1	Impact of sarcopenic obesity on post-hepatectomy bile leakage for
2	hepatocellular carcinoma
3	
4	Short title: Sarcopenic obesity on post-hepatectomy bile leakage
5	
6	Hikaru Hayashi [†] , Akira Shimizu [‡] *, Koji Kubota [§] , Tsuyoshi Notake [§] , Hitoshi Masuo [§] ,
7	Takahiro Yoshizawa [§] , Kiyotaka Hosoda [§] , Hiroki Sakai [§] , Koya Yasukawa [§] , and Yuji
8	Soejima¶
9	
10	Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and
11	Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine,
12	Nagano, Japan.
13	
14	*Corresponding author
15	E-mail: <u>ashimizu@shinshu-u.ac.jp (AS)</u>
16	
17	[†] Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation,
18	Methodology, Project administration, Resources, Software, Supervision, Validation,
	NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

19	Visualization, Writing – original draft, Writing – review & editing
20	
21	[‡] Conceptualization, Data curation, Investigation, Writing – original draft
22	
23	§ Data curation, Formal analysis
24	
25	[¶] Conceptualization, Data curation, Project administration, Supervision, Writing –
26	original draft, Writing – review & editing
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	

37 Abstract

Background: Post-hepatectomy bile leakage (PHBL) is a potentially fatal complication 38 that can arise after hepatectomy. Previous studies have identified obesity as a risk factor 39 40 for PHBL. Therefore, we investigated the impact of sarcopenic obesity on PHBL in hepatocellular carcinoma (HCC) patients. 41 42 Methods: In total, we enrolled 409 patients who underwent hepatectomy without bilioenteric anastomosis for HCC between January 2010 and August 2021. Patients were 43 grouped according to the presence or absence of PHBL. Patient characteristics including 44 45 body mass index and sarcopenic obesity were then analyzed for predictive factors for 46 PHBL. **Results:** Among the 409 HCC patients included in this study, 39 developed PHBL. Male 47 48 gender, hypertension and cardiac disease, white blood cell counts, the psoas muscle area and visceral fat area, and intraoperative blood loss were significantly increased in the 49 50 PHBL (+) group compared with the PHBL (-) group. Multivariate analysis showed that independent risk factors for the occurrence of PHBL were intraoperative blood loss \geq 370 51 52 mL and sarcopenic obesity.

53 **Conclusion:** Our results show that it is important to understand whether a patient is at 54 high risk for PHBL prior to surgery and especially to reduce intraoperative blood loss

55 during surgery for patients with risk factors for PHBL.

56

57 Introduction

58 Post-hepatectomy bile leakage (PHBL) is one of the most common and notable complications after hepatectomy, occurring in approximately 5% of patients after 59 hepatectomy, [1, 2] and can lead to surgical site infection (SSI) or post-hepatectomy liver 60 failure (PHLF).[3] According to previous reports, factors such as liver cirrhosis, non-61 anatomical hepatectomy, and obesity have been reported to be risk factors for PHBL.[4] 62 63 Recently, sarcopenic obesity has been reported to be associated with postoperative outcomes for various carcinomas. Kim et al.[5] showed that sarcopenic 64 obesity was an independent risk factor for increased mortality in patients with gastric 65 cancer. Furthermore, Kobayashi et al.[6] reported that sarcopenic obesity was a 66 significant prognostic factor for poor overall survival and relapse-free survival after 67 68 hepatectomy for hepatocellular carcinoma (HCC). However, few studies have reported the relationship between short-term outcomes, especially PHBL, and sarcopenic obesity 69 after hepatectomy for HCC. 70

The purpose of this study was to evaluate the impact of sarcopenic obesity on
the occurrence of PHBL after hepatectomy for HCC.

4

73

74 Material and methods

In total, 409 patients who underwent hepatectomy without bilioenteric 75 anastomosis for HCC between January 2010 and August 2021 were enrolled in this study. 76 77 Patients were categorized into the following two groups on the basis of the presence or 78 absence of PHBL: PHBL (+) and PHBL (-). Patient characteristics and relevant 79 clinicopathological variables, surgical details, and short-term outcomes were recorded. This study was approved by the Biological and Medical Research Ethics Committee of 80 81 Shinshu University School of Medicine (approval no. 5701) and was conducted in 82 accordance with the principles of the Declaration of Helsinki. Due to the retrospective property of this study and absence of invasive interventions, the requirement for written 83 consent was waived by the review board, and consent was obtained through an opt-out 84 85 method. The data was analyzed anonymously on the basis of medical records.

86

87 **Perioperative management**

In this study, hepatectomies were performed by several surgeons. Parenchymal transection was performed using an ultrasonic dissector and/or the clamp-crushing technique. The intermittent Pringle maneuver (PM) was routinely used to control

91	intraoperative blood loss for 15 min, followed by 5 min of reperfusion; this process was
92	repeated as needed. Abdominal drains were routinely placed along the cut surface of the
93	liver. Postoperatively, bilirubin concentrations in the drainage fluid were routinely
94	measured twice per week for surveillance of bile leakage. Furthermore, for several days
95	after surgery, the presence or absence of fluid collection around the site of hepatectomy
96	was checked every day by ultrasonography. For PHBL, additional percutaneous drainage
97	or exchanging drain tubes were performed as needed. The end of follow-up was
98	December 2021 or the time of discharge.

99

100 **Definitions**

101 Pathological findings were evaluated in accordance with the American Joint 102 Committee on Cancer Staging Manual, 7th edition[7] (AJCC), and liver cirrhosis was 103 defined as a fibrosis score of 4 using the new Inuyama classification[8]. Postoperative 104 complications were graded using the Clavien–Dindo classification.[9] PHLF and PHBL 105 were diagnosed and graded according to the criteria of the International Study Group of Liver Surgery.[10, 11] Major hepatectomy was defined as resection of three or more 106 107 Couinaud's segments of the liver. Anatomical resection included Couinaud's 108 segmentectomy, sectionectomy, hemihepatectomy, and trisectionectomy.

109	Multidetector-row computed tomography (CT) was performed within 4 weeks
110	before surgery for diagnostic and staging purposes and was used to evaluate sarcopenia,
111	which was defined in accordance with the international consensus[12] as a skeletal
112	muscle index (SMI) of $<52.4 \text{ cm}^2/\text{m}^2$ for men and $<38.9 \text{ cm}^2/\text{m}^2$ for women. SMI was
113	defined as the total muscle area measured on an axial section through the third lumbar
114	vertebra (L3) when both pedicles were visible with a preestablished density threshold of
115	-29 to +150 Hounsfield units normalized for stature (Fig 1). Similarly, visceral fat area
116	(VFA) and subcutaneous fat area were also measured, and sarcopenic obesity was defined
117	by the VFA/SMI ratio.[13, 14] The cut-off value for sarcopenic obesity was defined in
118	accordance with the maximum sensitivities and specificities for predicting PHBL in
119	receiver operating characteristic (ROC) curve analysis; the cut-off value was 1.65. CT
120	scans were checked by two qualified physicians using a Synapse Vincent FN-7941
121	(Fujifilm, Tokyo, Japan).

122

123 Statistical analysis

All data were collected by a research assistant and stored in a computer database.
Statistical analysis was performed by the Chi-square test or Fisher's exact test to compare
categorical variables and by the Mann–Whitney U test to compare continuous variables.

127	ROC curve analyses for the predictive parameters were used to evaluate associations with
128	PHBL, with the Youden index used to determine cut-off values. Multivariate analysis
129	using a logistic regression model was conducted to identify independent significant
130	predictive factors for the occurrence of PHBL. All statistical analyses were performed
131	using JMP Pro 16.2 (SAS Institute Inc., Cary, NC, USA).

132

133 **Results**

134 **Patient characteristics**

135 During the study period, a total of 409 patients underwent hepatectomy. Among 136 all patients, 39 (9.5%) developed PHBL. A comparison of the patients' background characteristics and preoperative comorbidities according to the presence or absence of 137 138 PHBL is summarized in Table 1. The ratio of male gender and the prevalence of 139 hypertension and cardiac disease were higher in the PHBL (+) group than in the PHBL 140 (-) group (89.7% vs. 74.3%; 74.4% vs. 53.0%; 28.2% vs. 13.0%; P = 0.020, 0.009, and141 0.018, respectively). The indocyanine green retention rate at 15 min was lower in the 142 PHBL (+) group than in the PHBL (-) group (9.7% vs. 12.0%; P = 0.026). There were 143 no significant differences between the two groups regarding other variables, including age, etiology, or Child-Pugh classification. 144

145

Preoperative muscle and fat areas 146 A comparison between the two groups regarding muscle and fat areas is shown 147 148 in Table 1. At the L3 level, the psoas muscle area and VFA were significantly larger in 149 the PHBL (+) group than in the PHBL (-) group (16.6 vs. 14.0 cm²; 135.3 vs. 96.8 cm²; 150 P = 0.016 and 0.003, respectively). In contrast, SMI was comparable between the two 151 groups. Although the ratio of patients with sarcopenia was comparable, the ratio of patients with sarcopenic obesity was significantly higher in the PHBL (+) group than in 152 153 the PHBL (-) group (89.7 vs. 59.7%; P < 0.001).

154

155 Surgical outcomes

Among the entire cohort, the median surgical duration time was 340 min (range: 82–990 min), the median inflow occlusion time was 60 min (range: 0–247 min), and the median intraoperative blood loss was 300 mL (range: 0–5500 mL). The surgical outcomes of each group are detailed in Table 1. No significant differences were observed between the two groups with regards to the type of hepatectomy, the ratio of primary hepatectomy, or anatomical hepatectomy. Additionally, there was no significant difference in the ratio of medial sectionectomy or central bisectionectomy. Furthermore, surgical duration and

163 inflow occlusion times were comparable between the two groups. However, 164 intraoperative blood loss was greater in the PHBL (+) group than in the PHBL (-) group 165 (430 vs. 278 mL, P = 0.002). As a result, the percentage of intraoperative blood 166 transfusions tended to be higher in the PHBL (+) group (25.6 vs. 13.8%; P = 0.065).

167

168 Histopathological findings

Histopathological features are summarized in Table 2. The prevalence of liver cirrhosis was comparable between the two groups (P = 0.074). In contrast, the ratio of multiple tumors tended to be lower in the PHBL (+) group than in the PHBL (-) group (15.4 vs. 27.0, P = 0.097). Furthermore, the pathological AJCC staging tended to be lower in the PHBL (+) group (P = 0.071). There were no significant differences between the two groups in maximum tumor diameter, the ratio of microvascular invasion, or the R0 resection rate.

176

177 Short-term outcomes

Regarding short-term outcomes (Table 3), 225 patients (55.0%) developed postoperative complications, including 70 (17.1%) with complications of grade III or higher.[9] One patient (0.2%) among the entire cohort died due to grade C PHLF. In the

181	PHBL (+) group, 12 patients (30.8%) developed grade B PHBL and 27 (69.2%)
182	developed grade A PHBL, while no patients developed grade C PHBL. As for PHLF, all
183	cases of PHLF in the PHBL group were grade A, and there was no significant difference
184	between the two groups in the occurrence of PHLF. Moreover, incidences of intra-
185	abdominal infection or pleural effusion were comparable between the two groups.
186	However, postoperative hospital stays were longer in the PHBL (+) group (14 vs. 12 d; P
187	= 0.036).

188

189 **Risk factors for PHBL**

190	The cut-off value for intraoperative blood loss was defined using ROC curve
191	analysis, as well as sarcopenic obesity. The independent risk factors for the occurrence of
192	PHBL were intraoperative blood loss ≥370 mL (odds ratio [OR]: 2.25; 95% confidence
193	interval [CI]: 1.10–4.59; P = 0.026) and sarcopenic obesity (OR: 4.08; 95% CI: 1.37–
194	12.1; $P = 0.011$) (Table 4). Furthermore, if the analysis was limited to only patients with
195	primary hepatectomy, sarcopenic obesity (OR: 3.61; 95% CI: 1.21–10.8; $P = 0.022$) was
196	the only independent risk factor for the occurrence of PHBL (data not shown).
197	A scatter diagram of the correlation between intraoperative blood loss and
198	sarcopenic obesity (VFA/SMI level) was created (Fig 2). Spearman's rank correlation

199	analysis showed low correlation between the amount of intraoperative blood loss and the
200	VFA/SMI value ($\rho = 0.201$; $P < 0.001$). No patients with intraoperative blood loss <370
201	mL and without sarcopenic obesity developed PHBL (0 of 108 patients). In contrast,
202	patients with intraoperative blood loss \geq 370 mL and sarcopenic obesity had the highest
203	ratio of the occurrence of PHBL among all combinations of these two parameters (17.8%,
204	21 of 118 patients). Additionally, ROC curve analysis of combined intraoperative blood
205	loss and sarcopenic obesity had a higher area under the curve value (0.708; $P = 0.013$)
206	than either parameter alone (Fig 3).

207

208 **Discussion**

209 Recently, the target of hepatectomy has been expanding, for example, for liver 210 metastasis of various carcinomas; hepatectomy has become of increasing importance despite advances in drug therapy. PHBL is one of the most common postoperative 211 212 complications after hepatectomy. Although most PHBL can be cured by conservative 213 treatment, it can lead to PHLF or sepsis from an infection. Shehta et al.[15] reported that PHBL occurred in 5.8% of hepatectomy patients, and the PHBL (+) group had higher 214 215 grades of PHLF. Furthermore, Lo et al.[16] showed that biliary complications including PHBL developed in 8.1% of hepatectomy patients and that these complications carried 216

217	high risks for PHLF and mortality. In contrast, Okabayashi et al.[17] revealed that high
218	body mass index (BMI), high intraoperative blood loss, presence of PHBL, and poor
219	postoperative glucose control were risk factors for the occurrence of SSI from a
220	multivariate analysis. In the present study, no significant differences were observed in the
221	occurrence of PHLF and SSI between the PHBL (+) and PHBL (-) groups. This might
222	be attributed to close monitoring and early intervention and appropriate usage of
223	prophylactic antibiotics at our institute. The results of many previous studies indicate that
224	PHBL itself is associated with other postoperative complications after hepatectomy;
225	hence, it is desirable and reasonable to try to identify, before surgery, the population who
226	are at a high risk for PHBL, to improve postoperative outcomes.
226 227	are at a high risk for PHBL, to improve postoperative outcomes. Obesity is one of the main health concerns that needs to be solved, not only in
226 227 228	are at a high risk for PHBL, to improve postoperative outcomes. Obesity is one of the main health concerns that needs to be solved, not only in Japan, but also particularly in developed countries. Obesity is clearly related to lifestyle
226 227 228 229	are at a high risk for PHBL, to improve postoperative outcomes. Obesity is one of the main health concerns that needs to be solved, not only in Japan, but also particularly in developed countries. Obesity is clearly related to lifestyle diseases, such as hypertension and cardiovascular diseases, HCC from nonalcoholic
226 227 228 229 230	are at a high risk for PHBL, to improve postoperative outcomes. Obesity is one of the main health concerns that needs to be solved, not only in Japan, but also particularly in developed countries. Obesity is clearly related to lifestyle diseases, such as hypertension and cardiovascular diseases, HCC from nonalcoholic steatohepatitis and colorectal cancer.[18] For example, a large database retrospective
 226 227 228 229 230 231 	are at a high risk for PHBL, to improve postoperative outcomes. Obesity is one of the main health concerns that needs to be solved, not only in Japan, but also particularly in developed countries. Obesity is clearly related to lifestyle diseases, such as hypertension and cardiovascular diseases, HCC from nonalcoholic steatohepatitis and colorectal cancer.[18] For example, a large database retrospective study[19] showed that obesity was an independent risk factor for colorectal cancer across
 226 227 228 229 230 231 232 	are at a high risk for PHBL, to improve postoperative outcomes. Obesity is one of the main health concerns that needs to be solved, not only in Japan, but also particularly in developed countries. Obesity is clearly related to lifestyle diseases, such as hypertension and cardiovascular diseases, HCC from nonalcoholic steatohepatitis and colorectal cancer.[18] For example, a large database retrospective study[19] showed that obesity was an independent risk factor for colorectal cancer across all age groups compared with the general population. BMI is the most common and
 226 227 228 229 230 231 232 233 	are at a high risk for PHBL, to improve postoperative outcomes. Obesity is one of the main health concerns that needs to be solved, not only in Japan, but also particularly in developed countries. Obesity is clearly related to lifestyle diseases, such as hypertension and cardiovascular diseases, HCC from nonalcoholic steatohepatitis and colorectal cancer.[18] For example, a large database retrospective study[19] showed that obesity was an independent risk factor for colorectal cancer across all age groups compared with the general population. BMI is the most common and simple indicator of obesity. Almost all previous reports that have shown a relationship

237 Sarcopenic obesity was an independent risk factor for the occurrence of PHBL in this

study, whereas BMI was not.

239 Sarcopenic obesity is a condition in which lean body mass is lost while fat mass 240 is preserved or even increased and is one of the indicators for patient nutritional assessment.[20] Previous studies have suggested that sarcopenic obesity is a risk factor 241 for short- and long-term outcomes after surgery. For example, Runkel et al.[21] reported 242 243 that sarcopenic obesity was an independent risk factor for overall complications after 244hepatectomy for colorectal liver metastases. As for the association of fat and PHBL, our previous study[14] reported that sarcopenic obesity was an independent risk factor for the 245 246 occurrence of postoperative pancreatic fistula after pancreaticoduodenectomy. The underlying reason was considered to be that the adipose tissue around the pancreatic duct 247 248 might complicate anastomosis, decrease local blood flow for wound healing, and produce inflammatory cytokines that impede healing. Inflammatory cytokines produced by excess 249 250 adipose tissue can cause delayed biliary wound healing, leading to PHBL. Therefore, the 251 results of this study fit with existing data.

252

There are also several reports on the relationship between intraoperative bleeding

253	and PHBL. Wang et al.[22] reported that tumor size, type of tumor, surgical duration
254	time, blood loss, and blood transfusion were the independent risk factors for PHBL.
255	Intraoperative blood loss might cause liver damage and reduced blood flow around the
256	bile duct, resulting in bile leakage. Another possibility is that surgery with a wide surface
257	area for the incision exposes more bile ducts at the surface.[23] Hepatectomy with such
258	a wide surface area of the incision may increase intraoperative blood loss, and this study
259	might reflect this possibility. However, this study was a retrospective study, and the area
260	of the cut surface could not be measured accurately. Furthermore, as mentioned in the
261	results, no significant difference was observed in the type of hepatectomy, such as medial
262	sectionectomy or central bisectionectomy.
263	Occluding the hepatic inflow pedicle, also known as the Pringle maneuver (PM),
264	is a widely accepted method for reducing intraoperative blood loss. However, the PM
265	results in ischemia-reperfusion changes.[24] According to several animal studies,
266	ischemia-reperfusion injury owing to hilar vascular clamping can accelerate tumor
267	growth, stimulate tumor cell adhesion, and promote metastasis.[25] Furthermore,
268	previous reports have shown that PM duration for HCC was associated with postoperative
269	long-term outcomes.[26, 27] However, because of recent advances in surgical techniques,
270	PM is not needed in every operation. Maurer et al.[28] reported that major resection

271	without PM is feasible and safe and might reduce liver damage and failure. However,
272	deciding to perform PM during hepatectomy should be based on risk assessment and
273	operative difficulties. The appropriate intraoperative supportive techniques to complete
274	the scheduled operation with minimal intraoperative blood loss are important.
275	This study had several limitations. First, this was a single-center retrospective
276	study, and selection bias is possible. Second, the cut-off values for sarcopenic obesity and
277	intraoperative blood loss were defined in accordance with the maximum sensitivities and
278	specificities for predicting PHBL from ROC curve analysis. Therefore, this cut-off value
279	might not be applicable to other institutions. Despite these drawbacks, we believe that our
280	findings are of interest to surgeons because, to the best of our knowledge, this is the first
281	study to investigate the association between sarcopenic obesity and PHBL in HCC
282	patients.

283

284 Conclusion

285 Sarcopenic obesity and intraoperative blood loss were significant risk factors for 286 the occurrence of PHBL. It is important to preoperatively understand whether a patient is 287 at high or low risk for PHBL for early therapeutic intervention.

288

16

289 Acknowledgments

290 We thank James P. Mahaffey, PhD, from Edanz (https://jp.edanz.com/ac) for editing a

291 draft of this manuscript.

293 Funding Statement

294	The authors received no specific funding for this work.

306 **References**

307	1.	Kaibori M, Shimizu J, Hayashi M, Nakai T, Ishizaki M, Matsui K, et al. Late-
308	onset bi	le leakage after hepatic resection. Surgery. 2015;157:37-44.
309	2.	Sakamoto K, Tamesa T, Yukio T, Tokuhisa Y, Maeda Y, Oka M. Risk Factors
310	and Mar	nagements of Bile Leakage After Hepatectomy. World J Surg. 2016;40:182-9.
311	3.	Sadamori H, Yagi T, Shinoura S, Umeda Y, Yoshida R, Satoh D, et al. Risk
312	factors f	for major morbidity after liver resection for hepatocellular carcinoma. Br J Surg.
313	2013;10	0:122-9.
314	4.	Panaro F, Hacina L, Bouyabrine H, Al-Hashmi AW, Herrero A, Navarro F.
315	Risk fac	etors for postoperative bile leakage: a retrospective single-center analysis of 411
316	hepatect	tomies. Hepatobiliary Pancreat Dis Int. 2016;15:81-6.
317	5.	Kim J, Han SH, Kim HI. Detection of sarcopenic obesity and prediction of
318	long-ter	m survival in patients with gastric cancer using preoperative computed
319	tomogra	uphy and machine learning. J Surg Oncol. 2021;124:1347-55.
320	6.	Kobayashi A, Kaido T, Hamaguchi Y, Okumura S, Shirai H, Yao S, et al.
321	Impact	of Sarcopenic Obesity on Outcomes in Patients Undergoing Hepatectomy for
322	Hepatoc	cellular Carcinoma. Ann Surg. 2019;269:924-31.
323	7.	Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th

324	edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol.
325	2010;17:1471-4.

326	8.	Yamada G	. [Histopathological	characteristics and	clinical significance	of New
-----	----	----------	----------------------	---------------------	-----------------------	--------

- 327 Inuyama Classification in chronic hepatitis B]. Nihon Rinsho. 2004;62 Suppl 8:290-2.
- 328 9. Clavien PA, Barkun J, de Oliveira ML, Vauthey JN, Dindo D, Schulick RD, et
- al. The Clavien-Dindo classification of surgical complications: five-year experience.
- 330 Ann Surg. 2009;250:187-96.
- 10. Rahbari NN, Garden OJ, Padbury R, Brooke-Smith M, Crawford M, Adam R,
- et al. Posthepatectomy liver failure: a definition and grading by the International Study
- 333 Group of Liver Surgery (ISGLS). Surgery. 2011;149:713-24.
- 11. Koch M, Garden OJ, Padbury R, Rahbari NN, Adam R, Capussotti L, et al.
- Bile leakage after hepatobiliary and pancreatic surgery: a definition and grading of
- severity by the International Study Group of Liver Surgery. Surgery. 2011;149:680-8.

12. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al.

- 338 Definition and classification of cancer cachexia: an international consensus. Lancet
- 339 Oncol. 2011;12:489-95.
- 13. Tanaka K, Yamada S, Sonohara F, Takami H, Hayashi M, Kanda M, et al.
- 341 Pancreatic Fat and Body Composition Measurements by Computed Tomography are

342 Associated with Pancreatic Fistula After Pancreatectomy. Ann Surg Oncol.

343 2021;28:530-8.

- 14. Hayashi H, Shimizu A, Kubota K, Notake T, Masuo H, Yoshizawa T, et al. A
- new fistula risk score using sarcopenic obesity and subcutaneous fat area for predicting
- 346 postoperative pancreatic fistula after pancreaticoduodenectomy. J Hepatobiliary
- 347 Pancreat Sci. 2022. doi: 10.1002/jhbp.1283.
- 348 15. Shehta A, Farouk A, Said R, Nakeeb AE, Aboelenin A, Elshobary M, et al.
- 349 Bile Leakage After Hepatic Resection for Hepatocellular Carcinoma: Does It Impact the

350 Short- and Long-term Outcomes? J Gastrointest Surg. 2022;26:2070-81.

- 16. Lo CM, Fan ST, Liu CL, Lai EC, Wong J. Biliary complications after hepatic
- resection: risk factors, management, and outcome. Arch Surg. 1998;133:156-61.
- 353 17. Okabayashi T, Nishimori I, Yamashita K, Sugimoto T, Yatabe T, Maeda H, et
- al. Risk factors and predictors for surgical site infection after hepatic resection. J Hosp
- 355 Infect. 2009;73:47-53.
- 356 18. Kim DS, Scherer PE. Obesity, Diabetes, and Increased Cancer Progression.
- 357 Diabetes Metab J. 2021;45:799-812.
- 19. Elangovan A, Skeans J, Landsman M, Ali SMJ, Elangovan AG, Kaelber DC, et
- al. Colorectal Cancer, Age, and Obesity-Related Comorbidities: A Large Database

360 Study. Dig Dis Sci. 2021;66:3156-63.

361	20.	Trouwborst I, Verreijen A, Memelink R, Massanet P, Boirie Y, Weijs P, et al.
362	Exercise	e and Nutrition Strategies to Counteract Sarcopenic Obesity. Nutrients. 2018;10.
363	21.	Runkel M, Diallo TD, Lang SA, Bamberg F, Benndorf M, Fichtner-Feigl S.
364	The Rol	e of Visceral Obesity, Sarcopenia and Sarcopenic Obesity on Surgical
365	Outcom	es After Liver Resections for Colorectal Metastases. World J Surg.
366	2021;45	:2218-26.
367	22.	Wang J, Zhao JP, Wang JJ, Chai SS, Zhang YX, Zhang ZG, et al. The impact
368	of bile le	eakage on long-term prognosis in primary liver cancers after hepatectomy: A
369	propensi	ity-score-matched study. Asian J Surg. 2020;43:603-12.
370	23.	Nagano Y, Togo S, Tanaka K, Masui H, Endo I, Sekido H, et al. Risk factors
371	and man	agement of bile leakage after hepatic resection. World J Surg. 2003;27:695-8.
372	24.	Ezaki T, Seo Y, Tomoda H, Furusawa M, Kanematsu T, Sugimachi K. Partial
373	hepatic 1	resection under intermittent hepatic inflow occlusion in patients with chronic
374	liver dis	ease. Br J Surg. 1992;79:224-6.
375	25.	van der Bilt JD, Kranenburg O, Borren A, van Hillegersberg R, Borel Rinkes
376	IH. Age	ing and hepatic steatosis exacerbate ischemia/reperfusion-accelerated outgrowth
377	of colore	ectal micrometastases. Ann Surg Oncol. 2008;15:1392-8.

21

378	26.	Liu S, Li X, Li H, Guo L, Zhang B, Gong Z, et al. Longer duration of the
379	Pringle	maneuver is associated with hepatocellular carcinoma recurrence following
380	curative	e resection. J Surg Oncol. 2016;114:112-8.
381	27.	Hao S, Chen S, Yang X, Wan C. Adverse impact of intermittent portal
382	clampir	ng on long-term postoperative outcomes in hepatocellular carcinoma. Ann R Coll
383	Surg Er	ngl. 2017;99:22-7.
384	28.	Maurer CA, Walensi M, Kaser SA, Kunzli BM, Lotscher R, Zuse A. Liver
385	resectio	ns can be performed safely without Pringle maneuver: A prospective study.
386	World J	Hepatol. 2016;8:1038-46.
387		
388		
389		
390		
391		
392		
393		
394		
395		

396

397	Figure	legends

398	Fig 1. Com	puted tomog	graphy imag	ge analysis o	of a third	lumbar vertebra	. Green area,
	- · · · ·						

- 399 muscle; red area, visceral fat; blue area, subcutaneous fat. (a) A patient without sarcopenic
- 400 obesity. (b) A patient with sarcopenic obesity.
- 401

```
402 Fig 2. Scatter diagram of the correlation between visceral fat area (VFA)/skeletal
```

403 **muscle index (SMI) and intraoperative blood loss.** Coefficients (ρ) and *P*-values

- 404 were calculated using the Spearman's rank correlation analysis. Red circles indicate
- 405 patients with post-hepatectomy bile leakage (PHBL), and blue circles indicate patients
- 406 without PHBL.
- 407

408	Fig 3. Receiver	operating ch	aracteristic (ROC	C) curve analysis f	or the occurrence of
	-	1 0			

409 **PHBL.** Red, ROC curve of the combination of sarcopenic obesity and intraoperative

410 blood loss; green, ROC curve of sarcopenic obesity; blue, ROC curve of intraoperative

411 blood loss.

b

Subcutaneous fat area (SFA)

Visceral fat area (VFA)

Total muscle area (TMA)

Figure 1

Figure 2

Figure 3