
A Real-Time Deep Learning Approach for Inferring Intracranial Pressure from
Routinely Measured Extracranial Waveforms in the Intensive Care Unit

Shiker S. Nair,1 Alina Guo,1 Joseph Boen,1 Ataes Aggarwal,1 Ojas Chahal,1 Arushi Tandon,1 Meer
Patel,1 Sreenidhi Sankararaman,1 Tej Azad,2 Romain Pirracchio,3 and Robert D. Stevens1, 2, 4

1Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
2Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA

3Department of Anaesthesia and Perioperative Care, UCSF, San Francisco, CA, USA
4Departments of Anesthesiology and Critical Care Medicine, Neurology,
and Radiology, Johns Hopkins School of Medicine, Baltimore, MD, USA

Abstract - Objective. Intracranial pressure (ICP)
is a physiological variable used to assess the neurological
state of patients with life-threatening intracranial pathol-
ogy, such as traumatic brain injury or stroke. The current
standard of care for measuring ICP requires a catheter
to be inserted into the brain, which is associated with
an appreciable risk of hemorrhage and infection. We hy-
pothesize that ICP can be computed from extracranial
waveforms routinely measured in the Intensive Care Unit
(ICU), such as invasive arterial blood pressure (ABP),
photoplethysmography (PPG), and electrocardiography
(ECG). Methods. We extracted 600 hours of simultane-
ous ABP, ECG, PPG, and ICP data (sampled at 125 Hz)
across 10 different patients from the MIMIC III Wave-
form Database. These recordings were segmented into
10 second windows and used to train six different deep
learning models with ABP, ECG, and PPG waveforms as
input features. Models were evaluated in both a single-
patient analysis and multi-patient analysis. Results.
The performances of the six deep learning models were
compared, revealing two tiers of performance. Among
the top-tier models, the mean average error (MAE) for
inferring ICP was approximately 1.50 mmHg for single-
patient analysis and 5 mmHg for multi-patient analysis.
Conclusions. These preliminary and novel results indi-
cate the feasibility and accuracy of noninvasive ICP esti-
mation by training deep learning models with extracra-
nial physiological data. With further validation, this ap-
proach could be implemented in a continuous real-time
fashion, thereby reducing risks associated with invasive
monitoring and allowing more timely treatment of pa-
tients with critical brain injuries.

Index Terms— Arterial blood pressure, deep
learning, electrocardiogram, intracranial pressure, non-
invasive diagnosis, photoplethysmography, precision
medicine

I. Introduction

Traumatic brain injury (TBI), a type of brain dam-
age caused by physical trauma to the head, is one of the
leading causes of death and disability worldwide [1]. In
the US alone, recent data indicate 223,135 TBI-related
hospitalizations and close to 70,000 TBI-related deaths
[2]. The leading cause of TBI-related death is increased
intracranial pressure (ICP) [3]. ICP is defined as the

pressure exerted within the cranial compartment of a
patient [4]. At rest, a normal supine adult’s ICP is 0-
20 mmHg [5,6]. Intracranial hypertension is defined as
a sustained increase of ICP above 20 mmHg [4]. This is
typically caused by an expanding intracranial mass, cere-
bral edema, or a process impeding cerebrospinal fluid flow
and/or reabsorption through the ventricular and sub-
arachnoid spaces [7].

ICP monitoring is highly recommended in patients
with severe TBI [3]. In cases of elevated ICP, immediate
treatment is required for the patient (i.e., administra-
tion of hypersaline agents) [4]. Currently, the standard
for monitoring ICP is the placement of an external ven-
tricular drain (EVD) or intraparenchymal brain monitor
(IPM) [5,8]. Insertion of such devices requires a hole
to be drilled in the skull and the probe to be inserted
through the tissues of the brain. The invasive nature of
this procedure poses risks including infection and hem-
orrhage. The risk of infection for the EVD is 5-14% and
the risk of hemorrhage is 5-7% [3,6]. Additionally, inser-
tion of an EVD requires a neurosurgery team and takes
approximately 30-60 minutes, resulting in delayed ICP
measurements potentially delaying ICP detection and in-
tervention [9]. This could result in rapid deterioration of
a TBI patient and, eventually, lead to death [4]. Thus,
there remains a need for a less invasive, continuous way
of monitoring ICP that is reliable and accurate.

Previous research has indicated coupling between ICP
and the cardiovascular system, suggesting that informa-
tion present in extracranial physiological waveforms is
correlated with intracranial events [10]-[12]. Cerebral au-
toregulation may be impaired as a consequence of ele-
vated ICP, leading to pathological changes in cerebrovas-
cular vasoreactivity, cerebral blood flow, and oxygena-
tion. Here we explore the relationship between ICP
and three physiological indices which are routinely mea-
sured/monitored in the ICU: invasive arterial blood pres-
sure monitoring (ABP), photoplethysmography (PPG),
and electrocardiography (ECG). We hypothesize that an
estimated ICP measure can be computed by decoding
extracranial physiological waveform data.

Estimating ICP using extracranial waveforms would
allow clinicians to assess patients with intracranial abnor-
malities in a noninvasive, cost-effective manner. Further-
more, such a solution could be unobtrusively integrated
into the current clinical workflow in the ICU.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 2, 2023. ; https://doi.org/10.1101/2023.05.16.23289747doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.05.16.23289747
http://creativecommons.org/licenses/by-nc/4.0/


2

II. Related Works

Our research presents a novel approach to predicting
ICP in patients with TBI that significantly differs from
existing studies in the literature. We leverage traditional
machine learning and deep learning architectures to pre-
dict ICP using high-frequency (125 Hz) ABP, PPG, and
ECG waveform data in real-time. Although previous
groups have attempted to develop both physics-based
simulations and statistical models to infer ICP, there have
been limited efforts to use data-driven models to accom-
plish this task [13, 14].

The primary novelty of our approach lies in the use of
solely extracranial signals to predict the ICP waveform in
quasi-real-time, using deep learning techniques. Similar
studies in this field have successfully developed methods
to predict the occurrence of hypertensive events or the
progression of intracranial hypertension (IH) into a po-
tentially life-threatening condition [15]-[18]. Other works
have developed deep-learning algorithms to forecast the
ICP waveform [19,20]. However, all of these studies rely
on using ICP as an input and therefore do not offer the
potential of an extracranial, non-invasive methodology
for measuring ICP. There is indeed literature for the real-
time prediction of ICP using extracranial signals [13,14];
however, these studies scarcely utilize deep learning in
their formula-based methods.

By focusing on non-invasive methods for measuring
ICP, our research has the potential for transforming the
monitoring and treatment of TBI patients, particularly
in resource-limited settings. ICP could become a rou-
tinely estimated vital sign beyond the intensive care unit
(ICU). In addition, real-time waveform re-creation us-
ing deep learning can be seamlessly integrated into the
current monitoring workflow to replace invasive catheters
while still giving clinicians the autonomy to interpret ICP
waveforms.

III. Data

MIMIC-III (v1.4, 2016) is an intensive care database
that comprises de-identified data from 46,520 patients
and 58,976 admissions, recorded between June 1, 2001,
and October 31, 2012, at the Beth Israel Deaconess Medi-
cal Center in Boston, USA [21]. The data includes demo-
graphics, admission, and discharge notes, International
Classification of Diseases - 9th revision (ICD-9) codes for
diagnoses, radiological findings, survival data, vital sign
recordings, medications, and procedures for each patient
[21]. MIMIC-III also contains high-frequency physiologi-
cal waveforms data from a subset of patients. We decided
to model ICP from ABP, ECG, and PPG. By choosing
these waveforms, we had three modalities of predicting
ICP and assessing the contributions of each waveform in
the modeling tasks.

IV. Methodology

A. Preprocessing, Cohort Selection, and Patient
Demographics

Patients who were at least 18 years old with ECG,
PPG, ABP, and ICP recordings for at least five min-
utes were included in this study. To accomplish this, we
first assessed whether a patient had recordings of all four
waveforms. Because ECG is measured at multiple differ-
ent leads, we used the most prevalent ECG lead (II) in
our patient population of interest. The rationale behind
the common usage of ECG lead II for ICP prediction
is rooted in its ability to provide a reliable depiction of
the mechanical forces engendered by the cardiac system
and their subsequent impact on ICP [22]. After identi-
fying patients who have ICP, ABP, ECG Lead II, and
PPG data available, we removed patients who had less
than five minutes of overlapping data between these four
waveforms. This was done based on the knowledge that
elevated ICP lasting for five minutes or more may indi-
cate a hypertensive event, according to clinical experts
[23]. Therefore, it was important to ensure that we had
sufficient data to accurately detect such an event if it
occurred.

From the patients that remained, the waveform data
(synchronized in time) were sliced into five-minute seg-
ments. To ensure data quality, five-minute segments that
contained any not a number (NaN) values or physiolog-
ically unrealistic values (ICP < -10 mmHg or > 200
mmHg, ABP < 20 mmHg or > 300 mmHg, not NaN
mean heart rate) unique to each waveform were filtered
out. To address potential issues with EVD calibration,
an additional periodicity filtering step was applied to the
ICP signals. This filtering step removed extremely high-
frequency and low-frequency waveforms that could lead
to inaccuracies in the data. To ensure that intracranial
hypertension events were adequately represented in the
data, patients who had less than one hour of intracranial
hypertension recordings were excluded. For this study,
an ICP hypertensive event was defined as an ICP greater
than 20 mmHg sustained for at least five minutes [23].
Although recent traumatic brain injury guidelines pro-
pose a threshold of 22 mmHg, our study includes a het-
erogeneous population of patients who underwent ICP
monitoring for both traumatic and nontraumatic brain
disorders [4]. Therefore, we opted to use a threshold
of 20 mmHg. Figure 1 summarizes these pre-processing
workflow for cohort selection.

After applying this pre-processing scheme, 10 patients
remained for downstream analysis containing more than
600 hours of recorded ICP, ABP, EKG, PPG data (more
than 270,000,000 data points). Table I highlights key
demographics features of these patients.
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FIG. 1: Cohort Selection Workflow (Left) and Pre-Processing Methodology (Right)

Table I. Patient Demographic Data in Study

Total Number of
Subjects

n = 10

Age Median [IQR] 56 [33-64]
Sex(% M, % F) 30, 70
Admission Type

(Number of Subjects)
Emergency (8)

Urgent (2)
Discharge Location

(Number of Subjects)
Rehab/Distinct Part Hosp (5)

Dead/Expired (3)
Home Health Care (1)

Home (1)
Diagnosis (Number of

Subjects)
Subarachnoid hemorrhage (5)

Acute liver failure (2)
Traumatic brain injury (1)

Intracerebral hemorrhage (1)
Closed fracture of base of skull

(1)

B. Determining Window Length for ICP
Prediction Task

To ensure that the ICP prediction task was as close
to real-time as possible, a window size of 10 seconds was
chosen. To assess the amount of information lost as the
window size decreased, a dynamic time warping analy-
sis (DTW) was conducted [24]. The patient data was
divided into windows of 10 seconds, 20 seconds, 30 sec-
onds, and 60 seconds. The DTW score for each of the
extracranial waveforms (ABP, ECG, and PPG) and ICP
was computed between adjacent windows. This resulted
in four scores (one for each waveform) for each pair of
adjacent windows. The Spearman correlation between
the DTW scores for each extracranial waveformand ICP
was calculated (ABP/ICP, ECG/ICP, and PPG/ICP) to
assess if changes in the extracranial waveforms would be
reflected in ICP.

The results showed that all window sizes had a weak
positive correlation between the extracranial waveforms
and ICP (Table II). This justified the choice of a 10-
second window size to best replicate real-time analysis.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 2, 2023. ; https://doi.org/10.1101/2023.05.16.23289747doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.16.23289747
http://creativecommons.org/licenses/by-nc/4.0/


4

Table II. Dynamic Time Warping Analysis for Assessing
Information Loss Across Decreasing Window Sizes

Window
Size (s)

ICP/ABP ICP/PPG ICP/ECG

10 0.39 0.29 0.25
20 0.37 0.30 0.29
30 0.40 0.33 0.31
60 0.42 0.37 0.35

C. Model Selection and Architecture

The goal of this study is to predict the entire ICP wave-
form (125 Hz) from ABP, ECG, and PPG waveforms (125
Hz) in 10-second windows. Given this is a multivariate
time series prediction problem, we implemented six dif-
ferent deep learning models which are fit to accomplish
this task and have been used in previous studies in similar
problem spaces for time-series based predictions (Figure
2):

• Recurrent Neural Network (RNN) [25,26]

• Gated Recurrent Unit (GRU) [27]-[30]

• Long-Short Term Memory (LSTM) network [19],
[30- 32]

• Temporal Convolutional Networks (TCN) [33]-[36]

• Volume-Net (VNET) [37]

• Transformer [38,39]

These six models vary in sophistication and complex-
ity. In general, adding more layers improved the predic-
tions for each model, however, this increased the risk of
overfitting. Rigorous hyperparameter tuning was applied
for each model, specifically finding an optimal learning
rate, batch size, and number of nodes for each layer.

D. Normalization and Evaluation Criteria

Both features (ABP, ECG, and PPG) and labels (ICP)
waveforms were independently normalized for the predic-
tion tasks. Normalization was completed using a stan-
dard scaling function (subtracting by mean and dividing
by the standard deviation of the waveform) which was ap-
plied to all the data before splitting it into a training and
testing set. While it is common practice to normalize the
training set and apply this normalization scheme to the
test set, the small number of patients used in this analy-
sis (n=10) did not allow for a generalizable normalization
function in the training set that would properly transfer
over to the testing set. As a result, all the data was nor-
malized before splitting into a training and testing set.
Predictions were then unscaled back into a clinically in-
terpretable ICP using the inverse scaling function.

Different loss functions were assessed when optimiz-
ing each model and it was determined that the log hy-
perbolic cosine (log cosh) loss was the best optimization
function based on convergence. It is defined as the loga-
rithm of the hyperbolic cosine of the difference between
the true (t) and predicted values (p) (Equation 1). The
logcosh loss function is a smooth approximation of the
MAE loss function, allowing it to be easily optimized
through gradient descent methods. Furthermore, log-
cosh is known to converge faster than other loss func-
tions such as MAE, overall making it an ideal function
for deep learning tasks [40]-[42]. MAE and root mean
squared error (RMSE) were also metrics used to report
model performance (Equation 2 and Equation 3).

Equation 1. Logcosh Loss Function Formula

Logcosh(t) =
∑
p∈P

log(cosh(p− t))

Equation 2. Mean Average Error Function Formula

MAE =
1

n

∑
p∈P

|p− t|

Equation 3. Root Mean Squared Error Formula

RMSE =

√√√√∑
p∈P

(p− t)2

n

E. Single-Patient Analysis

The first experiment conducted evaluated the perfor-
mance of each of the six models within a single-patient
for each of the 10 patients in the study. The goal of
this experiment was to ascertain that each model was
capable of predicting ICP waveforms from the extracra-
nial waveforms in the simplest context: within a single-
patient. This removes any notion of generalizability and
enables the comparison of each model in a simpler con-
text before considering inter-patient generalization. Data
were split into 70% train/validation set and 30% test set.
The mean and median logcosh for training and testing
datasets were reported for each model along with the
standard deviation. Using this model information, we
selected the top model(s) to run a multi-patient analysis.
Additional follow-up analysis was performed to under-
stand the strengths and weaknesses of each model and
trends in error and prediction.

F. Multi-Patient Analysis on Top Models

To ensure that the top models are generalizable to new
patients, a multi-patient analysis was conducted using 6

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 2, 2023. ; https://doi.org/10.1101/2023.05.16.23289747doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.16.23289747
http://creativecommons.org/licenses/by-nc/4.0/


5

FIG. 2: Overview of Methodology and Analysis Performed in Study

patients for training, 2 for validation, and 2 for the test
set. This approach ascertains that the models are eval-
uated on data from patients that are distinct from those
used in the training set, thus providing a robust assess-
ment of model performance. The mean and median log-
cosh values for the training and testing datasets were
reported for each model, to provide a measure of model
performance accuracy and consistency. Furthermore, ad-
ditional follow-up analyses were performed to understand
trends across the top models and across different patients
in the validation and testing sets. This analysis is crucial
for ensuring that the models are generalizable and can
be applied to new patients in clinical practice, where the
algorithm will be trained on different patients than the
patients it will be used on in the ICU.

G. Ablation Analysis on Multi-Patient Top Model

To assess extracranial waveform importance, an abla-
tion study was conducted in the top model for multi-
patient analysis. All subsets of input extracranial wave-
forms were tested: ABP only, PPG only, ECG only, ABP
+ PPG, PPG + ECG, and ABP + ECG. The goal of
this study was to understand the effect that dropping
extracranial waveforms had on model performance.

H. Clinical Error Analysis Procedure

To improve the accuracy of predictions for individual
patients, an error analysis was conducted to identify the
factors contributing to the varying degrees of loss across
the testing dataset. The analysis investigated potential
correlations between loss and various factors, including
autoregulation index, mean ICP values, ICP signal vari-
ance, and clustering of features in a reduced dimensional-
ity space. This investigation aimed to identify any under-
lying reasons for the variation in loss across the testing
dataset and to inform the development of improved mod-
els for predicting ICP in individual patients and across
patients.

To investigate the relationship between the autoregula-
tion index and loss, we computed the Pearson correlation
coefficient between the ABP and ICP to obtain an au-
toregulation index for each prediction in the testing set
for every 10 second window instance. The autoregula-
tion index represents the degree of correspondence be-
tween ABP and ICP waveforms. We hypothesized that
a higher autoregulation index would be associated with
lower loss.

Next, data imbalance was assessed to examine whether
poorly represented data resulted in worse predictions.
This was particularly important in cases of high mean
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ICP, which was a small fraction of all data yet the most
clinically relevant. To assess whether a high ICP was as-
sociated with poor prediction, the mean ICP value was
calculated for each window of the testing dataset, and the
Pearson correlation coefficient was computed between the
ICP value and loss.

Additionally, to investigate the correlation between
ICP signal variance and loss, the variance of the ICP
signal was calculated for each instance, and the Pearson
correlation coefficient was computed between the loss and
the ICP signal variance.

Lastly, to examine if the quality or similarity of in-
put features influenced loss, all three input waveforms
were reduced into a two-dimensional space using the Uni-
form Manifold Approximation and Projection (UMAP)
Python library. loss was overlaid onto these points to
assess cluster-specific trends.

V. Results

In the single-patient analysis for predicting ICP using
ABP, PPG, and ECG in 10-second windows across 10 pa-
tients, the average MAE testing loss for Simple RNN was
3.17±0.68 mmHg, GRU was 1.31±0.59 mmHg, LSTM
was 1.63±0.60 mmHg, TCN was 1.18±0.57 mmHg, V-
NET 1.22±0.57 mmHg, and Transformer was 2.65±0.82
mmHg (Table III). Model performance on for each pa-
tient can be found in Supplementary Tables 1A-1F.
Based on these results, there were two tiers of model
performance. GRU, LSTM, TCN, and V-NET all per-
formed significantly better than the Simple RNN and
Transformer models (refer to Supplemental Table 2A and
2B for significance testing). While there is some varia-
tion in results for GRU, LSTM, TCN, and V-NET, there
is no conclusive ’top’ model.

The multi-patient analysis results show that all mod-
els perform to a similar degree with an MAE of approxi-
mately 5 mmHg (Table IV). Figure 3 shows a sample ICP
waveform prediction by the TCN model. Figure 4 shows
the Bland-Altman graphs for each model in the multi-
patient analysis with a testing set mean difference of
0.56 mmHg for Simple RNN, -0.26 mmHg for GRU, 0.09
mmHg for LSTM, 0.84 mmHg for TCN, 0.81 mmHg for
V-NET, and 1.53 mmHg for Transformer. Upon further
inspection of the Bland-Altman graphs for each model,
it becomes clear that there is variation in model predic-
tions. Both the Simple RNN and Transformer models
have a semi-linear trend in the Bland-Altman graphs, in-
dicating the presence of a systematic bias. In contrast,
GRU, LSTM, TCN, and V-NET have no decisive corre-
lation across the mean difference line. This trend is also
observed in testing set predictions versus ground truth
labels for each model (Supplementary Figure 1). There
are a few lines of reasoning that may help to explain the
discrepancies in model performance for the superiority of
LSTM, GRU, TCN, and V-NET over the Simple RNN
and Transformer. The first is the data representation it-

self. Transformers are particularly effective when there
is a clear spatial structure in the data, such as in image
or language processing tasks. They excel at capturing
global dependencies but may struggle with capturing lo-
cal and temporal dependencies, which are prevalent in
waveform data. Similarly, Simple RNNs might have dif-
ficulty capturing long-term dependencies due to the van-
ishing gradient problem. On the other hand, TCN, GRU,
LSTM, and V-NET architectures are designed to address
these issues, making them more suitable for the task at
hand with the given structure of the data. In terms of
model capacity, TCN, GRU, LSTM, and V-NET archi-
tectures generally have larger model capacities compared
to Simple RNN and Transformer architectures in this
case. The larger capacity allows them to learn more in-
tricate patterns and relationships in the data, which may
be necessary for accurately inferring the ICP waveform.
Therefore, having such discrepancies across models may
elucidate insights into the nature of the computations
necessary for accurate inferences.

The ablation study for multi-patient analysis demon-
strated that all three waveforms are necessary for produc-
ing the most optimal ICP prediction (Table V). When
only inputting one waveform, using ECG yielded the
best results across almost all models followed by PPG
and ABP. When using a pair of extracranial waveforms,
there was no clear trend in an optimal combination. The
outlier model in the ablation study was V-NET, which
showed only a small improvement in predictions with the
addition of multiple extracranial waveforms. This ex-
ception to our expectations may again offer valuable in-
sight into model architectures that are most conducive
to performing accurate inferences. The V-NET archi-
tecture incorporates mechanisms and layers that enable
dimensionality reduction, allowing it to capture essen-
tial information effectively. Utilizing pooling layers, the
V-NET reduces spatial dimensions by downsampling fea-
ture maps. Additionally, the Conv1D layers perform 1D
convolutions, capturing local patterns and dependencies,
effectively reducing dimensionality and extracting rele-
vant features, including important temporal dependen-
cies.

Finally, in conducting our clinical error analysis, we
found that model performance was not significantly cor-
related with autoregulation index, mean ICP values, ICP
signal variance, or clustering of features in a reduced di-
mensionality space. Ultimately, further investigation is
required to determine the causal factor for poor loss in
our algorithms.
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Table III. Summary of Single Patient Analysis Results

Simple
RNN

GRU LSTM TCN V-NET Transformer

Logcosh Test Loss
(Train Loss) in

mmHg

2.57 ±0.66
(2.69± 0.73)

0.86 ±0.52
(0.73± 0.45)

1.08 ±0.54
(0.91± 0.51)

0.75 ±0.50
(0.41± 0.26)

0.80 ±0.50
(0.39± 0.32)

2.08 ±0.79
(2.15± 0.79)

MAE Test Loss
(Train Loss) in

mmHg

3.17 ±0.68
(3.36± 0.78)

1.31 ±0.59
(1.13± 0.52)

1.63 ±0.60
(1.38± 0.62)

1.18 ±0.57
(0.64± 0.30)

1.22 ±0.57
(0.58± 0.39)

2.65 ±0.82
(2.74± 0.84)

RMSE Test Loss
(Train Loss) in

mmHg

4.26 ±0.81
(4.52± 0.94)

1.95 ±0.77
(1.69± 0.70)

2.26 ±0.89
(1.87± 0.84)

1.83 ±0.78
(1.02± 0.41)

1.86 ±0.77
(0.89± 0.52)

3.61 ±1.07
(3.73± 1.12)

Table IV. Multi-Patient Analysis Results

Simple
RNN

GRU LSTM TCN V-NET Transformer

Logcosh Test Loss
(Train Loss) in

mmHg

4.38
(1.94)

4.55
(2.03)

4.56
(2.01)

4.33
(1.89)

4.41
(1.95)

5.10
(2.43)

MAE Test Loss
(Train Loss) in

mmHg

5.02
(2.41)

5.19
(2.70)

5.20
(2.47)

4.98
(2.45)

5.05
(2.50)

5.75
(2.94)

RMSE Test Loss
(Train Loss) in

mmHg

6.25
(3.65)

6.47
(3.89)

6.48
(3.74)

6.11
(3.63)

6.23
(3.68)

7.00
(4.21)

FIG. 3: TCN Multi-Patient Waveform Prediction Visualizations

VI. Discussion

A. Key Results

Using extracranial continuous physiological waveform
data, we present a non-invasive modeling approach for
computing a surrogate ICP from extracranial waveforms
across six different deep learning models. Our results sug-
gest that deep learning algorithms can model ICP from
extracranial waveforms as demonstrated by our single-
patient analysis where top models (GRU, LSTM, TCN,
V-NET) predicted ICP with a MAE of approximately
1.50 mmHg. Furthermore our results show our algo-
rithms are proficient in generalizing across patients in

a small training set with our top models predicting ICP
with a MAE of approximately 5 mmHg with limited sys-
tematic bias. Beyond this, we demonstrate that PPG
is an important waveform in predicting ICP, a novel in-
sight. The strength of these results can be partly ex-
plained by the relationship between these extracranial
waveforms and intracranial hemodynamics. In addition,
these results show there exists valuable information en-
coded in the waveform morphologies of ECG, PPG, and
ABP that relate to ICP.

There is only one study to our knowledge that aims
at deriving ICP non-invasively from waveform data us-
ing transcranial doppler (TCD) [45]. This study used
ABP, ECG, and cerebral blood flow velocity (derived
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FIG. 4: Bland-Altman Graphs for Multi-Patient Analysis for All Six Models

Table V. Ablation Results for TCN Multi-Patient Analysis

Ablation Test RNN Test Set
MAE Loss
(mmHg)

GRU Test Set
MAE Loss
(mmHg)

LSTM Test
Set MAE Loss

(mmHg)

TCN Test Set
MAE Loss
(mmHg)

VNET Test
Set MAE Loss

(mmHg)

Transformer
Test Set MAE
Loss (mmHg)

ABP 8.23 7.51 8.14 8.11 5.42 8.46
PPG 6.83 7.04 7.20 7.13 5.21 8.34
ECG 6.57 6.79 6.72 6.54 5.24 8.31

ABP + PPG 5.23 6.32 5.78 5.45 5.17 7.44
ABP + ECG 5.91 5.78 5.66 5.36 5.32 6.33
PPG + ECG 5.12 5.24 6.18 6.03 5.06 6.95
ABP + PPG

+ ECG
5.02 5.19 5.20 4.98 5.05 5.75

from TCD) as input waveforms for domain adversarial
neural networks and transformers to infer ICP across 11
patients with a median MAE of 3.88+/-3.26 mmHg and
3.94+/-1.71 mmHg, respectively. A limitation with this
study is that it uses cerebral blood flow velocity, which is
not a routinely measured waveform in the ICU given that
its computation requires a TCD ultrasonography scan.
As such, this data study only uses around 500,000 data
points in comparison to our study which uses more than
270,000,000 data points.

We can also compare our algorithms’ performances to
other on-the-market technologies that aim to measure
ICP both less-invasively and invasively. TCD ultrasonog-
raphy has an error range of ± 12 mmHg [46] and can-
not monitor ICP continuously. Tympanic membrane dis-
placement has an error range of ± 15 mmHg and requires
a probe to be inserted into the canal of the ear [8]. Op-
tic sheath diameter, a retinal imaging-based technique,
reports a margin of error from 5-10 mmHg and also can-

not monitor ICP continuously [8]. Furthermore, our top
algorithms performed similarly to other state-of-the-art
alternatives to the EVD such as intracranial transducers
and intraparenchymal monitoring which both report a
mean error of ± 7 mmHg [8,46]. While both techniques
offer real-time and continuous monitoring, they are on
the same level of invasiveness as an EVD, requiring sur-
gical implantation.

B. Novelty

This research provides compelling evidence that it is
possible to accurately and in real-time compute a sur-
rogate ICP from extracranial waveforms. With further
validation, the real-time and non-invasive nature of our
algorithms suggest they could be integrated into the cur-
rent clinical workflow of ICP monitoring, a profound ad-
vancement towards eliminating the need for an EVD. In
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addition, by assessing multiple deep learning algorithms
for accomplishing this task, we have also conducted a ro-
bust methodological study on the performance of deep
learning algorithms on time-series data. Understanding
the differences in predictions from these six deep learn-
ing algorithms could provide insights into understanding
both the clinical and technical components of this mul-
tifaceted problem. Ultimately, the results of this study
demonstrate that algorithmic prediction of ICP performs
better than current, less invasive alternatives and on par
with alternative invasive options to the EVD.

C. Limitations

We acknowledge several limitations of this research.
First, the sample size of this study was small, consisting
of only 10 patients, which may impede our ability to gen-
eralize model predictions to a broader population. Sec-
ond, our application of a selective pre-processing scheme
to discern high-quality waveform data could introduce
subjectivity and bias into the training data, potentially
compromising model performance and robustness. Fi-
nally, our study lacked external validation through the
use of an independent dataset, thereby restricting our
ability to evaluate the generalizability and reliability of
the findings beyond the data sourced from the MIMIC
III Waveform Database.

D. Future Direction

Forthcoming endeavors will concentrate on augment-
ing both the sample size of evaluated patients, and fur-
ther examining differences in model performances. Al-
though 10 patients were used in this study, their data
quality proved invaluable in drawing clinically significant
conclusions and correlations. Nevertheless, we plan to
expand our inclusion criteria by accommodating missing
values (presently, five-minute intervals that comprise any
missing values) and adding additional patients, thereby
enhancing patient representation and improving model
generalizability. We will also test the models on an
external dataset outside of the MIMIC III Waveform
Database to assess the generalizability of model perfor-
mance. In particular, we intend to externally validate
our data on a more homogenous group of TBI patients
using the CENTER-TBI database. Finally, we are con-
tinuing to fine tune our individual deep learning models
and are examining methods for combining the strengths
of each model into a ‘super-ensemble’ learner to produce
more optimal results. In doing so, we seek to utilize the
strengths of each model to improve patient generalizabil-
ity.

E. Supplementary Section

Supplementary Tables 1A-1F display the performance
of each of the six deep learning models in all ten indi-
vidual patients within the single-patient analysis. Sup-
plementary Table 2A and 2B contains complete signifi-
cance testing information when comparing these models
against. Finally, Supplementary Figure 1 displays pre-
dicted versus ground truth predictions for each model in
the multi-patient analysis. All tables and figures can be
found after the references.
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Supplemental Table 1A. Single Patient Analysis Results for Simple RNN

Pat 1 Pat 2 Pat 3 Pat 4 Pat 5 Pat 6 Pat 7 Pat 8 Pat 9 Pat 10 Mean ± Std Median
Logcosh
Test Loss

(Train Loss)
in mmHg

3.47
(3.58)

2.49
(2.47)

1.87
(1.85)

2.28
(2.37)

2.52
(2.56)

2.36
(2.61)

3.24
(3.29)

3.05
(3.09)

1.35
(1.40)

3.11
(3.63)

2.57 ±0.66
(2.69± 0.73)

2.51
(2.59)

MAE Test
Loss (Train

Loss) in
mmHg

4.10
(4.25)

3.09
(3.18)

2.46
(2.53)

2.87
(2.94)

3.11
(3.16)

2.94
(3.25)

3.86
(4.04)

3.67
(3.83)

1.89
(1.96)

3.74
(4.41)

3.17 ±0.68
(3.36± 0.78)

3.10
(3.22)

RMSE Test
Loss (Train

Loss) in
mmHg

5.17
(5.28)

4.08
(4.29)

3.07
(3.16)

4.38
(4.64)

4.27
(4.35)

4.16
(4.60)

4.92
(5.16)

4.74
(4.96)

2.74
(2.85)

5.04
(5.94)

4.26 ±0.81
(4.52± 0.94)

4.33
(4.62)

Supplemental Table 1B. Single Patient Analysis Results for GRU

Pat 1 Pat 2 Pat 3 Pat 4 Pat 5 Pat 6 Pat 7 Pat 8 Pat 9 Pat 10 Mean ± Std Median
Logcosh
Test Loss

(Train Loss)
in mmHg

2.05
(1.81)

0.92
(0.83)

0.32
(0.24)

1.06
(0.87)

0.83
(0.53)

0.86
(0.89)

0.53
(0.57)

0.40
(0.34)

0.40
(0.38)

1.24
(0.84)

0.86 ±0.52
(0.73± 0.45)

0.85
(0.70)

MAE Test
Loss (Train

Loss) in
mmHg

2.63
(2.32)

1.42
(1.28)

0.67
(0.47)

1.54
(1.40)

1.32
(0.83)

1.30
(1.39)

0.94
(0.96)

0.78
(0.73)

0.79
(0.72)

1.75
(1.17)

1.31 ±0.59
(1.13± 0.52)

1.31
(1.07)

RMSE Test
Loss (Train

Loss) in
mmHg

3.48
(3.10)

2.03
(1.84)

1.07
(0.80)

2.59
(2.37)

1.89
(1.19)

2.03
(2.16)

1.32
(1.44)

1.26
(1.13)

1.23
(1.11)

2.59
(1.74)

1.95 ±0.77
(1.69± 0.70)

1.96
(1.59)

Supplemental Table 1C. Single Patient Analysis Results for LSTM

Pat 1 Pat 2 Pat 3 Pat 4 Pat 5 Pat 6 Pat 7 Pat 8 Pat 9 Pat 10 Mean ± Std Median
Logcosh
Test Loss

(Train Loss)
in mmHg

2.02
(1.74)

0.90
(0.54)

0.48
(0.43)

1.00
(0.91)

0.83
(0.52)

0.89
(0.75)

0.47
(0.39)

0.83
(0.78)

1.62
(1.33)

1.80
(1.73)

1.08 ±0.54
(0.91± 0.51)

0.90
(0.77)

MAE Test
Loss (Train

Loss) in
mmHg

2.61
(2.27)

1.38
(0.82)

0.88
(0.81)

1.47
(1.41)

1.32
(0.81)

1.34
(1.17)

0.88
(0.67)

1.91
(1.71)

2.15
(1.79)

2.36
(2.29)

1.63 ±0.60
(1.38± 0.62)

2.04
(1.50)

RMSE Test
Loss (Train

Loss) in
mmHg

3.45
(2.98)

2.02
(1.21)

1.29
(1.27)

2.57
(2.47)

1.90
(1.16)

2.05
(1.73)

1.24
(0.97)

1.31
(1.21)

3.34
(2.43)

3.39
(3.23)

2.26 ±0.89
(1.87± 0.84)

2.04
(1.50)
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Supplemental Table 1D. Single Patient Analysis Results for TCN

Pat 1 Pat 2 Pat 3 Pat 4 Pat 5 Pat 6 Pat 7 Pat 8 Pat 9 Pat 10 Mean ± Std Median
Logcosh
Test Loss

(Train Loss)
in mmHg

1.92
(0.96)

0.87
(0.48)

0.24
(0.08)

0.80
(0.34)

0.70
(0.44)

0.76
(0.47)

0.39
(0.29)

0.35
(0.16)

0.36
(0.23)

1.12
(0.65)

0.75 ±0.50
(0.41± 0.26)

0.73
(0.39)

MAE Test
Loss (Train

Loss) in
mmHg

2.49
(1.21)

1.36
(0.71)

0.54
(0.19)

1.20
(0.51)

1.16
(0.73)

1.20
(0.76)

0.77
(0.55)

0.72
(0.34)

0.74
(0.47)

1.63
(0.95)

1.18 ±0.57
(0.64± 0.30)

1.18
(0.63)

RMSE Test
Loss (Train

Loss) in
mmHg

3.41
(1.75)

2.01
(1.08)

0.94
(0.38)

2.34
(1.08)

1.71
(1.13)

1.92
(1.26)

1.14
(0.84)

1.16
(0.54)

1.14
(0.74)

2.49
(1.44)

1.83 ±0.78
(1.02± 0.41)

1.82
(1.08)

Supplemental Table 1E. Single Patient Analysis Results for V-NET

Pat 1 Pat 2 Pat 3 Pat 4 Pat 5 Pat 6 Pat 7 Pat 8 Pat 9 Pat 10 Mean ± Std Median
Logcosh
Test Loss

(Train Loss)
in mmHg

1.94
(1.16)

0.88
(0.48)

0.25
(0.05)

0.90
(0.47)

0.75
(0.43)

0.75
(0.34)

0.41
(0.17)

0.37
(0.13)

0.37
(0.16)

1.17
(0.48)

0.80 ±0.50
(0.39± 0.32)

0.75
(0.39)

MAE Test
Loss (Train

Loss) in
mmHg

2.52
(1.49)

1.36
(0.69)

0.57
(0.11)

1.34
(0.75)

1.23
(0.68)

1.18
(0.53)

0.80
(0.28)

0.75
(0.26)

0.76
(0.37)

1.68
(0.67)

1.22 ±0.57
(0.58± 0.39)

1.21
(0.61)

RMSE Test
Loss (Train

Loss) in
mmHg

3.38
(1.94)

2.00
(1.05)

0.98
(0.19)

2.45
(1.37)

1.78
(0.95)

1.90
(0.86)

1.19
(0.42)

1.21
(0.44)

1.15
(0.58)

2.54
(1.07)

1.86 ±0.77
(0.89± 0.52)

1.84
(0.91)

Supplemental Table 1F. Single Patient Analysis Results for Transformer

Pat 1 Pat 2 Pat 3 Pat 4 Pat 5 Pat 6 Pat 7 Pat 8 Pat 9 Pat 10 Mean ± Std Median
Logcosh
Test Loss

(Train Loss)
in mmHg

3.21
(3.30)

1.91
(2.03)

0.92
(0.94)

2.41
(2.56)

1.57
(1.66)

3.21
(3.25)

2.07
(2.11)

1.65
(1.83)

1.19
(1.19)

2.63
(2.62)

2.08 ±0.79
(2.15± 0.79)

1.99
(2.07)

MAE Test
Loss (Train

Loss) in
mmHg

3.84
(3.95)

2.50
(2.66)

1.43
(1.45)

2.99
(3.23)

2.13
(2.24)

3.82
(3.87)

2.65
(2.71)

2.21
(2.41)

1.71
(1.71)

3.22
(3.21)

2.65 ±0.82
(2.74± 0.84)

2.58
(2.69)

RMSE Test
Loss (Train

Loss) in
mmHg

4.87
(5.01)

3.34
(3.56)

1.90
(1.83)

4.53
(4.89)

2.91
(3.08)

5.00
(5.07)

3.58
(3.66)

3.00
(3.27)

2.46
(2.46)

4.51
(4.50)

3.61 ±1.07
(3.73± 1.12)

3.46
(3.61)
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Supplemental Table 2A. Single Patient Paired One-Tailed T-Test Between Models (Model 1 MAE > Model 2 MAE)

y Model 1 Model 2 n1 n2 statistic df p p.adj p.adj.signif
mae GRU LSTM 10 10 -1.88 9 9.53e-01 1.00e+00 ns
mae GRU RNN 10 10 -9.70 9 1.00e+00 1.00e+00 ns
mae GRU TCN 10 10 4.99 9 3.72e-04 6.00e-03 **
mae GRU Transformer 10 10 -8.11 9 1.00e+00 1.00e+00 ns
mae GRU VNET 10 10 5.79 9 1.00e+00 1.00e+00 **
mae LSTM RNN 10 10 -6.24 9 1.00e+00 1.00e+00 ns
mae LSTM TCN 10 10 2.88 9 9.00e-03 1.35e-01 ns
mae LSTM Transformer 10 10 -3.97 9 9.98e-01 1.00e+00 ns
mae LSTM VNET 10 10 2.62 9 1.40e-02 2.08e-01 ns
mae RNN TCN 10 10 10.51 9 1.18e-06 1.77e-05 ****
mae RNN Transformer 10 10 2.37 9 2.10e-02 3.15e-01 ns
mae RNN VNET 10 10 10.26 9 1.44e-06 2.16e-05 ****
mae TCN Transformer 10 10 -8.70 9 1.00e+00 1.00e+00 ns
mae TCN VNET 10 10 -2.77 9 9.89e-01 1.00e+00 ns
mae Transformer VNET 10 10 8.36 9 7.74e-06 1.16e-04 ***

Supplemental Table 2B. Single Patient Paired One-Tailed T-Test Between Models (Model 1 MAE < Model 2 MAE)

y Model 1 Model 2 n1 n2 statistic df p p.adj p.adj.signif
mae GRU LSTM 10 10 -1.88 9 4.70e-02 7.02e-01 ns
mae GRU RNN 10 10 -9.70 9 2.31e-06 3.46e-05 ****
mae GRU TCN 10 10 4.99 9 1.00e+00 1.00e+00 ns
mae GRU Transformer 10 10 -8.11 9 9.96e-06 1.49e-04 ***
mae GRU VNET 10 10 5.79 9 1.00e+00 1.00e+00 ns
mae LSTM RNN 10 10 -6.24 9 7.59e-05 1.00e-03 **
mae LSTM TCN 10 10 2.88 9 9.91e-01 1.00e+00 ns
mae LSTM Transformer 10 10 -3.97 9 2.00e-03 2.40e-02 *
mae LSTM VNET 10 10 2.62 9 9.86e-01 1.00e+00 ns
mae RNN TCN 10 10 10.51 9 1.00e+00 1.00e+00 ns
mae RNN Transformer 10 10 2.37 9 9.79e-01 1.00e+00 ns
mae RNN VNET 10 10 10.26 9 1.00e+00 1.00e+00 ns
mae TCN Transformer 10 10 -8.70 9 5.64e-06 8.46e-05 ****
mae TCN VNET 10 10 -2.77 9 1.10e-02 1.64e-01 ns
mae Transformer VNET 10 10 8.36 9 1.00e+00 1.00e+00 ns
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Supplemental Figure 1. Multi-Train Analysis Prediction vs Ground Truth for Each Model
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