 445 

  
 run 1   run 2   run 3 

HC (n=8) PH (n=8)   HC (n=12) DC (n=9) PH (n=12)   HC (n=45) DC (n=21) PH (n=52) 

Age at sampling, y 57.0±8.8 58.5±9.0   70.5±10.8 56.0±10.1 63.0±9.3   58.0±2.6 60.0±5.7 66.5±3.7 

Female:male (ratio) 7:1 (7:1) 7:1 (7:1)   11:1 (11:1) 7:2 (3.5:1) 11:1 (11:1)   26:19 (1.4:1) 13:8 (1.6:1) 30:22 (1.4:1) 

BMI kg/m² 22.6±2.7 24.8±3.4   25.8±3.0 30.7±5.5 25.5±3.5   24.1±1.0 22.5±3.2 25.7±1.3 

Diagnosis since y - 3.0±5.9   - - 6.0±4.0   - 8.0±2.1 0.0±1.1 

Pulmonary hemodynamics from RHC 

mPAP (mmHg) 
mean pulmonary arterial pressure 

- 45.0±7.7   - - 41.5±5.8   - 22.0±0.8# 41.0±3.1 

PAWP (mmHg) 
pulmonary arterial wedge pressure 

- 10.0±4.2   - - 5.5±1.7   - 9.5±0.3# 10.0±1.6 

CO (L/min) 
cardiac output 

- 4.1±1.6   - - 4.3±0.8   - 3.9±0.4# 4.6±0.5 

CI (L/min/m²) 
cardiac index 

- 2.3±0.7   - - 2.5±0.5   - 2.4±0.3# 2.6±0.2 

PVR (WU) 
pulmonary vascular resistance 

- 8.3±3.7   - - 8.9±3.1   - 3.2±0.3# 6.0±1.2 

RAP (mmHg) 
right arterial pressure 

- 5.0±3.8   - - 5.0±2.4   - 5.0±1.1# 7.0±1.5 

Clinical data 

6MWD (m) 
6-min walk distance 

- 338±96   - - 431±149   - 454±50 317±32 

WHO FC 
world health organisation functional 

class 
- 3.0±0.6   - - 3.0±0.5   - 2.0±0.3 3.0±0.2 

FEV1 (% predicted) 
forced expiration 1 s 

- 83.0±16.5   - - 82.5±12.9   - 51.5±12 68.5±6.7 

FVC (% predicted)  
forced vital capacity 

- 90.9±18.0   - - 97.6±14.8   - 63.8±8.2 78.0±6.5 

FEV1/FVC (% predicted) - 73.3±6.0   - - 78.3±6.5   - 56.3±10.3 73.2±3.9 

TLC (% predicted) 
total lung capacity 

- 95.7±12.5   - - 103.1±9.4   - 103.0±13.2 92.0±5.2 

DLCO cSB (% predicted) 
single-breath CO diffusing capacity, 

hemoglobin corrected 
- 69.5±8.4   - - 65.4±9.5   - 49.6±9.6 56.4±8.2 

DLCO cVA (% predicted) 
CO diffusing capacity alveolar volume, 

hemoglobin corrected 
- 74.6±14.1   - - 60.6±20.8   - 70.0±9.6 71.0±7.8 

RDW (%) 
red cell distribution width 

- 15.5±1.1   - - 14.4±0.9   - 14.0±0.9 15.7±1.0 

NT-proBNP (pg/mL) - 508±1197   - - 263±1122   - 98±47 1100±1112.2 

Uric acid (mg/dL) - 5.7±1.4   - - 5.7±1.6   - 5.0±0.6 6.2±0.7 

Creatinine (mg/dL) - 0.92±0.17   - - 1.02±0.19   - 0.80±0.11 1.04±0.17 

Bilirubin total (mg/dL) - 0.61±0.25   - - 0.57±0.26   - 0.40±0.16 0.70±0.17 
#based on 4 patients, not representative446 
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Table S2: Characteristics of patients with IPAH and healthy donors used for laser capture-microdissection of PA. 447 
 ID Age Sex   ID Age Sex mPAP 

Donor 

1 [50-59] male  

IPAH 

1 [30-39] female 50 

2 [70-79] female  2 [30-39] female 88 

3 [50-59] female  3 [18-29] female 56 

4 [30-39] male  4 [18-29] female 69 

5 [18-29] female  5 [50-59] male 66 

6 [50-59] male  6 [18-29] male 74 

7 [18-29] male  7 [50-59] male 65 

8 [70-79] female  8 [30-39] female 69 

9 [50-59] female  9 [40-49] male 96 

10 [50-59] female  10 [18-29] female 65 
 448 
Table S3: Primers used to assess the expression of listed genes. Gene name, PubMed Nucleotide accession number used 449 

for primer design, forward and reverse primer sequences and the size of the PCR product (in bp) 4 are given. All 450 
primers were designed so that the PCR product span at least one exon-exon junction. 451 

Gene Forward primer Reverse primer Product 
size (bp) 

SLC25(A5) GTTGTCGCAGGTGGACTTCT CCTTACCCTCACAACCTGGC 71 

GPAT1 CTGCTAGGGCAGCAGCG TGCTGGGATGAAAGTTCTTCTGT 108 

GPAT2 CTTCCCTTGAGCAGTCCACG GCCATGAGAGCCTCACACCA 87 

AGPAT1 ACAGAGACACAGCCATCCG CAAATCCATTCTGGCCACCTCAG 102 

LIPIN2 TCTCCGCCTTCCACAGAGAA CTGCTTAGACGGGGCAAACA 98 

DGAT1 CAACTACCGTGGCATCCTG TTCTCCAGAAATAACCGGGC 72 

 452 

 453 

Table S4: Characteristics of the hPASMC and hPAEC donors used for in vitro studies.  454 
 ID Age Sex   ID Age Sex 

hPASMC 

1 [30-39] male  

hPAEC 

1 [50-59] male 

2 [50-59] female  2 [40-49] female 

3 [30-39] male  3 [50-59] female 

4 [30-39] female  4 [50-59] male 

5 [18-29] female     

6 [30-39] male     

 455 
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